滇东南老寨湾金矿床地质及同位素特征

张静, 苏蔷薇, 刘学飞, 和中华, 周云满, 李智, 赵凯. 滇东南老寨湾金矿床地质及同位素特征[J]. 岩石学报, 2014, 30(9): 2657-2668.
引用本文: 张静, 苏蔷薇, 刘学飞, 和中华, 周云满, 李智, 赵凯. 滇东南老寨湾金矿床地质及同位素特征[J]. 岩石学报, 2014, 30(9): 2657-2668.
ZHANG Jing, SU QiangWei, LIU XueFei, HE ZhongHua, ZHOU YunMan, LI Zhi, ZHAO Kai. Characteristics of geology and isotopic geochemistry of the Laozhaiwan gold deposit in southeastern Yunnan Province, China[J]. Acta Petrologica Sinica, 2014, 30(9): 2657-2668.
Citation: ZHANG Jing, SU QiangWei, LIU XueFei, HE ZhongHua, ZHOU YunMan, LI Zhi, ZHAO Kai. Characteristics of geology and isotopic geochemistry of the Laozhaiwan gold deposit in southeastern Yunnan Province, China[J]. Acta Petrologica Sinica, 2014, 30(9): 2657-2668.

滇东南老寨湾金矿床地质及同位素特征

  • 基金项目:

    本文受国家重点基础研究发展规划项目(2009CB421006)、国家自然科学基金项目(41030423)和中央高校基本科研业务费专项资金(2652013017)联合资助.

Characteristics of geology and isotopic geochemistry of the Laozhaiwan gold deposit in southeastern Yunnan Province, China

  • 滇黔桂地区位于扬子板块西南缘,是我国重要的卡林型(微细浸染型)金矿集中区之一,区内弥勒-师宗、南盘江、富宁等深大断裂等控制了区域构造变形的发生和发展以及矿床的分布。该金三角内的老寨湾金矿床是目前在云南境内发现的唯一一处大型卡林型金矿床,已探明储量31.40t,具有矿石物质组成简单、金微细浸染分布、品位低、储量大的特点。该矿床目前划分为袁家坪矿段、椿树湾矿段和老鹰山矿段三个矿段,矿体的产出主要受不整合面和构造的双重控制。赋矿地层主要是加里东不整合面之上的下泥盆统坡松冲组的灰色、灰白色及褐黄色厚层块状细粒石英砂岩。最大的V3矿体分布在椿树湾矿段,后期辉绿岩脉沿着北西向的F7断层侵入,紧邻脉岩的矿体金品位明显增高。热液成矿过程可以划分为早、中、晚三个阶段,分别以石英-黄铁矿、石英-黄铁矿-绢云母、辉锑矿-方解石为典型矿物组合特征。论文对脉石矿物和流体包裹体开展了H-O同位素研究,对不同阶段的矿石矿物开展了S-Pb同位素研究。成矿流体的δDH2O值介于为-109‰~-93‰,而不同成矿阶段流体的δ18OH2O值略有变化,早阶段3个硅化的石英砂岩中的δ18OH2O值变化于7.8‰~9.2‰,中阶段流体的δ18O值=5.9‰~7.0‰,晚阶段δ18OH2O值为2.70‰,在投影图中位于不同的区域内,表明早阶段成矿热液来源于区域变质水和/或部分地层建造水,主成矿阶段岩浆流体的参与对局部的金矿化富集起到了重要作用,在成矿晚期有大气降水的参与。不同阶段、不同类型矿石或蚀变岩中硫化物δ34S值变化范围较大(2.096‰~32.289‰),早阶段蚀变岩中的2个黄铁矿样品的δ34S值为6.115‰和6.412‰;晚阶段的5个辉锑矿的δ34S值集中在2.096‰~4.691‰;而中阶段的不同矿石中黄铁矿的硫同位素变化较大;暗示了硫的多来源特征。但总体上矿石硫同位素组成以正值为主,硫化物δ34S峰值集中在2‰~8‰。矿石铅同位素组成分别为:206Pb/204Pb为18.178~18.992,207Pb/204Pb为15.635~15.774,208Pb/204Pb变化于38.456~39.051,相对富集放射成因铅。硫铅同位素综合分析表明老寨湾金矿床的成矿物质具有双重来源的特点:区内的沉积碎屑岩及岩浆活动共同提供了必要的成矿物质。辉绿岩中的石英的热活化ESR测年结果为64.8±6.5Ma,结合矿体产出特征,认为老寨湾金矿的主成矿作用发生在燕山晚期-喜马拉雅期;矿床的形成经历了早泥盆世的初始富集、燕山晚期-喜山期变质/岩浆热液对成矿物质的萃取、迁移和富集成矿以及成矿后的氧化富集等过程。
  • 加载中
  • [1]

