西藏冈底斯南缘雄村铜金矿床成矿斑岩厘定及其锆石U-Pb和黑云母Ar-Ar年龄分析

邹银桥, 黄文婷, 梁华英, 伍静, 林书平, 王秀璋. 西藏冈底斯南缘雄村铜金矿床成矿斑岩厘定及其锆石U-Pb和黑云母Ar-Ar年龄分析[J]. 岩石学报, 2015, 31(7): 2053-2062.
引用本文: 邹银桥, 黄文婷, 梁华英, 伍静, 林书平, 王秀璋. 西藏冈底斯南缘雄村铜金矿床成矿斑岩厘定及其锆石U-Pb和黑云母Ar-Ar年龄分析[J]. 岩石学报, 2015, 31(7): 2053-2062.
ZOU YinQiao, HUANG WenTing, LIANG HuaYing, WU Jing, LIN ShuPing, WANG XiuZhang. Identification of porphyry genetically associated with mineralization and its zircon U-Pb and biotite Ar-Ar age of the Xiongcun Cu-Au deposit, southern Gangdese, Tibet.[J]. Acta Petrologica Sinica, 2015, 31(7): 2053-2062.
Citation: ZOU YinQiao, HUANG WenTing, LIANG HuaYing, WU Jing, LIN ShuPing, WANG XiuZhang. Identification of porphyry genetically associated with mineralization and its zircon U-Pb and biotite Ar-Ar age of the Xiongcun Cu-Au deposit, southern Gangdese, Tibet.[J]. Acta Petrologica Sinica, 2015, 31(7): 2053-2062.

西藏冈底斯南缘雄村铜金矿床成矿斑岩厘定及其锆石U-Pb和黑云母Ar-Ar年龄分析

  • 基金项目:

    本文受中国科学院战略性先导科技专项(B类)(XDB03010302)和国家自然科学基金项目(41121002、41172080、40772054)联合资助.

详细信息

Identification of porphyry genetically associated with mineralization and its zircon U-Pb and biotite Ar-Ar age of the Xiongcun Cu-Au deposit, southern Gangdese, Tibet.

More Information
  • 雄村特大型斑岩铜金矿床主要以细脉浸染状产于强烈蚀变岩石中,赋矿岩石原岩成因类型存在争议。本文对多个赋矿蚀变岩石作了系统光薄片显微鉴定,在多个蚀变较弱的矿化样品中发现赋矿岩石具斑状结构,其基质主要为钾长石,斑晶主要为斜长石、钾长石及少量石英,显示石英正长斑岩及二长斑岩(少量)矿物组成特征。结合前人工作,可以认为雄村铜金矿床赋矿岩石为正长斑岩、火山岩及少量二长斑岩。正长斑岩发育斑岩铜金矿床成矿早期常见的钾硅化蚀变及磁铁矿化蚀变,锆石具高的Ce4+/Ce3+比值(334~3084,平均值为1169),显示高氧逸度岩浆特征,和世界斑岩铜金矿床成矿岩体一致;这表明石英正长斑岩为雄村铜金矿床成矿岩体。石英正长斑岩锆石LA-ICP-MS U-Pb年龄为173.7±2.1Ma(MSWD=0.23),石英正长斑岩钾化阶段形成的黑云母40Ar/39Ar坪年龄为48.3±0.9Ma(MSWD=1.58),远小于锆石U-Pb年龄却与矿区东北部始新世花岗岩基的年龄一致,显示Ar-Ar年龄受后期地质事件影响而发生重置。通过上述研究,可以认为雄村铜金矿床为与石英正长斑岩有关的斑岩型矿床,形成时代约173Ma,和新特提斯洋洋壳向北俯冲诱发的岩浆事件有关,矿区内云母受后期地质事件影响重置,不能记录其形成时代。
  • 加载中
  • [1]

    Ballard JR, Palin JM and Campbell IH. 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364

    [2]

