勉略构造带硅质岩元素地球化学特征及其形成环境

戢兴忠, 李楠, 张闯, 邱昆峰, 华北, 余金元, 吴春俊, 韩日. 勉略构造带硅质岩元素地球化学特征及其形成环境[J]. 岩石学报, 2014, 30(9): 2619-2630.
引用本文: 戢兴忠, 李楠, 张闯, 邱昆峰, 华北, 余金元, 吴春俊, 韩日. 勉略构造带硅质岩元素地球化学特征及其形成环境[J]. 岩石学报, 2014, 30(9): 2619-2630.
JI XingZhong, LI Nan, ZHANG Chuang, QIU KunFeng, HUA Bei, YU JinYuan, WU ChunJun, HAN Ri. Elemental geochemistry characteristics and forming environment of cherts in the Mianlue tectonic zone[J]. Acta Petrologica Sinica, 2014, 30(9): 2619-2630.
Citation: JI XingZhong, LI Nan, ZHANG Chuang, QIU KunFeng, HUA Bei, YU JinYuan, WU ChunJun, HAN Ri. Elemental geochemistry characteristics and forming environment of cherts in the Mianlue tectonic zone[J]. Acta Petrologica Sinica, 2014, 30(9): 2619-2630.

勉略构造带硅质岩元素地球化学特征及其形成环境

  • 基金项目:

    本文受国家重点基础研究发展规划(2009CB421008)、国家自然科学基金项目(41030423)、公益性行业科研专项经费项目(201411048)、中国地质调查局地质调查项目(1212011121090)和中国地质大学(北京)基本科研业务费专项资金资助项目(2-9-2014-055)联合资助.

Elemental geochemistry characteristics and forming environment of cherts in the Mianlue tectonic zone

  • 勉略构造带古生代硅质岩发育,其对西秦岭造山带古生代沉积环境与构造背景具有重要指示意义。本文研究了勉略构造带西段文县地区泥盆纪硅质岩的野外露头产状、岩石学与矿物学及全岩主微量元素地球化学特征,对比分析了该带东段硅质岩性质,综合剖析了勉略构造带古生代硅质岩的沉积环境,探讨了西秦岭造山带古生代岩相古地理环境及大地构造背景。文县硅质岩有灰白色块状硅质岩和灰黑色角砾状硅质岩两种类型,两者均具层状、条带状等沉积构造,并与上覆、下伏地层整合接触,为典型热水沉积硅质岩。岩石主要组成矿物为细晶-微晶石英,含有少量的方解石、绢云母及泥质等。岩石地球化学分析显示,硅质岩SiO2含量较高,为84.85%~99.07%,平均为91.99%,且灰白色硅质岩质地更纯,SiO2含量明显高于灰黑色硅质岩。硅质岩主微量、稀土元素Fe2O3/TiO2-Al2O3/(Al2O3+Fe2O3)、V/Y-Ti/V 及LaN/CeN-Al2O3/(Al2O3+Fe2O3)图解表明该区硅质岩主要形成于大陆边缘及近大陆边缘环境。稀土元素显示灰黑色角砾状硅质岩稀土总量较高,为171.3×10-6~236.1×10-6,而灰白色块状硅质岩仅为11.96×10-6~51.06×10-6,表明前者所含陆源物质组分更多;稀土元素北美页岩标准化后两者整体显示了相似的轻重稀土分异不明显的平坦型稀土配分模式,其中灰黑色硅质岩δCe为0.95~1.05、δEu为0.66~0.87、(La/Yb)SN值为0.95~1.10,反映基本无Ce异常、弱Eu负异常及轻重稀土分异不明显;灰白色硅质岩的δCe为1.07~1.12、δEu为0.70~0.90、(La/Yb)SN值为1.64~4.07显示了弱Ce正异常、弱Eu负异常及弱轻重稀土分异,两者稀土元素特征与世界典型大陆边缘(裂陷)盆地硅质岩相近。文县硅质岩地质、元素地球化学特征表明其整体形成于大陆边缘及近大陆边缘沉积环境,但相比于灰白色块状硅质岩,灰黑色角砾状硅质岩有更多陆源物质加入。结合勉略构造带东段古生代硅质岩野外产出及地球化学特征分析,该区在早古生代-晚古生代早期主要处于扬子板块北部大陆边缘海盆沉积环境,有较多的陆源物质加入到富硅的热水沉积中,在勉略构造带内自西向东形成了一系列不同时代的热水沉积硅质岩。与此同时,西秦岭主要处于大陆裂陷构造背景之中,多期次的裂陷活动形成了一系列裂陷盆地及深大断裂,这对西秦岭古生代热水沉积硅质岩的形成具有重要意义。
  • 加载中
  • [1]