    Burnard PG, Hu R, Turner G and Bi XW. 1999. Mantle, crustal and atmospheric noble gases in Ailaoshan gold deposits, Yunnan Province, China. Geochimica et Cosmochimica Acta, 63(10): 1595-1604

    [2]

    Chen MH, Mao JW, Chen ZY and Zhang W. 2009. Mineralogy of arsenian pyrites and arsenopyrites of Carlin-type gold deposits in Yunnan-Guizhou-Guangxi "golden triangle" area, southwestern China. Mineral Deposits, 28(5): 539-557 (in Chinese with English abstract)

    [3]

    Chen YJ, Zhang J, Zhang FX, Pirajno F and Li C. 2004. Carlin and Carlin-like gold deposits in western Qinling Mountains and their metallogenic time, tectonic setting and model. Geological Review, 50(2): 134-152 (in Chinese with English abstract)

    [4]

    Chen YJ, Ni P, Fan HR, Pirajno F, Lai Y, Su WC and Zhang H. 2007. Diagnostic fluid inclusions of different types hydrothermal gold deposits. Acta Petrologica Sinica, 23(9): 2085-2108 (in Chinese with English abstract)

    [5]

    Clayton RN, Onuma N and Mayeda TK. 1972. Oxygen isotope temperatures of "equilibrated" ordinary chondrites. Geochimica et Cosmochimica Acta, 36(2): 157-168

    [6]

    Deng J, Hou ZQ, Mo XX, Yang LQ, Wang QF and Wang CM. 2010. Superimposed orogenesis and metallogenesis in Sanjiang Tethys. Mineral Deposits, 29(1): 37-42 (in Chinese with English abstract)

    [7]

    Deng J, Li WC, Fu DG, Yang LQ, He ZH, Zhou YM, Zhang J and Ge LS. 2012. Cenozoic Gold Metallogenic System in the Southern Section of Sanjiang Region, Southwest China. Beijing: Geological Publishing House, 1-371 (in Chinese)

    [8]

    Deng J, Ge LS and Yang LQ. 2013. Tectonic dynamic system and compound orogeny: Additionally discussing the temporal-spatial evolution of Sanjiang orogeny, Southwest China. Acta Petrologica Sinica, 29(4): 1099-1114 (in Chinese with English abstract)

    [9]

    Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014a. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2):419-437

    [10]

    Deng J, Wang QF, Li GJ and Santosh M. 2014b. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, doi: 10.1016/j.earscirev.2014.05.015

    [11]

    Hoefs J. 1997. Stable Isotope Geochemistry. 3rd Edition. Berlin: Springer-Verlag, 1-201

    [12]

    Hou ZL and Yang QD. 1989. Discussion on metallogenic condition and model for micro-fine disseminated gold ore in the triangle area of Yunnan, Guizhou and Guangxi provinces. Contributions to Geology and Mineral Resources Research, 4(3): 1-13 (in Chinese with English abstract)

    [13]

    Liu JM and Liu JJ. 1997. Basin fluid genetic model of sediment-hosted micro-disseminated gold deposits in the gold-triangle area between Guizhou, Guangxi and Yunnan. Acta Mineralogica Sinica, 17(4): 448-456 (in Chinese with English abstract)

    [14]

    Liu XF, Wang QF, Yang LQ, Gong QJ, Zhang J and Gao BF. 2008. Geological and metallogenic features of Carlin-type gold deposits in Qinling and Dianqiangui areas, China. Geological Science and Technology Information, 27(3): 51-60 (in Chinese with English abstract)

    [15]