    Cathles LM, Erendi AHJ and Barrie T. 1997. How long can a hydrothermal system be sustained by a single intrusive event? Economic Geology, 92(7-8): 766-771

    [3]

    Chu MF, Chung SL, Song B, Liu DY, Suzanne YOR, Norman JP, JJ and Wen DJ. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9): 745-748

    [4]

    Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q and Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173-196

    [5]

    Chung SL, Chu MF, Ji JQ, O'Reilly SY, Pearson NJ, Liu DY, Lee TY and Lo TH. 2009. The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from post-collisional adakites. Tectonophysics, 477(1-2): 36-48

    [6]

    Cooke DR, Wilson AJ and Davies AGS. 2004. Characteristics and genesis of porphyry copper-gold deposits. University of Tasmania, Centre for Ore Deposit Research Special Publication, 5: 17-34

    [7]

    Dong YH, Xu JF, Zeng QG, Wang Q, Mao GZ and Li J. 2006. Is ther a Neo-tethys'subduction record earlier than arc volcanic rocks in the Sangri Group? Acta Petrologica Sinica, 22(3): 661-668(in Chinese with English abstract)

    [8]

    Ding L, Kapp P and Wan XQ. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, southcentral Tibet. Tectonics, 24(3): 1-18

    [9]

    Ding X, Hu YH, Zhang H, Li CY, Ling MX and Sun WD. 2013. Major Nb/Ta fractionation recorded in garnet amphibolite facies metagabbro. The Journal of Geology, 121(3): 255-274

    [10]

    Harris AC, Allen CM, Bryan SE, Campbell IH, Holcombe RJ and Plain MJ. 2004. ELA-ICP-MS U-Pb zircon geochronology of regional volcanism hosting the Bajo de la Alumbrera Cu-Au deposit: Implications for porphyry-related mineralization. Mineralium Deposita, 39(1): 46-67

    [11]

    Harrison TM, Copeland Peter, Kidd WSF and Yin A. 1992. Raising Tibet. Science, 255(5052): 1663-1670

    [12]

    Hou ZQ, Qu XM, Huang W and Gao YF. 2001. Gangdise porphyry copper metallogenic belt: The possible second "Yulong" copper belt. Geology in China, 28(10): 27-30 (in Chinese with English abstract)

    [13]

    Hou ZQ, Gao YF, Meng XJ, Qu XM and Huang W. 2004. Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene porphyry copper belt in the Tibetan orogen. Acta Petrologica Sinica, 20(2): 239-248 (in Chinese with English abstract)

    [14]

    Hoskin PWO and Black LP. 2010. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423-439

    [15]

    Ji WQ, Wu FY, Chung SL, Li JX and Liu CZ. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229-245

    [16]

    Koppers AAP. 2002. ArArCALC-software for 40Ar/39Ar age calculations. Computers & Geosciences, 28(5): 605-619

    [17]

    Kang ZQ, Xu JF, Simo AW, Feng ZH, Chen JL, Wang BD, Fu WC and Pan HB. 2014. Geochronology and geochemistry of the Sangri Group volcanic rocks, Southern Lhasa terrane: Implications for the early subduction history of the Neo-Tethys and Gangdese magmatic arc. Lithos, 200-201: 157-168

    [18]

    Lang XH, Chen YC, Tang JX, Li ZJ, Deng Q, Huang Y, Chen Y and Zhang L. 2010a. A discussion on genesis of Xiongcun porphyry copper-gold deposit, Xietongmen, Tibet: Evidences from elements spatial distribution characteristics. Geological Review, 56(3): 384-402 (in Chinese with English abstract)

    [19]

    Lang XH, Chen YC, Tang JX, Li ZJ, Huang Y, Wang CH, Chen Y and Zhang L. 2010b. Characteristics of rock geochemistry of orebody No. I in the Xiongcun porphyry copper-gold metallogenic district Xietongmen County, Tibet: Constraints on metallogenic tectonic settings. Geology and Exploration, 46(5): 887-898 (in Chinese with English abstract)

    [20]

