西秦岭印支期高Sr/Y花岗岩类的成因及动力学背景——以同仁地区舍哈力吉岩体为例

黄雄飞, 莫宣学, 喻学惠, 李小伟, 杨梦楚, 罗明非, 和文言, 于峻川. 西秦岭印支期高Sr/Y花岗岩类的成因及动力学背景——以同仁地区舍哈力吉岩体为例[J]. 岩石学报, 2014, 30(11): 3255-3270.
引用本文: 黄雄飞, 莫宣学, 喻学惠, 李小伟, 杨梦楚, 罗明非, 和文言, 于峻川. 西秦岭印支期高Sr/Y花岗岩类的成因及动力学背景——以同仁地区舍哈力吉岩体为例[J]. 岩石学报, 2014, 30(11): 3255-3270.
HUANG XiongFei, Mo XuanXue, YU XueHui, LI XiaoWei, YANG MengChu, LUO MingFei, HE WenYan, YU JunChuan. Origin and geodynamic settings of the Indosinian high Sr/Y granitoids in the West Qinling: An example from the Shehaliji pluton in Tongren area[J]. Acta Petrologica Sinica, 2014, 30(11): 3255-3270.
Citation: HUANG XiongFei, Mo XuanXue, YU XueHui, LI XiaoWei, YANG MengChu, LUO MingFei, HE WenYan, YU JunChuan. Origin and geodynamic settings of the Indosinian high Sr/Y granitoids in the West Qinling: An example from the Shehaliji pluton in Tongren area[J]. Acta Petrologica Sinica, 2014, 30(11): 3255-3270.

西秦岭印支期高Sr/Y花岗岩类的成因及动力学背景——以同仁地区舍哈力吉岩体为例

  • 基金项目:

    本文受中国地质调查局工作项目(1212011121260、E90139)、国家自然科学基金项目(41403028)和中国博士后科学基金资助项目(2014M550081)联合资助.

详细信息

Origin and geodynamic settings of the Indosinian high Sr/Y granitoids in the West Qinling: An example from the Shehaliji pluton in Tongren area

More Information
  • 西秦岭印支期花岗岩类分布十分广泛,形成时代集中于248~234Ma和224~211Ma两个阶段.其中,夏河岩体(248~238Ma)和温泉岩体(223~216Ma)的部分样品被厘定为埃达克岩(Sr>400×10-6,Yb-6),指示陆壳厚度大于50km.本文对西秦岭同仁地区舍哈力吉岩体进行了锆石U-Pb定年、岩石学、地球化学和Sr-Nd同位素研究.舍哈力吉岩体主要由石英二长岩组成,同时含有许多暗色镁铁质微粒包体(MME).寄主岩中发育少量的钾长石巨晶,并且部分巨晶具有环斑结构.舍哈力吉石英二长岩化学成分比较均一,而且也显示出类似埃达克岩的一些地球化学特点,如富SiO2(66.07%~67.52%)和Al2O3(14.85%~15.95%),高Sr(560×10-6~692×10-6),低Y(11.4×10-6~12.9×10-6)和Yb(0.99×10-6~1.09×10-6),并具有较高的(La/Yb)N比值(27.8~34.3)和微弱的负Eu异常(δEu=0.77~0.95).锆石U-Pb测年结果为234.1±0.5Ma,表明其形成于印支早期.岩石为偏铝质、高钾钙碱性系列且K2O/Na2O>1,高Mg#(59~60)、Cr(69.1×10-6~81.2×10-6)和Ni(31.6×10-6~36.1×10-6),以富集大离子亲石元素(Rb、Ba、Th、U)而相对亏损高场强元素(Nb、Ti、P)为特征,(87Sr/86Sr)i=0.7075~0.7077,εNd(t)=-6.3~-6.1,亏损地幔模式年龄为1.25~1.33Ga.舍哈力吉石英二长岩起源于石榴角闪岩相古老下地壳的部分熔融,之后经历了壳幔岩浆混合作用和以斜长石为主的分离结晶作用.寄主岩的环斑结构和相对一致的地球化学特征,很可能是高温幔源熔体对壳源富钾高黏度岩浆改造所导致的晶粥快速再活化的结果.西秦岭在印支早期可能并未经历显著的地壳加厚过程.西秦岭印支早期花岗岩类形成于活动大陆边缘局部伸展环境,可能与古特提斯洋壳俯冲极性的改变有关.
  • 加载中
  • [1]

    Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79

    [2]

    Atherton MP and Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144-146

    [3]

