中国东部A型花岗岩形成时代及物质来源的Nd—Sr—O同位素地球化学制约

魏春生 郑永飞 赵子福. 中国东部A型花岗岩形成时代及物质来源的Nd—Sr—O同位素地球化学制约[J]. 岩石学报, 2001, 17(1): 95-111.
引用本文: 魏春生 郑永飞 赵子福. 中国东部A型花岗岩形成时代及物质来源的Nd—Sr—O同位素地球化学制约[J]. 岩石学报, 2001, 17(1): 95-111.
WEI ChunSheng,ZHENG YongFei and ZHAO ZiFu.Laboratory for Chemical Geodynamics,Department of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China. Nd-Sr-O isotopic geochemistr y constraints on the age and origin of the A-type granites in eastern China[J]. Acta Petrologica Sinica, 2001, 17(1): 95-111.
Citation: WEI ChunSheng,ZHENG YongFei and ZHAO ZiFu.Laboratory for Chemical Geodynamics,Department of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China. Nd-Sr-O isotopic geochemistr y constraints on the age and origin of the A-type granites in eastern China[J]. Acta Petrologica Sinica, 2001, 17(1): 95-111.

中国东部A型花岗岩形成时代及物质来源的Nd—Sr—O同位素地球化学制约

  • 基金项目:

    中国科学院知识创新工程项目(KZCX2-107)、国家自然科学基金(49603043和4003301 0)以及国土资源部壳幔物质组成、相互作用及动力学演化开放研究实验室联合资助成果.

Nd-Sr-O isotopic geochemistr y constraints on the age and origin of the A-type granites in eastern China

  • 对中国东部A型花岗岩有代表性的碾子山、山海关、崂山、苏州以及魁岐岩体的Nd-Sr-O同位素地球化学组成进行了系统研究。经过筛选的全岩Rb-Sr等时线拟合结果表明,基本未遭受岩浆期后大气降水交换的苏州和魁岐Rb-Sr等时线年龄分别是108±10Ma和109±5Ma,它们代表岩浆冷却结晶时代。其它遭受热液蚀变较为显著的碾子山、山海关以及崂山岩体Rb-Sr等时线年龄的地质意义不明确。全岩εNd(t)、(87Sr/86Sr)0以及锆石δ18O综合示踪研究表明,中国东部A型花岗岩可能起源于曾经历过高温海水热液交换的再循环下部俯冲洋壳的部分熔融。模型计算结果表明,碾子山、山海关以及崂山等岩体所表现出的εNd(t)-δ18O脱耦变化与大洋沉积物析出流体与下覆辉长岩洋壳之间不同程度的交代有关。在此基础上,提出了中国东部A型花岗岩统一的成因模式,并对其地球动力学意义进行了讨论。
  • 加载中
  • [1]

    [1]Andre L and Deutsch S. 1986. Magmatic 87Sr/86Sr relic ts in hydrothermally altered quartz diorites (Brabant Massif, Belgium) and the role of epidote as a Sr filter. Contrib. Mineral. Petrol., 92: 104-112

    [2]

    [2]Balsley SD and Gregory RT. 1998. Low-18O silicic magmas: why are they so rare? Earth Planet. Sci. Lett., 162: 123-136

    [3]

    [3]Beard JS and Lofgren GE. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kb. J. P etrol., 32: 365-401

    [4]

    [4]Ben Othman D, Polve M and Allegre CJ. 1984. Nd-Sr isotopic composition of granu lites and constraints on the evolution of the lower continental crust. Nature, 307: 510-515

    [5]

    [5]Bindeman IN and Valley JW. 2000. Formation of low-δ18O rhyolites after caldera collapse at Yellowstone, Wyoming, USA. Geology, 28: 719-722

    [6]

    [6]Cavazzini G. 1994. Increase of 87Sr/86Sr in residual liquids of high Rb/Sr magmas that evolve by fractional crystallization. Chem. Geol., 118: 321-326

    [7]

    [7]Charlton TR. 1991. Postcollision extension in arc-continent collision zone, ea stern Indonesia. Geology, 19: 28-31