    Adachi M, Yamamoto K and Sugisaki R. 1986. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity. Sedimentary Geology, 47(1-2): 125-148

    [2]

    Armstrong HA, Owen AW and Floyd JD. 1999. Rare earth geochemistry of Arenig cherts from the Ballantrae ophiolite and Leadhills Imbricate Zone, southern Scotland: Implications for origin and significance to the Caledonian Orogeny. Journal of the Geological Society, 156(3): 549-560

    [3]

    Baldwin GJ, Thurston PC and Kamber BS. 2011. High-precision rare earth element, nickel, and chromium chemistry of chert microbands pre-screened with in-situ analysis. Chemical Geology, 285(1-4): 133-143

    [4]

    Baltuck M. 1982. Provenance and distribution of tethyan pelagic and hemipelagic siliceous sediments, pindos mountains, Greece. Sedimentary Geology, 31(1): 63-88

    [5]

    Deng J, Zhai YS, Yang LQ, Yang JC, Fang Y, Wan L, Wang JP and Ding SJ. 1999. Dynamic simulation of tectonic-fluid-metallogenic system in shear zone. Earth Science Frontiers, 6(1): 115-127 (in Chinese with English abstract)

    [6]

    Deng J, Yang LQ, Zhai YS, Sun ZS and Chen XM. 2000. Theoretical framework and methodological system of tectonics-fluids-mineralization system and dynamics. Earth Science, 25(1): 71-78 (in Chinese with English abstract)

    [7]

    Deng J, Wang QF, Wan L, Yang LQ, Zhou L and Zhao J. 2008. Random difference of the trace element distribution in skarn and marbles from Shizishan orefield, Anhui Province, China. Journal of China University of Geosciences, 19(4): 319-326

    [8]

    Deng J, Yang LQ, Gao BF, Sun ZS, Guo CY, Wang QF and Wang JP. 2009. Fluid evolution and metallogenic dynamics during tectonic regime transition: Example from the Jiapigou gold belt in Northeast China. Resource Geology, 59(2): 140-152

    [9]

    Deng J, Hou ZQ, Mo XX, Yang LQ, Wang QF and Wang CM. 2010. Superimposed orogenesis and metallogenesis in Sanjiang Tethys. Mineral Deposit, 29(1): 37-42 (in Chinese with English abstract)

    [10]

    Deng J, Yang LQ and Wang CM. 2011. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys. Acta Petrologica Sinica, 27(9): 2501-2509 (in Chinese with English abstract)

    [11]

    Deng J, Wang CM and Li GJ. 2012. Style and process of the superimposed mineralization in the Sanjiang Tethys. Acta Petrologica Sinica, 28(5): 1349-1361 (in Chinese with English abstract)

    [12]

    Deng J, Ge LS and Yang LQ. 2013. Tectonic dynamic system and compound orogeny: Additionally discussing the temporal-spatial evolution of Sanjiang orogeny, Southwest China. Acta Petrologica Sinica, 29(4): 1099-1114 (in Chinese with English abstract)

    [13]

    Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014a. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419-437

    [14]