    Bachmann O and Bergantz GW. 2006. Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. Journal of Volcanology and Geothermal Research, 149(1): 85-102

    [4]

    Barbarin B. 2005. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: Nature, origin and relations with the hosts. Lithos, 80(1-4): 155-177

    [5]

    Baxter S and Feely M. 2002. Magma mixing and mingling textures in granitoids: Examples from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology, 76(1-2): 63-74

    [6]

    Burgisser A and Bergantz GW. 2011. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies. Nature, 471(7337): 212-215

    [7]

    Cao XF, Lü XB, Yao SZ, Mei W, Zou XY, Chen C, Liu ST, Zhang P, Su YY and Zhang B. 2011. LA-ICP-MS U-Pb zircon geochronology, geochemistry and kinetics of the Wenquan ore-bearing granites from West Qinling, China. Ore Geology Reviews, 43(1): 120-131

    [8]

    Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665

    [9]

    Dong YP, Zhang GW, Neubauer F, Liu XM, Genser J and Hauzenberger C. 2011. Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41(3): 213-237

    [10]

    Drummond MS, Defant MJ and Kepezhinskas PK. 1996. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Transactions of the Royal Society of Edinburgh-Earth Sciences, 87(1-2): 205-216

    [11]

    Eklund O and Shebanov AD. 1999. The origin of rapakivi texture by sub-isothermal decompression. Precambrian Research, 95(1): 129-146

    [12]

    Feng YM, Cao XD, Zhang EP, Hu YX, Pan XP, Yang JL, Jia QZ and Li WM. 2002. Orogenic Processes and Dynamics of the West Qinling Orogenic Belt. Xi'an: Xi'an Cartographic Publishing House, 1-263 (in Chinese)

    [13]

    Feng YM, Cao XD, Zhang EP, Hu YX, Pan XP, Yang JL, Jia QZ and Li WM. 2003. Tectonic evolution framework and nature of the West Qinling Orogenic Belt. Northwestern Geology, 36(1): 1-10 (in Chinese with English abstract)

    [14]

    Gao S, Liu XM, Yuan HL, Hattendorf B, Günther D, Chen L and Hu SH. 2002. Determination of forty-two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-Mass Spectrometry. Geostandards Newsletter-Journal of Geostandards and Geoanalysis, 26(2): 191-196

    [15]

    Ge XY, Li XH, Chen ZG and Li WP. 2002. Geochemistry and petrogenesis of Jurassic high Sr and low Y granitoids in eastern China: Constrains on crustal thickness. Chinese Science Bulletin, 47(6): 474-480 (in Chinese)

    [16]

    Goto A and Tatsumi Y. 1996. Quantitative analysis of rock samples by an X-ray fluorescence spectrometer (II). Rigaku Journal, 13(2): 20-39

    [17]

    Guo XQ, Yan Z, Wang ZQ, Wang T, Hou KJ, Fu CL, and Li JL. 2012. Middle Triassic arc magmatism along the northeastern margin of the Tibet: U-Pb and Lu-Hf zircon characterization of the Gangcha complex in the West Qinling terrane, central China. Journal of the Geological Society, 169(3): 327-336

    [18]

    Haapala I and Rämö OT. 1999. Rapakivi granites and related rocks: An introduction. Precambrian Research, 95(1-2): 1-7

    [19]

    He YS, Li SG, Hoefs J, Huang F, Liu SA and Hou ZH. 2011. Post-collisional granitoids from the Dabie orogen: New evidence for partial melting of a thickened continental crust. Geochimica et Cosmochimica Acta, 75(13): 3815-3838

    [20]

    Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423-439

    [21]

    Huang F and He YS. 2010. Partial melting of the dry mafic continental crust: Implications for petrogenesis of C-type adakites. Chinese Science Bulletin, 55(13): 1255-1267 (in Chinese)

    [22]

    Huang XF, Mo XX, Yu XH, Li XW, Ding Y, Wei P and He WY. 2013. Zircon U-Pb chronology, geochemistry of the Late Triassic acid volcanic rocks in Tanchang area, West Qinling and their geological significance. Acta Petrologica Sinica, 29(11): 3968-3980 (in Chinese with English abstract)

    [23]

    Huber C, Bachmann O and Manga M. 2009. Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering). Earth and Planetary Science Letters, 283 (1-4): 38-47

    [24]

    Jiang YH, Jin GD, Liao SY, Zhou Q and Zhao P. 2010. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: Implications for a continental arc to continent-continent collision. Lithos, 117(1): 183-197