    [8]

    [8]Charoy B and Raimbault L. 1994. Zr-, Th-, and REE-rich biotite differentiates in the A-type granite pluton of Suzhou (Eastern China): the key role of fluo rine. J. Petrol., 35: 919-962

    [9]

    [9]Chen JF, Foland KA and Liu YM. 1993. Precise 40Ar-39Ar dating o f the Suzhou composite granite. Acta Petrologica Sinica, 9: 77-85 (in Chinese wi th English abstract)

    [10]

    [10]Clayton RN and Mayeda TK. 1963. The use of bromine pentafluoride in the extract ion of oxygen from oxide and silicates for isotopic analysis. Geochim. Cosmochi m. Acta, 27: 43-52

    [11]

    [11]Collerson KD. 1982. Geochemistry and Rb-Sr geochronology of associated Proteroz oic peralkaline and subalkaline anorogenic granites from Labrador. Contrib. Min eral. Petrol., 81: 126-147

    [12]

    [12]Collins WJ, Beams SD, White AJR and Chappell BW. 1982. Nature and origin of A- type granites with particular reference to southeastern Australia. Contrib. Min eral. Petrol., 80: 189-200

    [13]

    [13]Creaser RA, Price RC and Wormald RJ. 1991. A-type granites revisited: Assessme nt of a residual-source model. Geology, 19: 163-166

    [14]

    [14]DallAgnol R, Scaillet B and Pichavant M. 1999. An experimental study of a lowe r Proterozoic A-type granite from the eastern Amazonian Craton, Brazil. J. Pe trol., 40: 1673-1698

    [15]

    [15]DePaolo DJ. 1988. Neodymium Isotope Geochemistry: an Introduction. New York: Sp ringer

    [16]

    [16]DePaolo DJ and Getty SR. 1996. Models of isotopic exchange in reactive fluid-r ock systems: Implications for geochronology in metamorphic rocks. Geochim. Cosmo chim. Acta, 60: 3933-3947

    [17]

    [17]Farmer GL, Perry FV, Smeken S, Crowe B, Curtis D and DePaolo DJ. 1989. Isotopic evidence on the structure and origin of subcontinental lithospheric mantle in southern Nevada. J. Geophys. Res., 94: 7885-7898

    [18]

    [18]Faure G. 1986. Principles of Isotope Geology (2nd ed.). New York: John Wiley & Sons

    [19]

    [19]Fu B, Wei CS, Zheng YF. 1996. The Suzhou A-type granite of low δ18O mag matic origin. Bull. Mineral. Petrol. Geochem., 15: 211-215 (in Chinese with Eng lish abstract)

    [20]

    [20]Gerstenberger H. 1989. Autometasomatic Rb enrichments in highly evolved granites causing lowered Rb-Sr isochron intercepts. Earth Planet. Sci. Lett., 93: 65-75

    [21]

    [21]Gilliam CE and Valley JW. 1997. Low δ18O magma, Isle of Skye, Scotland: Evidence from zircon. Geochim. Cosmochim. Acta, 61: 4975-4981

    [22]

    [22]Gui XT, Cheng ZL, Yu FJ and Yu JS. 1989. Isotopic geochemistry of Laoshan miaro litic alkaline granite. Acta Petrologica Sinica, 5(3): 37-44 (in Chinese with E nglish abstract)

    [23]

    [23]Gutscher M-A, Maury R, Eissen J-P and Bourdon E. 2000. Can slab melting be cau sed by flat subduction? Geology, 28: 535-538

    [24]

    [24]Harmon RS and Hoefs J. 1995. Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic set tings. Contrib. Mineral. Petrol., 120: 95-114

    [25]

    [25]Hart SR, Blusztajn J, Dick HJB, Meyer PS and Muehlenbachs K. 1999. The fingerpr int of seawater circulation in a 500-meter section of ocean crust gabbros. Geo chim. Cosmochim. Acta, 63: 4059-4080

    [26]