    Deng J, Wang QF, Li GJ and Santosh M. 2014b. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, doi: 10.1016/j.earscirev.2014.05.015

    [15]

    Ding L and Zhong DL. 1995. The rare earth element and Ce abnormal features of Paleo-Tethys Ocean cherts in Changning-Menglian, western Yunnan. Science in China (Series B), 25(1): 93-100 (in Chinese)

    [16]

    Dong YP, Zhang GW, Neubauer F, Liu XM, Genser J and Hauzenberger C. 2011. Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41(3): 213-237

    [17]

    Du YS. 1995. Devonian Paleo-ocean of Qinling orogenic belt. Earth Science, 20(6): 617-623 (in Chinese with English abstract)

    [18]

    Fan XR. 2001. The study of tectonic evolution and sedimentary-exhalative metallization of the western Qinling orogenic belt. Ph. D. Dissertation. Changsha: Central South University, 15-27 (in Chinese with English summary)

    [19]

    Gao CL and He JQ. 1999. Geochemical feature and origin of silicalite in north of Dabashan Mountains. Earth Science, 24(3): 246-250 (in Chinese with English abstract)

    [20]

    Kurihara T, Tsukada K, Otoh S, Kashiwagi K, Chuluun M, Byambadash D, Boijlr B, Gonchigdorj S, Nuramkhan M, Niwa M, Tokiwa T, Hikichi G and Kozuka T. 2009. Upper Silurian and Devonian pelagic deep-water radiolarian chert from the Khangai-Khentei belt of Central Mongolia: Evidence for Middle Paleozoic subduction-accretion activity in the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 34(2): 209-225

    [21]

    Ledevin M, Arndt NT and Simionovici A. 2013. Archean cherts: Field, petrographic and geochemical criteria to determine their origin. Geophysical Research Abstracts, 15: 4840

    [22]

    Li N, Yang LQ, Zhang C, Zhang J, Lei SB, Wang HT, Wang HW and Gao X. 2012. Sulfur isotope characteristics of the Yangshan gold belt, West Qinling: Constraints on ore-forming environment and material source. Acta Petrologica Sinica, 28(5): 1577-1587 (in Chinese with English abstract)

    [23]

    Li N, Deng J, Yang LQ, Goldfarb RJ, Zhang C, Marsh E, Lei SB, Koenig A and Lowers H. 2014. Paragenesis and geochemistry of ore minerals in the epizonal gold deposits of the Yangshan gold belt, West Qinling, China. Mineralium Deposita, 49(4): 427-449

    [24]

    Li WH. 1997a. Petrological characteristics of radiolarian silicalite and its geological significance of Lower Silurian in the Hanzhong region. Acta Sedimentologica Sinica, 15(3): 171-173 (in Chinese with English abstract)

    [25]

    Li WH. 1997b. The identical function of event-and sequence-stratigraphy in the study of sedimentary basin. Journal of Stratigraphy, 21(2): 146-160 (in Chinese with English abstract)

    [26]

    Liu SW, Xue CJ, Zeng R, Li Q, Zhu JX, Wang T and Zhao GB. 2005. Petrology and geochemistry of siliceous rocks in Silurian lead-zinc deposits of southern Qinling region. Mineral Deposits, 24(5): 490-500 (in Chinese with English abstract)

    [27]

    Lü ZC, Liu CQ, Liu JJ and Wu FC. 2004. Geochemical studies on the Lower Cambrian witherite-bearing cherts in the northern Daba Mountains. Acta Geologica Sinica, 78(3): 390-405 (in Chinese with English abstract)

    [28]

    Marin-Carbonne J, Chaussidon M, Boiron MC and Robert F. 2011. A combined in situ oxygen, silicon isotopic and fluid inclusion study of a chert sample from Onverwacht Group (3.35Ga, South Africa): New constraints on fluid circulation. Chemical Geology, 286(3-4): 59-71

    [29]