    Lang XH, Tang JX, Li ZD, Huang Y, Chen Y and Zhang L. 2011. Alteration and mineralization of No.I orebody in Xiongcun porphyry copper-gold metallogenic ore district, Xietongmen County, Tibet. Mineral Deposits, 30(2): 327-338 (in Chinese with English abstract)

    [21]

    Lang XH. 2012. Metallogenesis and metallogenic prediction for Xiongcun porphyry copper-gold district, Tibet. Ph. D. Dissertation. Chengdu: Chengdu University of Technology, 53-73(in Chinese with English summary)

    [22]

    Lang XH, Tang JX, Chen YC, Li ZD, Huang Y, Wang CH, Chen Y, Zhang L and Zhou Y. 2012. Neo-Tethys mineralization on the southern margin of the Gangdise metallogenic belt, Tibet, China: Evidence from Re-Os ages of Xiongcun orebody No.I. Earth Science, 37(3): 515-525(in Chinese with English abstract)

    [23]

    Lang XH, Tang JX, Li ZJ, Xie FW and Huang Y. 2013. Jurassic metallogenic event of Gangdese porphyry copper belt in Xiongcun deposit, Tibet: Evidences of geochronology by zircon U-Pb and molybdenite Re-Os isotope. Acta Mineralogica Sinica, 33(Suppl.2): 328-329 (in Chinese)

    [24]

    Lang XH, Tang JX, Li ZJ, Huang Y, Ding F, Yang HH, Xie FW, Zhang L, Wang Q and Zhou Y. 2014. U-Pb and Re-Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt, southern Tibet, PRC, Journal of Asian Earth Sciences, 79: 608-622

    [25]

    Li H, Ling MX, Li CY, Zhang H, Ding X, Yang XY, Fan WM, Li YL and Sun WD. 2012. A-type granite belts of two chemical subgroups in central eastern China: Indication of ridge subduction. Lithos, 150: 26-36

    [26]

    Liang HY, Campbell IH, Allen C, Sun WD, Liu CQ, Yu HX, Xie YW and Zhang YQ. 2006. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineralium Deposita, 41(2): 152-159

    [27]

    Liang HY, Mo JH, Sun WD, Yu HX, Zhang YQ and Allen CM. 2008. Study on the duration of the ore-forming system of the Yulong giant porphyry copper deposit in eastern Tibet, China. Acta Petrologica Sinica, 24(10): 2352-2358 (in Chinese with English abstract)

    [28]

    Liang HY, Sun WD, Su WC and Zartman RE. 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Economic Geology, 104(4): 587-596

    [29]

    Liang HY, Mo JH, Sun WD, Zhang YQ, Zeng T, Hu GQ and Allen CM. 2009. Study on geochemical composition and isotope ages of the Malasongduo porphyry associated with Cu-Mo mineralization. Acta Petrologica Sinica, 25(2): 385-392 (in Chinese with English abstract)

    [30]

    Liu YS, HU ZC, Zong KQ, Gao CG, Gao S, Xu J and Chen HH. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546

    [31]

    Ludwig KR. 2003. ISOPLOT 3.0: A geochronological toolkit for Microsoft excel. Berkeley: Berkeley Geochronology Center, California

    [32]

    Mungall JE. 2002. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30(10): 915-918

    [33]

    McCandless TE, Ruiz J and Campbell AR. 1993. Rhenium behavior in molybdenite in hypogene and near surface environments: Implications for Re-Os geochronometry. Geochimica et Cosmochimica Acta, 57(4): 889-905

    [34]

    Mo XX, Dong GC, Zhao ZD, Guo TY, Wang LL and Chen T. 2005. Timing of magma mixing in the Gangdisêmagmatic belt during the India-Asia collision: Zircon SHIRMP U-Pb dating. Acta Geologica Sinica, 79(1): 66-76

    [35]

    Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD and Yang ZM. 2007. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96(1-2): 225-242

    [36]

    Mo XX, Niu YL, Dong GC, Zhao ZD, Hou ZQ, Zhou S and Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology, 250(1-4): 49-67