    [26]Hilde WC, Uyeda S and Kroenke L. 1977. Evolution of the western Pacific and its margin. Tectonophys., 38: 145-165

    [27]

    [27]Hong DW, Guo WQ, Li GJ, Kang W and Xu HM. 1987. The Petrology of Miarolitic Gra nites along the Southeast Coast of Fujian Province and Their Generation. Beijing : Beijing Science & Technology Press (in Chinese with English abstract)

    [28]

    [28]Huang X, Sun SH, DePaolo DJ and Wu KL. 1986. Nd-Sr isotope study of Cretaceous magmatic rocks from Fujian province. Acta Petrologica Sinica, 2:50-63 (in Ch inese with English abstract)

    [29]

    [29]King EM, Barrie CT and Valley JW. 1997. Hydrothermal alteration of oxygen isoto pe ratios in quartz phenocrysts, Kidd Creek mine, Ontario: Magmatic values are preserved in zircon. Geology, 25: 1079-1082

    [30]

    [30]King EM, Valley JW, Davis DW and Edwards GR. 1998. Oxygen isotope ratios of Arc hean plutonic zircons from granite-greenstone belts of the Superior Province: Indicator of magmatic source. Precam. Res., 92: 47-67

    [31]

    [31]Kullerud L. 1991. On the calculation of isochrons. Chem. Geol., 87: 115-124

    [32]

    [32]Langmuir CH, Vocke RD, Hanson GN and Hart SR. 1978. A general mixing equation wi th application to Icelandic basalts. Earth Planet. Sci. Lett., 37: 380-392

    [33]

    [33]Larson RL and Chase CG. 1972. Late Mesozoic evolution of the western Pacific Oc ean. Geol. Soc. Am. Bull., 83: 3627-3644

    [34]

    [34]Li PZ and Yu JS. 1989. H-O isotope composition of Shanhaiguan miarolitic alkal ine granite. Chinese Sci. Bull., 34: 770-771

    [35]

    [35]Li PZ and Yu JS. 1993. Nianzishan miarolitic alkaline granite stock, Heilongjia ng - Its ages and geological implications. Geochimica, (4): 389-398 (in Chinese with English abstract)

    [36]

    [36]Li PZ and Yu JS. 1994. Isotopic geochemistry of Nianzishan miarolitic alkaline granite. In: Chen HS (ed.). Isotopic Geochemistry Researches. Hangzhou: Zhejian g University Press, 269-286 (in Chinese)

    [37]

    [37]Li PZ, Shen YL, Li CL and Yu JS. 1991. δ18O contours and ancient fossil h ydrothermal system of miarolitic alkaline granite, Nianzishan, Heilongjiang. Sci ence in China, 34(B): 732-740

    [38]

    [38]Li PZ, Yu FJ, Liu DP and Yu JS. 1992. The relationship between δD and magma de gassing of the Nianzishan miarolitic alkaline granite, Heilongjiang. Geochimica , (1): 70-76 (in Chinese with English abstract)

    [39]

    [39]Loiselle MC and Wones DR. 1979. Characteristics and origin of anorogenic granit es. Geol. Soc. Am. Abstr. Progr., 11: 468

    [40]

    [40]Ludwig KR. 1996. ISOPLOT: A plotting and regression program for radiogenic-iso tope data (Ver. 2.90). U. S. Geological Survey Open-File Report, 91-445: 1-4 7

    [41]

    [41]Lutz TM and Srogi LA. 1986. Biased isochron ages resulting from subsolidus isot ope exchange: a theoretical model and results. Chem. Geol., 56: 63-71

    [42]

    [42]Ma X. 1988. Lithospheric dynamics of China. Episodes, 11: 84-90

    [43]

    [43]Magenheim AJ, Spivack AJ, Michael PJ and Gieskes JM. 1995. Chlorine stable isoto pe composition of the oceanic crust: Implications for Earths distribution of chlorine. Earth Planet. Sci. Lett., 131: 427-432

    [44]