    Luo G and Yang XF. 2010. Geological characteristics and metallogenic regularity of fine disseminated type gold deposit at Laozhaiwan in Guangnan area, Yunnan, China. Geological Bulletin of China, 29(9): 1362-1370 (in Chinese with English abstract)

    [16]

    Mei MX, Ma YS and Deng J. 2005. Carboniferous to Permian sequence stratigraphic framework of the Yunnan-Guizhou-Guangxi basin and its adjacent areas and global correlation of third-order sea-level change. Geology in China, 32(1): 13-24 (in Chinese with English abstract)

    [17]

    Ohmoto H and Rye RO. 1979. Isotopes of sulphur and carbon. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. New York: John Wiley, 509-567

    [18]

    Ohmoto H and Poulson SR. 1990. An evaluation of the solubility of sulfide sulfur in silicate melts from experimental data and natural samples. Chemical Geology, 85(1-2): 57-75

    [19]

    Peters SG, Huang JZ, Li ZP and Jiang CG. 2007. Sedimentary rock-hosted Au deposits of the Dian-Qian-Gui aera, Guizhou, and Yunnan provinces, and Guangxi District, China. Ore Geology Reviews, 31(1-4):170-204

    [20]

    Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: John Wiley & Sons, 1-352

    [21]

    Rye RO and Ohmoto H. 1974. Sulfur and carbon isotopes and ore genesis: A review. Economic Geology, 69(6): 826-842

    [22]

    Schwarcz HP, Burnie SW and Croket JH. 1972. A sulfur isotopic study of the white pine mine, Michigan. Economic Geology, 67(7): 895-914

    [23]

    Stacey JS and Kramers JD. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2): 207-221

    [24]

    Su WC, Xia B, Zhang HT, Zhang XC and Hu RZ. 2008. Visible gold in arsenian pyrite at the Shuiyindong Carlin-type gold deposit, Guizhou, China: Implications for the environment and processes of ore formation. Ore Geology Reviews, 33(3-4): 667-679

    [25]

    Tu GC. 1990. The SW Qinling and the SW Guizhou uranium and gold metallogenic belts, and their similarities to the Carlin-type gold deposits in the western States, USA. Uranium Geology, 6(6): 321-325 (in Chinese with English abstract)

    [26]

    Wang CM, Deng J, Carranza EJM and Santoch M. 2014a. Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan. Gondwana Research, 26(2): 576-593

    [27]

    Wang MC, Li JX, Mao YL and Shu PH. 2011. Geological features and genesis of the Laozhaiwan gold deposit in southeastern Yunnan Province. Geology and Exploration, 47(2): 261-267 (in Chinese with English abstract)

    [28]

    Wang QF, Deng J, Li CS, Li GJ, Yu L and Qiao L. 2014b. The boundary between the Simao and Yangtze blocks and their locations in Gondwana and Rodinia: Constraints from detrital and inherited zircons. Gondwana Research, 26(2): 438-448

    [29]

    Wei JY and Wang GY. 1988. Isotopic Geochemistry. Beijing: Geological Publishing House, 1-166 (in Chinese)

    [30]

    Wu KX, Hu RZ, Bi XW, Peng JT and Tang QL. 2002. Ore lead isotopes as a tracer for ore-forming material sources: A review. Geology-Geochemistry, 30(3): 73-81 (in Chinese with English abstract)

    [31]

    Xu QD and Mo XX. 2000. Regional fluid characters and regimes of "Sanjiang" middle belt during Neo-Tethys. Acta Petrologica Sinica, 16(4): 639-648 (in Chinese with English abstract)

    [32]

    Yan N, Zhang J, Yuan WM, Gong QJ, Wang QF and Luo JH. 2013. Characteristics of isotopic geochemistry and metallogenesis of the Gala gold deposit in Ganzi-Litang suture zone, western Sichuan Province, China. Acta Petrologica Sinica, 29(4): 1347-1357 (in Chinese with English abstract)

    [33]

    Yang CB and Shu PH. 2012. The new knowledge of ore control horizon age and factor of Laozhaiwan Au deposit. Yunnan Geology, 31(1): 12-17 (in Chinese with English abstract)

    [34]