    [25]

    Jin WJ, Zhang Q, He DF and Jia XQ. 2005. SHRIMP dating of adakites in western Qinling and their implications. Acta Petrologica Sinica, 21(3): 959-966 (in Chinese with English abstract)

    [26]

    Le Bas MJ, LeMaitre RW, Streckeisen A and Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745-750

    [27]

    Li HK, Zhu SX, Xiang ZQ, Su WB, Lu SN, Zhou HY, Geng JZ, Li S and Yang FJ. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton. Acta Petrologica Sinica, 26(7): 2131-2140 (in Chinese with English abstract)

    [28]

    Li L, Meng QR, Pullen A, Garzione CN, Wu G, Wang YL, Ma SX and Duan L. 2014c. Late Permian-early Middle Triassic back-arc basin development in West Qinling, China. Journal of Asian Earth Sciences, 87(1): 116-129

    [29]

    Li XW, Mo XX, Yu XH, Ding Y, Huang XF, Wei P and He WY. 2013. Petrology and geochemistry of the Early Mesozoic pyroxene andesites in the Maixiu area, West Qinling, China: Products of subduction or syn-collison? Lithos, 172-173: 158-174

    [30]

    Li XW, Mo XX, Huang XF, Dong GC, Yu XH, Luo MF and Liu YB. 2014a. U-Pb zircon geochronology, geochemical and Sr-Nd-Hf isotopic compositions of the Early Indosinian Tongren Pluton in West Qinling: Petrogenesis and geodynamic implications. Journal of Asian Earth Sciences, doi: 10.1016/j.jseaes.2014.10.017

    [31]

    Li XW, Mo XX, Bader T, Scheltens M, Yu XH, Dong GC and Huang XF. 2014b. Petrology, geochemistry and geochronology of the magmatic suite from the Jianzha Complex, central China: Petrogenesis and geodynamic implications. Journal of Asian Earth Sciences, 95C: 164-181

    [32]

    Li ZC, Pei XZ, Ding SP, Liu ZQ, Li RB, Sun Y, Feng JF and Zhang YF. 2010. Geochemical features and tectonic setting of the Laohegou granite and the shaiziyan granite in Bikou block in Northwest Sichuan. Acta Geologica Sinica, 84(3): 343-356 (in Chinese with English abstract)

    [33]

    Liu SF, Steel R and Zhang GW. 2005. Mesozoic sedimentary basin development and tectonic implication, northern Yangtze Block, eastern China: Record of continent-continent collision. Journal of Asian Earth Sciences, 25(1): 9-27

    [34]

    Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43

    [35]

    Ludwig KR. 2003. User's Manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center

    [36]

    Luo BJ, Zhang HF and Lü XB. 2012. U-Pb zircon dating, geochemical and Sr-Nd-Hf isotopic compositions of Early Indosinian intrusive rocks in West Qinling, central China: Petrogenesis and tectonic implications. Contributions to Mineralogy and Petrology, 164(4): 551-569

    [37]

    Luo BJ, Zhang HF and Xiao ZQ. 2012. Petrogenesis and tectonic implications of the Early Indosinian Meiwu pluton in West Qinling, central China. Earth Science Frontiers, 19(3): 199-213 (in Chinese with English abstract)

    [38]

    Luo ZH, Chen BH, Jiang XM, Wang ZQ and Wang YH. 2012. A preliminary attempt for targeting prospecting districts using the wide composition-spectrum dike swarms: An example of the South Alatao Mountains, Xinjiang, China. Acta Petrologica Sinica, 28(7): 1949-1965 (in Chinese with English abstract)

    [39]

    Meng QR and Zhang GW. 1999. Timing of collision of the North and South China blocks: Controversy and reconciliation. Geology, 27(2): 123-126

    [40]

    Meng QR, Wang E and Hu JM. 2005. Mesozoic sedimentary evolution of the northwest Sichuan basin: Implication for continued clockwise rotation of the South China block. Geological Society of America Bulletin, 117(3-4): 396-410

    [41]

    Moyen JF. 2009. High Sr/Y and La/Yb ratios: The meaning of the "adakitic signature". Lithos, 112(3): 556-574

    [42]

    Nekvasil H. 1991. Ascent of felsic magmas and formation of rapakivi. American Mineralogist, 76(7-8): 1279-1290

    [43]

    Qian Q and Hermann J. 2013. Partial melting of lower crust at 10~15kbar: Constraints on adakite and TTG formation. Contributions to Mineralogy and Petrology, 165(6): 1195-1224