    [37]

    Qin KZ, Li GM, Li JX, Ding KS and Xie YH. 2005. The Xiongcun Cu-Zn-Au deposit in the western segment of the Gangdese, Tibet: A Mesozoic VHMS-type deposit cut by late veins. Mineral Deposit Research: Meeting the Global Challenge, 1255-1258

    [38]

    Qiu HN, Wijbrans JR, Brouwer FM, Yun JB, Zhao LH and Xu YG. 2010. Amphibolite facies retrograde metamorphism of the Zhujiachong eclogite, SE Dabieshan: 40Ar/39Ar age constraints from argon extraction using UV-laser microprobe, in vacuo crushing and stepwise heating. Journal of Metamorphic Geology, 28(5): 477-487

    [39]

    Qu XM, Xin HB and Xu WY. 2007a. Collation of age of ore-hosting volcanics in Xiongcun superlarge Cu-Au deposit on basis of three zircon U-Pb SHRIMP ages. Mineral Deposits, 26(5): 512-518 (in Chinese with English abstract)

    [40]

    Qu XM, Xin HB and Xu WY. 2007b. Petrogenesis of the ore-hosting volcanic rocks and their contribution to mineralization in Xiongcun superlarge Cu-Au deposit, Tibet. Acta Geologica Sinica, 81(7): 965-971 (in Chinese with English abstract)

    [41]

    Royden LH, Burchfiel BC and Robert DH. 2008. The geological evolution of the Tibetan Plateau. Science, 321(5892): 1054-1058

    [42]

    Sillitoe RH. 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67(2): 184-197

    [43]

    Sillitoe RH. 1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian Journal of Earth Sciences, 44(3): 373-388

    [44]

    Sun WD, Arculus RJ, Kamenetsky VS and Binns RA. 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 431(7011): 975-978

    [45]

    Sun WD, Ling MX, Yang XY, Fan WM, Ding X and Liang HY. 2010. Ridge subduction and porphyry copper-gold mineralization: An overview. Science China (Earth Sciences), 53(4): 475-484

    [46]

    Sun WD, Liang HY, Ling MX, Zhan MZ, Ding, X, Zhang H, Yang XY, Li YL, Ireland TR, Wei QR and Fan WM. 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103: 263-275

    [47]

    Sun WD, Huang RF, Liang HY, Ling MX, Li CY, Ding X, Zhang H, Yang XY, Trevor I and Fan WM. 2014. Magnetite-hematite, oxygen fugacity, adakite and porphyry copper deposits: Reply to Richards. Geochimica et Cosmochimica Acta, 126: 646-649

    [48]

    Tafti R. 2006. Preliminary geochronology report for the Xietongmen deposit area. Tibet, China. Private Report to Continental Minerals Corp.

    [49]

    Tafti R, Mortensen JK, Lang JR, Rebaglitim M and Oliver JL. 2009. Jurassic U-Pb and Re-Os ages for the newly discovered Xietongmen Cu-Au porphyry district, Tibet, PRC: Implications for metalogenic epochs in the southern Gangdese belt. Economic Geology, 104(1): 127-136

    [50]

    Tang JX, Zhang L, Huang Y, Wang CH, Li ZJ, Deng Q, Lang XH and Wang Y. 2009a. 40Ar-39Ar isotope ages of main geological bodies in Xiongcun copper-gold deposit, Xietongmen County, Tibet, and their geological significance. Mineral Deposits, 28(6): 759-769 (in Chinese with English abstract)

    [51]

    Tang JX, Huang Y, Li ZJ, Deng Q, Lang XH, Chen Y and Zhang L. 2009b. Element geochemical characteristics of Xiongcun Cu-Au deposit in Xietongmoin County, Tibet. Mineral Deposits, 28(1): 15-28 (in Chinese with English abstract)

    [52]