    Yang LQ, Liu JT, Zhang C, Wang QF, Wang ZL, Zhang J and Gong QJ. 2010. Superimposed orogenesis and metallogenesis: An example from the orogenic gold deposits in Ailaoshan gold belt, Southwest China. Acta Petrologica Sinica, 26(6): 1723-1739 (in Chinese with English abstract)

    [35]

    Yang LQ, Deng J, Zhao K and Liu JT. 2011a. Tectono-thermochronology and gold mineralization events of orogenic gold deposits in Ailaoshan orogenic belt, Southwest China: Geochronological constraints. Acta Petrologica Sinica, 27(9): 2519-2532 (in Chinese with English abstract)

    [36]

    Yang LQ, Deng J, Zhao K, Liu JT, Ge LS, Zhou DQ, Li SH and Cao BB. 2011b. Geological characteristics and genetic type of Daping gold deposit in the Ailaoshan orogenic belt, SW China. Acta Petrologica Sinica, 27(12): 3800-3810

    [37]

    Yao J, Luo M, Ren GM and Wang YT. 2008. Characteristics of ore-forming fluid of gold deposit in Laozhaiwan, Yunnan Province. Resources Environment & Engineering, 22(2): 163-167 (in Chinese with English abstract)

    [38]

    Yichang Institute of Geology and Mineral Resources. 1979. The Basic Problems of the Lead Isotope in Geological Studies. Beijing: Geological Publishing House 1-246 (in Chinese)

    [39]

    Zartman RE and Doe BR. 1981. Plumbotectonics-the model. Tectonophysics, 75(1-2): 135-162

    [40]

    Zhang J, Yang Y, Hu HZ, Wang ZG, Li GP and Li ZL. 2009. The C-S-Pb isotope geochemistry of the Yindonggou orogenic-type silver deposit in Henan Province. Acta Petrologica Sinica, 25(11): 2833-2842 (in Chinese with English abstract)

    [41]

    Zhang J, Chen YJ, Yang Y and Deng J. 2011. Lead isotope systematics of the Weishancheng Au-Ag belt, Tongbai Mountains, central China: Implication for ore genesis. International Geology Reviews, 53(5-6): 656-676

    [42]

    Zhang J, Chen YJ, Pirajno F, Deng J, Chen HY and Wang CM. 2013. Geology, C-H-O-S-Pb isotope systematics and geochronology of the Yindongpo gold deposit, Tongbai Mountains, central China: Implication for ore genesis. Ore Geology Reviews, 53: 343-356

    [43]

    Zhang J, Deng J, Chen HY, Yang LQ, Cooke D, Danyushevsky L and Gong QJ. 2014a. LA-ICP-MS trace element analysis of pyrite from the Chang’an gold deposit, Sanjiang region, China: Implication for ore-forming process. Gondwana Research, 26(2): 557-575

    [44]

    Zhang J, Li L, Liu JJ and Shi WS. 2014b. LA-ICP-MS and EPMA studies of Fe-S-As minerals from the Jinlongshan gold deposit, Qinling Orogen, China: Implications for ore-forming process. Geological Journal, doi: 10.1002/gj.2594

    [45]

    Zhu BQ, Li XH and Dai TM. 1998. Theories and Application of Isotopic System in Geoscience: Crustal and Mantle Evolution in China Continent. Beijing: Science Press, 1-330 (in Chinese with English abstract)

    [46]

    陈懋弘, 毛景文, 陈振宇, 章伟. 2009. 滇黔桂"金三角"卡林型金矿含砷黄铁矿和毒砂的矿物学研究. 矿床地质, 28(5): 539-557

    [47]

    陈衍景, 张复新, Pirajno F, 李超. 2004. 西秦岭地区卡林-类卡林型金矿床及其成矿时间、构造背景和模式. 地质论评, 50(2): 134-152

    [48]

    陈衍景, 倪培, 范宏瑞, Pirajno F, 赖勇, 苏文超, 张辉. 2007. 不同类型热液金矿系统的流体包裹体特征. 岩石学报, 23(9): 2085-2108

    [49]

    邓军, 侯增谦, 莫宣学, 杨立强, 王庆飞, 王长明. 2010. 三江特提斯复合造山与成矿作用. 矿床地质, 29(1): 37-42

    [50]