    [44]

    Qin JF, Lai SC and Li YF. 2008. Slab breakoff model for the Triassic post-collisional adakitic granitoids in the Qinling orogen, central China: Zircon U-Pb ages, geochemistry and Sr-Nd-Pb isotopic constraints. International Geology Review, 50(12): 1080-1104

    [45]

    Qin JF, Lai SC, Rodney G, Diwu CR, Ju YJ and Li YF. 2009. Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (central China). Lithos, 112(3-4): 259-276

    [46]

    Qin JF, Lai SC, Diwu CR, Ju YJ and Li YF. 2010. Magma mixing origin for the post-collisional adakitic monzogranite of the Triassic Yangba pluton, northwestern margin of the South China block: Geochemistry, Sr-Nd isotopic, zircon U-Pb dating and Hf isotopic evidences. Contributions to Mineralogy and Petrology, 159(3): 389-409

    [47]

    Qiu QL, Gong QS, Lu SW and Liu SX. 2008. Geochemical characteristics and geological significance of adakitic granitoids in Xiahe County of Gansu Province. Gansu Geology, 17(3): 6-12 (in Chinese)

    [48]

    Rämö OT and Haapala I. 1995. One hundred years of rapakivi granite. Mineralogy and Petrology, 52(3-4): 129-185

    [49]

    Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931

    [50]

    Rapp RP, Shimizu N, Norman MD and Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8GPa. Chemical Geology, 160(4): 335-356

    [51]

    Rickwood PC. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263

    [52]

    Rudnick R and Gao S. 2003. Composition of the continental crust. In: Rudnick RL (ed.). Treatise on Geochemistry. Amsterdam: Elsevier, 3: 1-64

    [53]

    Ruprecht P, Bergantz GW, Cooper KM and Hildreth W. 2012. The crustal magma storage system of Volcán Quizapu, Chile and the effects of magma mixing on magma diversity. Journal of Petrology, 53(4): 801-840

    [54]

    Stern CR and Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263-281

    [55]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basin. London: Geological Society Special Publications, 42(1): 313-345

    [56]

    Sun WD, Li SG, Chen YD and Li YJ. 2002. Timing of synorogenic granitoids in the South Qinling, central China: Constraints on the evolution of the Qinling-Dabie Orogenic Belt. The Journal of Geology, 110(4): 457-468

    [57]

    Wang HQ, Zhu YH, Lin QX, Li YL and Wang K. 2010. LA-ICP-MS zircon U-Pb dating of the gabbro from Longwu Gorge ophiolite, Jianzha-Tongren area, Qinghai, China and its geological significance. Geological Bulletin of China, 29(1): 86-92 (in Chinese with English abstract)

    [58]

    Wang TG, Ni P, Sun WD, Zhao KD and Wang XD. 2011a. Zircon U-Pb ages of granites at Changba and Huangzhuguan in western Qinling and implications for source nature. Chinese Science Bulletin, 56(7): 659-669

    [59]

    Wang XX, Wang T, Castro A, Pedreira R, Lu XX and Xiao QH. 2011b. Triassic granitoids of the Qinling orogen, central China: Genetic relationship of enclaves and rapakivi-textured rocks. Lithos, 126(3): 369-387

    [60]

    Wei P, Mo XX, Yu XH, Huang XF, Ding Y and Li XW. 2013. Geochemistry, chronology and geological significance of the granitoids in Xiahe, West Qinling. Acta Petrologica Sinica, 29(11): 3981-3992 (in Chinese with English abstract)

    [61]

    Wernick E, Galembeck TMB, Godoy AM and Harmann PK. 1997. Geochemical variability of the rapakivi Itu Province, state of Sao Paulo, SE Brazil. Anais da Academia Brasileria de Ciencias, 69: 395-413

    [62]

    Wyllie PJ, Cox KG and Biggar GM. 1962. The habit of apatite in synthetic systems and igneous rocks. Journal of Petrology, 3(2): 238-243

    [63]

    Xiong FH, Ma CQ, Zhang JY and Liu B. 2011. LA-ICP-MS zircon U-Pb dating, elements and Sr-Nd-Hf isotope geochemistry of the Early Mesozoic mafic dyke swarms in East Kunlun orogenic belt. Acta Petrologica Sinica, 27(11): 3350-3364 (in Chinese with English abstract)

    [64]

