大兴安岭哈拉哈河-绰尔河第四纪火山岩地幔源区与岩浆成因

赵勇伟, 樊祺诚. 2012. 大兴安岭哈拉哈河-绰尔河第四纪火山岩地幔源区与岩浆成因. 岩石学报, 28(4): 1119-1129.
引用本文: 赵勇伟, 樊祺诚. 2012. 大兴安岭哈拉哈河-绰尔河第四纪火山岩地幔源区与岩浆成因. 岩石学报, 28(4): 1119-1129.
ZHAO YongWei, FAN QiCheng. 2012. Mantle sources and magma genesis of Quaternary volcanic rocks in the Halaha River and Chaoer River area, Great Xing’an Range. Acta Petrologica Sinica, 28(4): 1119-1129.
Citation: ZHAO YongWei, FAN QiCheng. 2012. Mantle sources and magma genesis of Quaternary volcanic rocks in the Halaha River and Chaoer River area, Great Xing’an Range. Acta Petrologica Sinica, 28(4): 1119-1129.

大兴安岭哈拉哈河-绰尔河第四纪火山岩地幔源区与岩浆成因

  • 基金项目:

    本文受国家自然科学基金项目(40972047、41172305)资助.

详细信息
    作者简介:

    赵勇伟,男,1981年生,博士,主要从事火山与地球内部化学研究,E-mail: zilongzhao1981@yahoo.com.cn

  • 中图分类号: P588.145; P542.5

Mantle sources and magma genesis of Quaternary volcanic rocks in the Halaha River and Chaoer River area, Great Xing’an Range

  • 哈拉哈河-绰尔河第四纪火山地处重力梯度带上的大兴安岭中段。火山岩主要类型为钠质系列碱性橄榄玄武岩。火山岩大离子亲石元素和轻稀土元素相对富集,轻重稀土分异程度弱((La/Yb)N=8~12),稀土元素和微量元素配分曲线与大同碱性玄武岩平行,总体上表现出与OIB相似的特征。在Sr-Nd-Pb同位素组成特征上表现出亏损地幔的特点(εNd=4.8~5.9),接近MORB的源区范围。哈拉哈河-绰尔河第四纪火山岩岩浆由轻稀土富集的石榴子石二辉橄榄岩低程度(8%~15%)部分熔融产生,火山岩高MgO(>9%)、Ni(>200×10-6)和Mg#(60~70),表明它们是较原始的岩浆,岩浆上升过程经历了橄榄石和辉石为主的弱分离结晶作用,没有受到地壳物质明显混染。区域伸展作用引发软流圈地幔上涌是哈拉哈河-绰尔河第四纪火山的岩浆成因。

  • 加载中
  • 图 1 

    研究区火山地质图

    Figure 1. 

    Geological map of volcanic rocks in the study area

    图 2 

    哈拉哈河-绰尔河第四纪火山岩TAS图(据Le Bas et al., 1986;大同数据引自Xu et al., 2005)

    Figure 2. 

    Total alkalis versus SiO2 (after Le Bas et al., 1986;Data of Datong after Xu et al., 2005)

    图 3 

    研究区第四纪火山岩Na2O-K2O图 (据Middlemost,1975)

    Figure 3. 

    Variation of Na2O versus K2O (after Middlemost,1975)

    图 4 

    研究区第四纪火山岩MgO-主量元素Harker图解

    Figure 4. 

    Variation of SiO2,CaO,TiO2,K2O,Na2O and Al2O3 versus MgO for the studyed samples

    图 5 

    研究区第四纪火山岩球粒陨石标准化稀土元素配分模式(球粒陨石标准值据Nakamura, 1974; 大同数据引自Xu et al., 2005)

    Figure 5. 

    Chondrite-normalized REE patterns for the basalts in the study area(normalization values after Nakamura, 1974; Datong data after Xu et al., 2005)

    图 6 

    研究区第四纪火山岩原始地幔标准化微量元素分布模式(原始地幔数据引自Hofmann,1988;大同数据引自Xu et al., 2005)

    Figure 6. 

    Primitive mantle-normalized trace element diagrams for the basalts in the study area(normalization values after Hofmann, 1988; Datong data after Xu et al., 2005)

    图 7 

    Ce-Ce/Pb,Nb-Nb/U,La/Nb-Ba/Nb变化图(MORB,OIB,EMI,EMII数据引自Hofmann et al., 1986Weaver, 1991Liu et al., 1994)

    Figure 7. 

    Ce versus Ce/Pb,Nb versus Nb/U and La/Nb versus Ba/Nb diagrams (MORB,OIB,EMI and EMII data after Hofmann et al., 1986Weaver, 1991Liu et al., 1994)

    图 8 

    研究区火山岩MgO-微量元素变化图

    Figure 8. 