    Tang JX, Li FJ, Li ZJ, Zhang L, Tang XQ, Deng Q, Lang XH, Huang Y, Yao XF and Wang Y. 2010. Time limit for formation of main geological bodies in Xiongcun copper-gold deposit, Xietongmen County, Tibet: Evidence from zircon U-Pb ages and Re-Os age of molybdenite. Mineral Deposits, 29(3): 461-475 (in Chinese with English abstract)

    [53]

    Xu WY, Qu XM, Hou ZQ, Yang ZS, Pan FZ, Cui YH, Chen WS, Yang D and Lian Y. 2006a. The Xiongcun copper-gold deposit in Tibet: Characteristics, genesis, and geodynamic application. Acta Geologica Sinica, 80(9): 1392-1407 (in Chinese with English abstract)

    [54]

    Xu WY, Qu XM, Hou ZQ, Yang D, Yang ZS, Cui YH and Chen WS. 2006b. Ore-forming fluid characteristics and genesis of Xiongcun copper-gold deposit in central Gangdese, Tibet. Mineral Deposits, 25(3): 243-251 (in Chinese with English abstract)

    [55]

    Yun JB, Shi HS, Zhu JZ, Zhao LH and Qiu HN. 2010. Dating petroleum emplacement by illite 40Ar/39Ar laser stepwise heating. AAPG Bulletin, 94(6): 759-771

    [56]

    Yang ZM, Hou ZQ, White NC, Chang ZS, Li ZQ and Song YC. 2009. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet. Ore Geology Reviews, 36(1-3): 133-159

    [57]

    Ying LJ, Tang JX and Huang Y. 2012. Hornfels comparative study of Jiama and Xiongcun copper deposits, Tibet. Mineral Deposits, 31(2): 380-390 (in Chinese with English abstract)

    [58]

    Zhang F, Qiu HN, He HY, Yang LK, Su F, Wang Y and Wu L. 2009. Brief introduction to ArArCALC-software for data reduction in 40Ar/39Ar geochronology. Geochimica, 38(1): 53-56 (in Chinese with English abstract)

    [59]

    Zhang HF, Xu WC, Guo JQ, Zong KQ, Cai HM and Yuan HL. 2007. Zircon U-Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdese belt, Tibet: Evidence for early Jurassic subduction of Neo-Tethyan oceanic slab. Acta Petrologica Sinica, 23(6): 1347-1353(in Chinese with English abstract)

    [60]

    Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454

    [61]

    董彦辉, 许继峰, 曾庆高, 王强, 毛国政, 李杰. 2006. 存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么? 岩石学报, 22(3): 661-668

    [62]

    侯增谦, 曲晓明, 黄卫, 高永丰. 2001. 冈底斯斑岩铜矿成矿带有望成为西藏第二条"玉龙"铜矿带. 中国地质, 28(10): 27-30

    [63]

    侯增谦, 高永丰, 孟祥金, 曲晓明, 黄卫. 2004. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成因与构造控制. 岩石学报, 20(2): 239-248

    [64]

    郎兴海, 陈毓川, 唐菊兴, 李志军, 邓起, 黄勇, 陈渊, 张丽. 2010a. 西藏谢通门县雄村斑岩型铜金矿床成因讨论——来自元素的空间分布特征的证据. 地质论评, 56(3): 384-402

    [65]

    郎兴海, 陈毓川, 唐菊兴, 李志军, 黄勇, 王成辉, 陈渊, 张丽. 2010b. 西藏谢通门县雄村斑岩型铜金矿集区I号矿体的岩石地球化学特征: 对成矿构造背景的约束. 地质与勘探, 46(5): 887-898

    [66]

    郎兴海, 唐菊兴, 李志军, 黄勇, 陈渊, 张丽. 2011. 西藏谢通门县雄村斑岩型铜金矿集区Ⅰ号矿体的蚀变与矿化特征. 矿床地质, 30(2): 327-338

    [67]

    郎兴海. 2012. 西藏雄村斑岩型铜金矿集区成矿作用与成矿预测. 博士学位论文. 成都: 成都理工大学, 53-73

    [68]