    Xu XY, Chen JL, Gao T, Li P and Li T. 2014. Granitoid magmatism and tectonic evolution in northern edge of the western Qinling terrane, NW China. Acta Petrologica Sinica, 30(2): 371-389 (in Chinese with English abstract)

    [65]

    Yan Z, Wang ZQ, Li JL, Xu ZQ and Deng JF. 2012. Tectonic settings and accretionary orogenesis of the West Qinling Terrane, northeastern margin of the Tibet Plateau. Acta Petrologica Sinica, 28(6): 1808-1828 (in Chinese with English abstract)

    [66]

    Yang PT, Liu SW, Li QG, Wang ZQ, Zhang F and Wang W. 2014. Chronology and petrogenesis of the Hejiazhuang granitoid pluton and its constraints on the Early Triassic tectonic evolution of the South Qinling Belt. Science China (Earth Sciences), 57(2): 232-246

    [67]

    Yin Y and Yin XM. 2009. Porphyry Cu-Mo-Au mineralization related to adakite and Himalayan type granite in the northern margin of West Qinling. Acta Petrologica Sinica, 25(5): 1239-1252 (in Chinese with English abstract)

    [68]

    Yuan C, Zhou MF, Sun M, Zhao YJ, Wilde S, Long XP and Yan DP. 2010. Triassic granitoids in the eastern Songpan-Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere. Earth and Planetary Science Letters, 290(3-4): 481-492

    [69]

    Zhang CL, Wang T and Wang XX. 2008. Origin and tectonic setting of the Early Mesozoic granitoids in Qinling orogenic belt. Geological Journal of China Universities, 14(3): 304-316 (in Chinese with English abstract)

    [70]

    Zhang GW, Zhang BR, Yuan XC and Xiao QH. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press, 1-806 (in Chinese)

    [71]

    Zhang GW, Dong YP, Lai SC, Guo AL, Meng QR, Liu SF, Cheng SY, Yao AP, Zhang ZQ and Pei XZ. 2004. Mianlue tectonic zone and Mianlue suture zone on southern margin of Qinling-Dabie orogenic belt. Science in China (Series D), 47(4): 300-316

    [72]

    Zhang HF, Chen YL, Xu WC, Liu R, Yuan HL and Liu XM. 2006. Granitoids around Gonghe basin in Qinghai Province: Petrogenesis and tectonic implications. Acta Petrologica Sinica, 22(12): 2910-2922 (in Chinese with English abstract)

    [73]

    Zhang HF, Jin LL, Zhang L, Nigel H, Zhou L, Hu SC and Zhang BR. 2007a. Geochemical and Pb-Sr-Nd isotopic compositions of granitoids from western Qinling belt: Constraints on basement nature and tectonic affinity. Science in China (Series D), 50(2): 184-196

    [74]

    Zhang HF, Xiao L, Zhang L, Yuan HL and Jin LL. 2007b. Geochemical and Pb-Sr-Nd isotopic compositions of Indosinian granitoids from the Bikou block, northwest of the Yangtze plate: Constraints on petrogenesis, nature of deep crust and geodynamics. Science in China (Series D), 50(7): 972-983

    [75]

    Zhang Q, Yin XM, Yin Y, Jin WJ, Wang YL and Zhao YQ. 2009. Issues on metallogenesis and prospecting of gold and copper deposits related to adakite and Himalayan type granite in West Qinling. Acta Petrologica Sinica, 25(12): 3103-3122 (in Chinese with English abstract)

    [76]

    Zhang Q. 2011. Reappraisal of the origin of C-type adakitic rocks from East China. Acta Petrologica et Mineralogica, 30(4): 739-747 (in Chinese with English abstract)

    [77]

    Zhu LM, Zhang GW, Chen YJ, Ding ZJ, Guo B, Wang F and Lee B. 2011. Zircon U-Pb ages and geochemistry of the Wenquan Mo-bearing granitioids in West Qinling, China: Constraints on the geodynamic setting for the newly discovered Wenquan Mo deposit. Ore Geology Reviews, 39(1-2): 46-62

    [78]

    冯益民, 曹宣铎, 张二朋, 胡云绪, 潘晓萍, 杨军录, 贾群子, 李文明. 2002. 西秦岭造山带结构造山过程及动力学. 西安: 西安地图出版社, 1-263

    [79]

    冯益民, 曹宣铎, 张二朋, 胡云绪, 潘晓萍, 杨军录, 贾群子, 李文明. 2003. 西秦岭造山带的演化, 构造格局和性质. 西北地质, 36(1): 1-10