    Variation diagrams of MgO versus Ni, Co, V and Cr for the basalts in the studying area

    图 9 

    研究区第四纪火山岩Sr-Nd同位素分布(区外数据引自White et al., 1987Mahoney et al., 1989Wilson,1989支霞臣和冯家麟,1992Xu et al., 2005)

    Figure 9. 

    Variation of 87Sr/86Sr versus 143Nd/144Nd of the basalts in the study area(Data after White et al., 1987Mahoney et al., 1989Wilson,1989Zhi and Feng, 1992; Xu et al., 2005)

    图 10 

    哈拉哈河-绰尔河玄武岩206Pb/204Pb-208Pb/204Pb和207Pb/204Pb变化图(区外数据来源于Peng et al., 1986White et al., 1987Mahoney et al., 1989支霞臣和冯家麟,1992Barry and Kent, 1998马金龙,2003)

    Figure 10. 

    206Pb/204Pb versus 208Pb/204Pb and 207Pb/204Pb diagrams for the basalts in the study area(Data after Peng et al., 1986White et al., 1987Mahoney et al., 1989Zhi and Feng, 1992Barry and Kent, 1998Ma,2003)

    图 11 

    (Ce/Yb)N-(Sm/Yb)N变化图

    Figure 11. 

    Variation of normarized Sm/Yb versus Ce/Yb

    图 12 

    FeOT-Zr/Y变化图

    Figure 12. 

    Variation of FeOT versus Zr/Y

  •  

    Bai ZD, Tian MZ, Wu FD, Xu DB and Li TJ. 2005. Yanshan and Gaoshan: Two active volcanoes of the volcanic cluster of Arshan, Inner Mongolian. Earthquake Research in China, 21: 113-117(in Chinese with English abstract)

     

    Basu AR, Wang JW, Huang WK, Xie GH and Tatsumoto M. 1991. Major element, REE, and Pb, Nd, and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: Implications for their origin from suboceanic-type mantle reservoirs. Earth and Planetary Science Letters, 105: 149-169

     

    Barry TL and Kent RW. 1998. Cenozoic magmatism in Mongolia and the origin of central and east Asia basalts. In: Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union, Washington DC. Geodynamics Series, 27: 347-364

     

    Fan QC and Hooper PR. 1991. The Cenozoic basaltic rocks of eastern China: Petrology and chemical composition. Journal of Petrology, 32: 765-810

     

    Fan QC, Chen WJ, Hurford AJ and Hunziker JG. 1992. The Major and Trace Element Chemistry of Quaternary Basalt in Datong. Beijing: Seismological Press, 93-100(in Chinese)

     

    Fan QC, Sui JL, Zhao YW, Sun Q, Li N and Du XX. 2008. Preliminary study on garnet peridotite xenolith of Quaternary volcanic rocks in middle Daxing’an Mountain Range. Acta Petrologica Sinica, 24(11): 2563-2568(in Chinese with English abstract)

     

    Fan QC, Zhao YW, Li DM, Wu Y, Sui JL and Zheng DW. 2011. Studies on Quaternary volcanism stages of Halaha river and Chaoer river area in the Great Xing’an Range: Evidence from K-Ar dating and volcanic geology features. Acta Petrologica Sinica, 27(10): 2827-2832(in Chinese with English abstract)

     

    Hofmann AW, Jochum KP, Seufert M and White WM. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth and Planetary Science Letters, 79: 33-45

     

    Hofmann AW. 1988. Chemical differentiation of the Earth: The relationship between mantle continental crust and oceanic crust. Earth and Planetary Science Letters, 90: 297-314

     

    Hofmann AW. 1997. Early evolution of continents. Science, 275: 498-499

     

    Johnson KTM. 1998. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet and basaltic melt at high pressures. Contributions to Mineralogy and Petrology, 133: 60-68

     

    Kinzler RJ. 1997. Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid-ocean ridge basalt petrogenesis. Journal of Geophysical Research, 102: 853-874

     

    Liu CQ, Masuda A and Xie GH. 1994. Major- and trace-element compositions of Cenozoic basalts in eastern China: Petrogenesis and mantle source. Chemical Geology, 114: 19-42

     

    Liu JQ, Han JT and Fyfe WS. 2001. Cenozoic episodic volcanism and continental rifting in northeast China and possible link to Japan Sea development as revealed from K-Ar geochronology. Tectonophysics, 339: 385-401

     

    Le Bas M, Le Maitre RW, Strekeisen A et al. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27: 745-750

     