    Marin-Carbonne J, Chaussidon M and Robert F. 2012. Micrometer-scale chemical and isotopic criteria (O and Si) on the origin and history of Precambrian cherts: Implications for paleo-temperature reconstructions. Geochimica et Cosmochimica Acta, 92: 129-147

    [30]

    Marshall AO, Jehlicˇka J, Rouzaud JN and Marshall CP. 2014. Multiple generations of carbonaceous material deposited in Apex chert by basin-scale pervasive hydrothermal fluid flow. Gondwana Research, 25(1): 284-289

    [31]

    Murray RW, Ten Brink MRB, Jones DL, Gerlach DC and Russ Ⅲ GP. 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 18(3): 268-271

    [32]

    Murray RW, Ten Brink MRB, Jones DL, Gerlach DC and Russ Ⅲ GP. 1991. Rare earth, major and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediment. Geochimica et Cosmochimica Acta, 55(7): 1875-1895

    [33]

    Murray RW, Ten Brink MRB, Gerlach DC, Russ Ⅲ GP and Jones DL. 1992. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: Assessing the influence of chemical fractionation during diagenesis. Geochimica et Cosmochimica Acta, 56(7): 2657-2671

    [34]

    Murray RW. 1994. Chemical criteria to identify the depositional environment of chert: General principles and applications. Sedimentary Geology, 90(3-4): 213-232

    [35]

    Nishikane Y, Kaiho K, Henderson CM, Takahashi S and Suzuki N. 2014. Guadalupian-Lopingian conodont and carbon isotope stratigraphies of a deep chert sequence in Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 403: 16-29

    [36]

    Qin Y and Zhou ZJ. 2009. Orogenic geochemistry characteristics of Yangshan super-large gold deposit, Gansu Province. Acta Petrologica Sinica, 25(11): 2801-2810 (in Chinese with English abstract)

    [37]

    Sheng JH, Du YS, Feng QL and Xu JF. 1997. Depositional environments of cherts in the ophiolite mélange belt from Mian-Lue, Shaanxi Province. Earth Science, 22(6): 599-601 (in Chinese with English abstract)

    [38]

    Shimizu H and Masuda A. 1977. Cerium in chert as an indication of marine environment of its formation. Nature, 266(5600): 346-348

    [39]

    Wang JL, He BC, Li JZ and He DR. 1996. Qinling-Type Lead-Zinc Deposits in China. Beijing: Geological Publishing House, 56-70 (in Chinese)

    [40]

    Xue CJ. 1997. Hydrothermal Sediment of Devonian Period in Qinling. Xi’an: Xi’an Cartographic Publishing House, 22-116 (in Chinese)

    [41]

    Xue CJ, Liu SW, Feng YZ, Li Q, Wang T, Zhu JX and Wu BC. 2005. Geochemistry of hydrothermal sedimentary mineralization in the Lower Paleozoic of Xunyang basin, South Qinling, China. Geological Bulletin of China, 24(10-11): 927-934 (in Chinese with English abstract)

    [42]

    Yamamoto K. 1987. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto. Terranes, 52(1-2): 65-108

    [43]

    Yang LQ, Deng J and Zhai YS. 2000. Tectonic-fluid-metallogenic system and their dynamics. Earth Science Frontiers, 7(1): 178 (in Chinese)

    [44]

    Yang LQ, Xiong ZQ, Deng J, Zhong ZJ, Wang JP and Li XJ. 2003. Transition of tectonic stress fields and its effects of metallogenic geochemistry on multi-scales. Geotectonica et Metallogenia, 27(3): 243-249 (in Chinese with English abstract)

    [45]

    Yang LQ, Deng J, Ge LS, Wang QF, Zhang J, Gao BF, Jiang SQ and Xu H. 2007. Metallogenic epoch and genesis of gold ore deposits in Jiaodong Peninsula, eastern China: A regional review. Progress in Natural Sciences, 17(2): 138-143