    郎兴海, 唐菊兴, 陈毓川, 李志军, 黄勇, 王成辉, 陈渊, 张丽, 周云. 2012. 西藏冈底斯成矿带南缘新特提斯洋俯冲期成矿作用: 来自雄村矿集区Ⅰ号矿体的Re-Os同位素年龄证据. 地球科学, 37(3): 515-525

    [69]

    郎兴海, 唐菊兴, 李志军, 谢富伟, 黄勇. 2013. 西藏冈底斯斑岩铜矿带雄村矿区侏罗纪成矿作用:来自锆石U-Pb和辉钼矿Re-Os年龄的证据. 矿物学报, 33(S2): 328-329

    [70]

    梁华英, 莫济海, 孙卫东, 喻亨祥, 张玉泉, Allen CM. 2008. 藏东玉龙超大型斑岩铜矿床成岩成矿系统时间跨度分析. 岩石学报, 24(10): 2352-2358

    [71]

    梁华英, 莫济海, 孙卫东, 张玉泉, 曾提, 胡光黔, Allen CM. 2009. 玉龙铜矿带马拉松多斑岩体岩石学及成岩成矿系统年代学分析. 岩石学报, 25(2): 385-392

    [72]

    曲晓明, 辛洪波, 徐文艺. 2007a. 三个锆石U-Pb SHRIMP 年龄对雄村特大型铜金矿床容矿火成岩时代的重新厘定. 矿床地质, 26(5): 512-518

    [73]

    曲晓明, 辛洪波, 徐文艺. 2007b. 西藏雄村特大型铜金矿床容矿火山岩的成因及其对成矿的贡献. 地质学报, 81(7): 965-971

    [74]

    唐菊兴, 张丽, 黄勇, 王成辉, 李志军, 邓起, 郎兴海, 王友. 2009a. 西藏谢通门县雄村铜金矿主要地质体的40Ar/39Ar年龄及地质意义. 矿床地质, 28(6): 759-769

    [75]

    唐菊兴, 黄勇, 李志军, 邓起, 郎兴海, 陈渊, 张丽. 2009b. 西藏谢通门县雄村铜金矿床元素地球化学特征. 矿床地质, 28(1): 15-28

    [76]

    唐菊兴, 黎风佶, 李志军, 张丽, 唐晓倩, 邓起, 郎兴海, 黄勇, 姚晓峰, 王友. 2010. 西藏谢通门县雄村铜金矿主要地质体形成的时限:锆石U-Pb、辉钼矿Re-Os年龄的证据. 矿床地质, 29(3): 461-475

    [77]

    徐文艺, 曲晓明, 侯增谦, 杨竹森, 潘凤雏, 崔艳合, 陈伟十, 杨丹, 连玉. 2006a. 西藏雄村大型铜金矿床的特征、成因和动力学背景. 地质学报, 80(9): 1392-1407

    [78]

    徐文艺, 曲晓明, 侯增谦, 杨丹, 杨竹森, 崔艳合, 陈伟十. 2006b. 西藏冈底斯中段雄村铜金矿床成矿流体特征与成因探讨. 矿床地质, 25(3): 243-251

    [79]

    应立娟, 唐菊兴, 黄勇. 2012. 西藏甲玛和雄村铜矿区角岩的对比研究. 矿床地质, 31(2): 380-390

    [80]

    张凡, 邱华宁, 贺怀宇, 杨列坤, 苏菲, 王英, 吴林. 2009. 40Ar/39Ar年代学数据处理软件ArArCALC简介. 地球化学, 38(1): 53-56

    [81]

    张宏飞, 徐旺春, 郭建秋, 宗克清, 蔡宏明, 袁洪林. 2007. 冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据. 岩石学报, 23(6): 1347-1353

  • 加载中
计量
  • 文章访问数:  6257
  • PDF下载数:  5330
  • 施引文献:  0
出版历程
收稿日期:  2014-09-22
修回日期:  2014-12-18
刊出日期:  2015-07-31

目录