    Mahoney JJ, Natland JH, White WM, Poreda R, Bloomer SH, Flsher RL and Baxter AN. 1989. Isotopic and geochemical provinces of the western Indian Ocean spreading centers. Journal of Geophysics Research, 94: 4033-4052

     

    Ma JL. 2003. Geochemistry and geodynamic implications of the Cenozoic basalts and included mantle xenoliths from Yangyuan and Datong, western North China Craton. Master Degree Thesis. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English summary)

     

    Menzies MA. 1990. Effects of small volume melts. Nature, 343: 312-313

     

    Middlemost EAK. 1975. The basalt clan. Earth Science Review, 11: 337-364

     

    Nakamura N. 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38: 757-775

     

    Nicholson H and Latin D. 1992. Olivine tholeiites from Krafla, Iceland: Evidence for variations in the melt fraction within a plume. Journal of Petrology, 33: 1105-1124

     

    Peng ZC, Zartman RE, Futa K and Chen KG. 1986. Pb-Sr-and Nd-isotopic systematics and chemical characteristic of Cenozoic basalts, Eastern China. Chemical Geology, 59: 3-33

     

    Shao JA, Zhang LQ, Mou BL and Han QJ. 2007. The Surge of the Great Xingan Range and Geochemical Background. Beijing: Geological Publishing House, 18-30, 171-251(in Chinese)

     

    Song Y, Frey FA and Zhi X. 1990. Isotopic characteristics of Hannuoba basalts, eastern China: Implications for their petrogenesis and the composition of subcontinental mantle. Chemical Geology, 88: 35-52

     

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 42: 313-345

     

    Tang YJ, Zhang HF and Ying JF. 2006. Asthenosphere-lithospheric mantle interaction in an extensional regime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chemical Geology, 233: 309-327

     

    Tu K, Xie GH, Zhang M, Wang JW, Flower MFJ and Carlson RW. 1992. The Sr, Nd, Pb Isotopic Constitution of Cenozoic Basalt in Eastern China. In: Liu RX (ed.). The Age and Geochemistry of Cenozoic Volcanic Rock in China. Beijing: Seismological Press, 330-338(in Chinese)

     

    Walter MJ. 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of petrology, 39: 29-60

     

    Weaver BL. 1991. The origin of ocean island basalt end-member composition: Trace element and isotopic constraints. Earth and Planetary Science Letters, 104: 381-397

     

    White WM, Hofmann AW and Puchelt H. 1987. Isotope geochemistry of Pacific mid-ocean ridge basalt. Journal of Geophysical Research, 92: 4881-4893

     

    Wilson M. 1989. Igneous Petrogenesis. London: International Thompson, 140-146

     

    Xu YG, Ma JL, Frey FA, Feigenson MD and Liu JF. 2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chemical Geology, 224: 247-271

     

    Zhao YW, Fan QC, Bai ZD, Sun Q, Li N, Sui JL and Du XX. 2008. Preliminary study on Quaternary volcanoes in the Halaha River and Chaoer River area in Daxing'an Mountain range. Acta Petrologica Sinica, 24(11): 2569-2575(in Chinese with English abstract)

     

    Zhao YW and Fan QC. 2010. Yanshan and Gaoshan volcanoes in the Daxingan Mountain range: A new eruption style. Seismology and Geology, 1: 28-37(in Chinese with English abstract)

     

    Zhao YW and Fan QC. 2011. Characteristics of lithospheric mantle beneath the Great Xing’an Range: Evidence from spinel peridotite xenoliths in the Halaha river and Chaoer river area. Acta Petrologica Sinica, 27(10): 2833-2841(in Chinese with English abstract)

     

    Zhi XC and Feng JL. 1992. The Geochemistry of Basalts in Hannuoba. In: Liu RX (ed.). The Age and Geochemistry of Cenozoic Volcanic Rock in China. Beijing: Seismological Press, 114-148(in Chinese)

     

    Zhou XH and Armstrong RL. 1982. Cenozoic volcanic rocks of eastern China-secular and geographic trends in chemistry and strontium isotopic composition. Earth and Planetary Science Letters, 59: 301-329

     

    Zou HB, Zindler A, Xu XS and Qi Q. 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: Mantle sources, regional variations, and tectonic significance. Chemical Geology, 171: 33-47

     

    Zou HB, Reid MR, Liu YS, Yao YP, Xu XS and Fan QC. 2003. Constraints on the origin of historic potassic basalts from northeast China by U-Th disequilibrium data. Chemical Geology, 200: 189-201

  • 加载中

(12)

计量
  • 文章访问数:  7636
  • PDF下载数:  5345
  • 施引文献:  0
出版历程
收稿日期:  2012-01-02
修回日期:  2012-03-02
刊出日期:  2012-04-01

目录