    [46]

    Yang LQ, Deng J, Zhang J, Guo CY, Gao BF, Gong QJ, Wang QF, Jiang SQ and Yu HJ. 2008. Decrepitation thermometry and compositions of fluid inclusions of the Damoqujia gold deposit, Jiaodong gold province, China: Implications for metallogeny and exploration. Journal of China University of Geosciences, 19(4): 378-390

    [47]

    Yang LQ, Deng J, Guo CY, Zhang J, Jiang SQ, Gao BF, Gong QJ and Wang QF. 2009. Ore-forming fluid characteristics of the Dayingezhuang gold deposit, Jiaodong gold province, China. Resource Geology, 59(2): 181-193

    [48]

    Yang LQ, Liu JT, Zhang C, Wang QF, Ge LS, Wang ZL, Zhang J and Gong QJ. 2010. Superimposed orogenesis and metallogenesis: An example from the orogenic gold deposits in Ailaoshan gold belt, Southwest China. Acta Petrologica Sinica, 26(6): 1723-1739 (in Chinese with English abstract)

    [49]

    Yang LQ, Deng J, Zhao K and Liu JT. 2011a. Tectono-thermochronology and gold mineralization events of orogenic gold deposits in Ailaoshan orogenic belt, Southwest China: Geochronological constraints. Acta Petrologica Sinica, 27(9): 2519-2532 (in Chinese with English abstract)

    [50]

    Yang LQ, Deng J, Zhao K, Liu JT, Ge LS, Zhou DQ, Li SH and Cao BB. 2011b. Geological characteristics and genetic type of Daping gold deposit in the Ailaoshan orogenic belt, SW China. Acta Petrologica Sinica, 27(12): 3800-3810 (in Chinese with English abstract)

    [51]

    Yang LQ and Badal J. 2013. Mirror symmetry of the crust in the oil/gas region of Shengli, China. Journal of Asian Earth Sciences, 78: 327-344

    [52]

    Yang LQ, Deng J, Goldfarb RJ, Zhang J, Gao BF and Wang ZL. 2014. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit: New implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China. Gondwana Research, 25(4): 1469-1483

    [53]

    Yang LQ, Deng J and Wang ZL. 2014a. Ore-controlling structural pattern of Jiaodong gold deposits: Geological- geophysical integration constraints. In: Chen YT, Jin ZM, Shi YL, Yang WC and Zhu RX (eds.). The Deep-seated Structures of Earth in China. Beijing: Sciences Press, 1006-1030 (in Chinese)

    [54]

    Yang LQ, Deng J, Wang ZL, Zhang L, Guo LN, Song MC, Zheng XL and Zhao RX. 2014b. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China. Acta Petrologica Sinica, 30(9): 2447-2467 (in Chinese with English abstract)

    [55]

    Zhang CL, Gao S, Zhang GW, Guo AL, Yuan HL, Liu XM and Wang JQ. 2003. The geochemical feature and forming environment of cherts in ophiolite belt in Qinling orogenic belt. Science in China (Series D), 33(12): 1154-1162 (in Chinese)

    [56]

    Zhang GW, Meng QR and Lai SC. 1995. The texture and structure of Qinling orogenic belt. Science in China (Series B), 25(9): 994-1003 (in Chinese)

    [57]

    Zhang GW, Dong YP, Lai SC, Guo AL, Meng QR, Liu SF, Cheng SY, Yao AP, Zhang ZQ, Pei XZ and Li SZ. 2003. Science in China (Series D), 33(12): 1121-1135 (in Chinese)

    [58]

    Zhao CH. 2009. Discussion of the geneisis of super-large gold deposit in Yangshan, Gansu. Bulletin of Mineralogy, Petrology and Geochemistry, 28(3): 286-293 (in Chinese with English abstract)

    [59]