    [80]

    葛小月, 李献华, 陈志刚, 李伍平. 2002. 中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因: 对中国东部地壳厚度的制约. 科学通报, 47(6): 474-480

    [81]

    黄方, 何永胜. 2010. 干的基性大陆下地壳部分熔融: 对C型埃达克岩成因的制约. 科学通报, 55(13): 1255-1267

    [82]

    黄雄飞, 莫宣学, 喻学惠, 李小伟, 丁一, 韦萍, 和文言. 2013. 西秦岭宕昌地区晚三叠世酸性火山岩的锆石U-Pb年代学、地球化学及其地质意义. 岩石学报, 29(11): 3968-3980

    [83]

    金维浚, 张旗, 何登发, 贾秀勤. 2005. 西秦岭埃达克岩的SHRIMP定年及其构造意义. 岩石学报, 21(3): 959-966

    [84]

    李怀坤, 朱士兴, 相振群, 苏文博, 陆松年, 周红英, 耿建珍, 李生, 杨锋杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报, 26(7): 2131-2140

    [85]

    李佐臣, 裴先治, 丁仨平, 刘战庆, 李瑞保, 孙雨, 冯建费, 张亚峰. 2010. 川西北碧口地块老河沟岩体和筛子岩岩体地球化学特征及其构造环境. 地质学报, 84(3): 343-356

    [86]

    骆必继, 张宏飞, 肖尊奇. 2012. 西秦岭印支早期美武岩体的岩石成因及其构造意义. 地学前缘, 19(3): 199-213

    [87]

    罗照华, 陈必河, 江秀敏, 王章棋, 王永恒. 2012. 利用宽谱系岩墙群进行勘查靶区预测的初步尝试: 以南阿拉套山为例. 岩石学报, 28(7): 1949-1965

    [88]

    邱庆伦, 龚全胜, 卢书伟, 柳生祥. 2008. 甘肃夏河地区印支期埃达克岩的厘定及其意义. 甘肃地质, 17(3): 6-12

    [89]

    王绘清, 朱云海, 林启祥, 李益龙, 王坤. 2010. 青海尖扎-同仁地区隆务峡蛇绿岩的形成时代及意义——来自辉长岩锆石LA-ICP-MS U-Pb年龄的证据. 地质通报, 29(1): 86-92

    [90]

    韦萍, 莫宣学, 喻学惠, 黄雄飞, 丁一, 李小伟. 2013. 西秦岭夏河花岗岩的地球化学、年代学及地质意义. 岩石学报, 29(11): 3981-3992

    [91]

    熊富浩, 马昌前, 张金阳, 刘彬. 2011. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学. 岩石学报, 27(11): 3350-3364

    [92]

    徐学义, 陈隽璐, 高婷, 李平, 李婷. 2014. 西秦岭北缘花岗质岩浆作用及构造演化. 岩石学报, 30(2): 371-389

    [93]

    闫臻, 王宗起, 李继亮, 许志琴, 邓晋福. 2012. 西秦岭楔的构造属性及其增生造山过程. 岩石学报, 28(6): 1808-1828

    [94]

    殷勇, 殷先明. 2009. 西秦岭北缘与埃达克岩和喜马拉雅型花岗岩有关的斑岩型铜-钼-金成矿作用. 岩石学报, 25(5): 1239-1252

    [95]

    张成立, 王涛, 王晓霞. 2008. 秦岭造山带早中生代花岗岩成因及其构造环境. 高校地质学报, 14(3): 304-316

    [96]

    张国伟, 张本仁, 袁学诚, 肖庆辉. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 1-806

    [97]

    张宏飞, 陈岳龙, 徐旺春, 刘荣, 袁洪林, 柳小明. 2006. 青海共和盆地周缘印支期花岗岩类的成因及其构造意义. 岩石学报, 22(12): 2910-2922

    [98]

    张旗, 殷先明, 殷勇, 金维浚, 王元龙, 赵彦庆. 2009. 西秦岭与埃达克岩和喜马拉雅型花岗岩有关的金铜成矿及找矿问题. 岩石学报, 25(12): 3103-3122

    [99]

    张旗. 2011. 关于C型埃达克岩成因的再探讨. 岩石矿物学杂志, 30(4): 739-747

  • 加载中
计量
  • 文章访问数:  7602
  • PDF下载数:  5478
  • 施引文献:  0
出版历程
收稿日期:  2014-02-27
修回日期:  2014-06-30
刊出日期:  2014-11-30

目录