    [44]Martin H, Bonin B, Capdevila R, Jahn BM, Lameyre J and Wang YX. 1994. The Kuiqi peralkaline granitic complex (SE China): petrology and geochemistry. J. Petrol. , 35: 983-1015

    [45]

    [45]McCarthy TS and Cawthorn RG. 1980. Changes in initial 87Sr/8 6 Sr ratio during protracted fractionation in igneous complexes. J. Petrol., 21 : 245-264

    [46]

    [46]McCulloch MT and Chappell BW. 1982. Nd isotopic characteristics of S- and I-t ype granites. Earth Planet. Sci. Lett., 58: 51-64

    [47]

    [47]Muir RJ, Weaver SD, Bradshaw JD, Eby GN and Evans JA. 1995. Geochemistry of the Cretaceous Separaton Plint Batholith, New Zealand: Granitoid magmas formed by melting of mafic lithosphere. J. Geol. Soc. Lond., 152: 689-701

    [48]

    [48]Nelson DR. 1992. Isotopic characteristics of potassic rocks: evidence for the i nvolvment of subducted sediments in magma genesis. Lithos, 28: 403-420

    [49]

    [49]Ouyang XW. 1985. The geochemical characteristics and petrogenesis of Suzhou and Geyuan granites. M.Sc. Thesis. Guiyang: Institute of Geochemistry, Chinese Aca demy of Sciences (in Chinese)

    [50]

    [50]Patino Douce AEP. 1997. Generation of metaluminous A-type granites by low-pre ssure melting of calc-alkaline granitoids. Geology, 25: 743-746

    [51]

    [51]Peacock SM, Rushmer T and Thompson AB. 1994. Partial melting of subducting ocea nic crust. Earth Planet. Sci. Lett., 121: 227-244

    [52]

    [52]Pearson DG, Shirey SB, Carlson RW, Boyd FR, Pokhilenko NP and Shimizu N. 1995. R e-Os, Sm-Nd, and Rb-Sr isotope evidence for thick Archaean lithospheric man tle beneath the Siberian craton modified by multi-stage metasomatism. Geochim. Cosmochim. Acta, 59: 959-977

    [53]

    [53]Peck WH, King EM and Valley JW. 2000. Oxygen isotope perspective on Precambrian crustal growth and maturation. Geology, 28: 363-366

    [54]

    [54]Pedersen T and Ro HE. 1992. Finite duration extension and decompression melting . Earth Planet. Sci. Lett., 113: 15-22

    [55]

    [55]Poitrasson F, Duthou JL and Pin C. 1995. The relationship between petrology and Nd isotopes as evidence for contrasting anorogenic granite genesis: example of the Corsican Province (SE France). J. Petrol., 36: 1251-1274

    [56]

    [56]Qin ZW. 1986. The O-H-Nd-Sr isotopic geochemistry study of Kuiqi alkaline gr anite, Fuzhou. M.Sc. Thesis. Guiyang: Institute of Geochemistry, Chinese Academ y of Sciences (in Chinese)

    [57]

    [57]Qin ZW, Yu FJ and Yu JS. 1987. D/H evidence for magmatic degassing of miaroliti c alkaline granites in Kuiqi and Qingdao, China. Geochem. J., 21: 149-157

    [58]

    [58]Qiu JS, Wang DZ, Kanisawa S and McInnes BIA. 2000. Geochemistry and petrogenesi s of aluminous A-type granites in the coastal area of Fujian Province. Geochim ica, 29: 313-321

    [59]

    [59]Rudnick RL. 1990. Nd and Sr isotopic composition of lower crustal xenoliths fro m North Queensland, Australia: Implications for Nd model ages and crustal growth processes. Chem. Geol., 83: 195-208

    [60]

    [60]Rutter MJ and Wyllie PJ. 1988. Melting of vapour-absent tonalite at 10 kbar to simulate dehydration melting in the deep crust. Nature, 331: 159-160

  • 加载中
计量
  • 文章访问数:  8260
  • PDF下载数:  8334
  • 施引文献:  0
出版历程
修回日期:  2000-09-20
刊出日期:  2001-02-28

目录