    Zhou YZ. 1990. On sedimentary geochemistry of Siliceous Rocks originated from thermal water in Nandan-Hechi Basin. Acta Sedimentologica Sinica, 8(3): 75-83 (in Chinese with English abstract)

    [60]

    Zhou YZ, Chown EH, Guha J, Lu HZ and Tu GZ. 1994. Hydrothermal origin of Late Proterozoic bedded chert at Gusui, Guangdong, China: Petrological and geochemical evidence. Sedimentology, 41(3): 605-619

    [61]

    Zhou YZ, Tu GZ, Crown EH, Guha J and Lu HZ. 1994. Hydrothermal origin of top Sinian chert formation at Gusui, Western Guangdong, China: Petrologic and Geochemical evidence. Acta Sedimentologica Sinica, 12(3): 2-11 (in Chinese with English abstract)

    [62]

    邓军, 翟裕生, 杨立强, 杨军臣, 方云, 万丽, 王建平, 丁式江. 1999. 剪切带构造-流体-成矿系统动力学模拟. 地学前缘, 6(1): 115-127

    [63]

    邓军, 杨立强, 翟裕生, 孙忠实, 陈学明. 2000. 构造-流体-成矿系统及其动力学的理论格架与方法体系. 地球科学, 25(2): 71-78

    [64]

    邓军, 侯增谦, 莫宣学, 杨立强, 王庆飞, 王长明. 2010. 三江特提斯复合造山与成矿作用. 矿床地质, 29(1): 37-42

    [65]

    邓军, 杨立强, 王长明. 2011. 三江特提斯复合造山与成矿作用研究进展. 岩石学报, 27(9): 2501-2509

    [66]

    邓军, 王长明, 李龚建. 2012. 三江特提斯叠加成矿作用样式及过程. 岩石学报, 28(5): 1349-1361

    [67]

    邓军, 葛良胜, 杨立强. 2013. 构造动力体制与复合造山作用: 兼论三江复合造山带时空演化. 岩石学报, 29(4): 1099-1114

    [68]

    丁林, 钟大赉. 1995. 滇西昌宁-孟连带古特提斯洋硅质岩稀土元素和铈异常特征. 中国科学(B辑), 25(1): 93-100

    [69]

    杜远生. 1995. 秦岭造山带泥盆纪古海洋研究. 地球科学, 20(6): 617-623

    [70]

    范效仁. 2001. 西秦岭构造演化与喷流成矿研究. 博士学位论文. 长沙: 中南大学, 15-27

    [71]

    高长林, 何将启. 1999. 北大巴山硅质岩的地球化学特征及其成因. 地球科学, 24(3): 246-250

    [72]

    李楠, 杨立强, 张闯, 张静, 雷时斌, 王恒涛, 王宏伟, 高雪. 2012. 西秦岭阳山金矿带硫同位素特征: 成矿环境与物质来源约束. 岩石学报, 28(5): 1577-1587

    [73]

    李文厚. 1997a. 汉中下志留统放射虫硅质岩的岩石学特征及其地质意义. 沉积学报, 15(3): 171-173

    [74]

    李文厚. 1997b. 南郑梁山奥陶系与志留系界线附近的沉积特征及沉积环境. 地层学杂志, 21(2): 146-160

    [75]

    刘淑文, 薛春纪, 曾荣, 李强, 朱经祥, 王涛, 赵国斌. 2005. 南秦岭志留系铅锌矿床中硅质岩岩石学及地球化学. 矿床地质, 24(5): 490-500

    [76]

    吕志成, 刘丛强, 刘家军, 吴丰昌. 2004. 北大巴山下寒武统毒重石矿床赋矿硅质岩地球化学研究. 地质学报, 78(3): 390-405

    [77]

    秦艳, 周振菊. 2009. 甘肃省阳山超大型金矿床的有机地球化学特征研究. 岩石学报, 25(11): 2801-2810

    [78]