    邓军, 李文昌, 符德贵, 杨立强, 和中华, 周云满, 张静, 葛良胜. 2012. 西南三江南段新生代金成矿系统. 北京: 地质出版社, 1-371

    [51]

    邓军, 葛良胜, 杨立强. 2013. 构造动力体制与复合造山作用-兼论三江复合造山带时空演化. 岩石学报, 29(4): 1099-1114

    [52]

    侯宗林, 杨庆德. 1989. 滇黔桂地区微细浸染型金矿成矿条件及成矿模式. 地质找矿论丛, 4(3): 1-13

    [53]

    刘建明, 刘家军. 1997. 滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式. 矿物学报, 17(4): 448-456

    [54]

    刘学飞, 王庆飞, 杨立强, 龚庆杰, 张静, 高帮飞. 2008. 秦岭与滇黔桂地区卡林型金矿地质与地球化学特征. 地质科技情报, 27(3): 51-60

    [55]

    罗刚, 杨小峰. 2010. 云南广南地区老寨湾微细粒浸染型金矿床地质特征与成矿规律. 地质通报, 29(9): 1362-1370

    [56]

    梅冥相, 马永生, 邓军. 2005. 滇黔桂盆地及其邻区石炭纪至二叠纪层序地层格架及三级海平面变化的全球对比. 中国地质, 32(1): 13-23

    [57]

    涂光炽. 1990. 西南秦岭与西南贵州铀金成矿带及其与美国西部卡林型金矿床的类似性. 铀矿地质, 6(6): 321-325

    [58]

    王明聪, 李炷霞, 毛燕琳, 舒培华. 2011. 滇东南老寨湾金矿地质特征及成因探讨. 地质与勘探, 47(2): 261-267

    [59]

    魏菊英, 王关玉. 1988. 同位素地球化学. 北京: 地质出版社, 1-166

    [60]

    吴开兴, 胡瑞忠, 毕献武, 彭建堂, 唐群力. 2002. 矿石铅同位素示踪成矿物质来源综述. 地质地球化学, 30(3): 73-81

    [61]

    徐启东, 莫宣学. 2000. 三江中段新特提斯阶段区域流体的性质与状态. 岩石学报, 16(4): 639-648

    [62]

    燕旎, 张静, 袁万明, 龚庆杰, 王庆飞, 罗建宏. 2013. 川西甘孜-理塘结合带嘎拉金矿床同位素特征及成矿作用研究. 岩石学报, 29(4): 1347-1357

    [63]

    杨昌毕, 舒培华. 2012. 老寨湾金矿控矿层位时代及控矿因素新认识. 云南地质, 31(1): 12-17

    [64]

    杨立强, 刘江涛, 张闯, 王庆飞, 葛良胜, 王中亮, 张静, 龚庆杰. 2010. 哀牢山造山型金成矿系统: 复合造山构造演化与成矿作用初探. 岩石学报, 26(6): 1723-1739

    [65]

    杨立强, 邓军, 赵凯, 刘江涛. 2011a. 哀牢山造山带金矿成矿时序及其动力学背景探讨. 岩石学报, 27(9): 2519-2532

    [66]

    杨立强, 邓军, 赵凯, 刘江涛, 葛良胜, 周道卿, 李士辉, 曹宝宝. 2011b. 滇西大坪金矿床地质特征及成因初探. 岩石学报, 27(12): 3800-3810

    [67]

    姚娟, 罗梅, 任光明, 王玉婷. 2008. 云南老寨湾金矿床成矿流体的特征. 资源环境与工程, 22(2): 163-167

    [68]

    宜昌地质矿产研究所. 1979. 铅同位素地质研究的基本问题. 北京: 地质出版社, 1-246

    [69]

    张静, 杨艳, 胡海珠, 王志光, 李国平, 李忠烈. 2009. 河南银洞沟造山型银矿床碳硫铅同位素地球化学. 岩石学报, 25(11): 2833-2842

    [70]

    朱炳泉, 李献华, 戴橦谟. 1998. 地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化. 北京: 科学出版社, 1-330

  • 加载中
计量
  • 文章访问数:  5256
  • PDF下载数:  4665
  • 施引文献:  0
出版历程
收稿日期:  2014-03-09
修回日期:  2014-05-10
刊出日期:  2014-09-30

目录