    盛吉虎, 杜远生, 冯庆来, 许继锋. 1997. 南秦岭勉略蛇绿混杂岩带硅质岩沉积环境研究. 地球科学, 22(6): 599-601

    [79]

    王集磊, 何伯墀, 李建中, 何典仁. 1996. 中国秦岭型铅锌矿床. 北京: 地质出版社, 56-70

    [80]

    薛春纪. 1997. 秦岭泥盆纪热水沉积. 西安: 西安地图出版社, 22-116

    [81]

    薛春纪, 刘淑文, 冯永忠, 李强, 王涛, 朱经祥, 吴邦朝. 2005. 南秦岭旬阳盆地下古生界热水沉积成矿地球化学. 地质通报, 24(10-11): 927-934

    [82]

    杨立强, 邓军, 翟裕生. 2000. 构造-流体-成矿系统及其动力学. 地学前缘, 7(1): 178

    [83]

    杨立强, 熊章强, 邓军, 张中杰, 王建平, 李新俊. 2003. 构造应力场转换的成矿地球化学响应. 大地构造与成矿学, 27(3): 243-249

    [84]

    杨立强, 刘江涛, 张闯, 王庆飞, 葛良胜, 王中亮, 张静, 龚庆杰. 2010. 哀牢山造山型金成矿系统: 符合造山构造演化与成矿作用初探. 岩石学报, 26(6): 1723-1739

    [85]

    杨立强, 邓军, 赵凯, 刘江涛. 2011a. 哀牢山造山带金矿成矿时序及其动力学背景探讨. 岩石学报, 27(9): 2519-2532

    [86]

    杨立强, 邓军, 赵凯, 刘江涛, 葛良胜, 周道卿, 李士辉, 曹宝宝. 2011b. 滇西大坪金矿床地质特征及成因初探. 岩石学报, 27(12): 3800-3810

    [87]

    杨立强, 邓军, 王中亮. 2014a. 胶东金矿控矿构造样式: 地质-地球物理综合约束. 见: 陈运泰, 金振民, 石耀霖, 杨文采, 朱日祥主编. 中国大陆地球深部结构与动力学研究-庆贺滕吉文院士从事地球物理研究60周年. 北京: 科学出版社, 1006-1030

    [88]

    杨立强, 邓军, 王中亮, 张良, 郭林楠, 宋明春, 郑小礼, 赵荣新. 2014b. 胶东中生代金成矿系统. 岩石学报, 30(9): 2447-2467

    [89]

    张成立, 高山, 张国伟, 郭安林, 袁洪林, 柳小明, 王建其. 2003. 秦岭造山带蛇绿岩带硅质岩的地球化学特征及其形成环境. 中国科学(D辑), 33(12): 1154-1162

    [90]

    张国伟, 孟庆任, 赖绍聪. 1995. 秦岭造山带的结构构造. 中国科学(B辑), 25(9): 994-1003

    [91]

    张国伟, 董云鹏, 赖少聪, 郭安林, 孟庆任, 刘少峰, 程顺有, 姚安平, 张宗清, 裴先治, 李三忠. 2003. 秦岭-大别造山带南缘勉略构造带与勉略缝合带. 中国科学(D辑), 33(12): 1121-1135

    [92]

    赵成海. 2009. 甘肃阳山超大型金矿成因研究评述. 矿物岩石地球化学通报, 28(3): 286-293

    [93]

    周永章. 1990. 丹池盆地热水成因硅岩的沉积地球化学特征. 沉积学报, 8(3): 75-83

    [94]

    周永章, 涂光炽, Crown EH, Guha J, 卢焕章. 1994. 粤西古水剖面震旦系顶部层状硅岩的热水成因属性岩石学和地球化学证据. 沉积学报, 12(3): 2-11

  • 加载中
计量
  • 文章访问数:  6147
  • PDF下载数:  6273
  • 施引文献:  0
出版历程
收稿日期:  2014-03-01
修回日期:  2014-06-03
刊出日期:  2014-09-30

目录