安徽铜陵冬瓜山矿床矿石硫化物环带及地质意义

曹毅, 杜杨松, 庞振山, 任春雷, 杜轶伦, 肖福权, 周贵斌, 陈林杰. 安徽铜陵冬瓜山矿床矿石硫化物环带及地质意义[J]. 岩石学报, 2016, 32(2): 334-350.
引用本文: 曹毅, 杜杨松, 庞振山, 任春雷, 杜轶伦, 肖福权, 周贵斌, 陈林杰. 安徽铜陵冬瓜山矿床矿石硫化物环带及地质意义[J]. 岩石学报, 2016, 32(2): 334-350.
CAO Yi, DU YangSong, PANG ZhenShan, REN ChunLei, DU YiLun, XIAO FuQuan, ZHOU GuiBin, CHEN LinJie. Sulfide zonal texture and its geological significance of ores from the Dongguashan copper(gold) deposit in Tongling, Anhui Province, China[J]. Acta Petrologica Sinica, 2016, 32(2): 334-350.
Citation: CAO Yi, DU YangSong, PANG ZhenShan, REN ChunLei, DU YiLun, XIAO FuQuan, ZHOU GuiBin, CHEN LinJie. Sulfide zonal texture and its geological significance of ores from the Dongguashan copper(gold) deposit in Tongling, Anhui Province, China[J]. Acta Petrologica Sinica, 2016, 32(2): 334-350.

安徽铜陵冬瓜山矿床矿石硫化物环带及地质意义

  • 基金项目:

    本文受国家青年自然科学基金项目(41302062)、中央高校基本科研业务费专项资金资助项目(2652015053)和中国地质调查局项目(12120113069900)联合资助.

Sulfide zonal texture and its geological significance of ores from the Dongguashan copper(gold) deposit in Tongling, Anhui Province, China

  • 安徽冬瓜山矿床是铜陵矿集区内一个重要的大型铜(金)矿床,颇受关注,成因认识分歧较大。矿床内块状硫化物矿石中普遍发育以黄铁矿为核部、黄铜矿为中间带、磁黄铁矿为边部带的硫化物环带。这些环带核部黄铁矿多呈自形-半自形晶,黄铜矿呈他形晶围绕黄铁矿沉淀,磁黄铁矿呈他形分布在黄铜矿外围,内带常被外带硫化物溶蚀交代。硫同位素分析结果显示,环带中硫化物矿物的硫同位素(δ34S=1.6‰~5.1‰)具有岩浆硫源特征,同时从核部黄铁矿到中间带黄铜矿,再到边部磁黄铁矿δ34S值逐渐降低。以上特征表明环带从内到外硫化物之间并非平衡共生关系,而是黄铁矿、黄铜矿和磁黄铁矿先后依次晶出。硫化物环带核部粗粒黄铁矿(粒径大于1.5cm)的Co、Ni含量分别为292×10-6~1504×10-6和32.7×10-6~39.9×10-6,Co/Ni=7.32~46.0(平均26.7),与海底火山喷流沉积型黄铁矿的Co、Ni特征基本一致。核部黄铁矿由颗粒中心向边缘,Fe/S原子比值、Mo和Co含量先逐渐升高,再逐渐降低,而Cu、Zn等成矿元素主要富集于颗粒边缘,并向边缘有逐渐升高趋势。与此同时,细粒黄铁矿(粒径小于0.5cm)中的Cu、Zn等元素的含量明显高于粗粒黄铁矿。环带中三种硫化物矿物的REE配分曲线和微量元素蛛网图极为相似,相对富集LREE、Rb、Th等元素,而亏损Nb、Ta、Zr、Hf、Sr、Ba和HREE等元素,由环带核部到边部δEu逐渐减小,与矿区石英二长闪长(玢)岩表现出较高的相似性。以上特征综合分析表明,冬瓜山铜(金)矿床中硫化物环带经历了以下形成过程:石炭纪海底喷流沉积作用在矿区形成沉积黄铁矿,到燕山期,在区内强烈的构造-岩浆活动作用下,致使早期沉积的黄铁矿首先发生变质重结晶作用,形成粒状黄铁矿,随后岩浆热液对其进行叠加改造,并在岩浆热液作用下相继围绕粒状黄铁矿增生,依次沉淀出热液型黄铁矿、黄铜矿和磁黄铁矿,最终形成硫化物环带。这一认识,结合硫化物环带中元素及硫同位素特征进一步表明冬瓜山铜(金)矿床的形成先后经历了古生代海底喷流沉积成矿作用和燕山期岩浆热液成矿作用,矿床中的成矿物质(特别是Cu、Zn等成矿元素)主要来源于燕山期岩浆热液,但石炭系海底喷流沉积作用也提供了部分物质(例如,Fe、S、Mo、Co和Ni等)。此外,环带中微量元素的变化特征表明,随着硫化物环带的形成,成矿热液系统的温度、硫逸度和氧逸度逐渐降低和(或)pH值升高。
  • 加载中
  • [1]

    Bajwah ZU, Seccombe PK and Offler R. 1987. Trace element distribution, Co:Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineralium Deposita, 22(4):292-300

    [2]

    Bi XW, Hu RZ, Peng JT and Wu KX. 2004. REE and HFSE geochemical characteristics of pyrites in Yao'an gold deposit:Tracing ore forming fluid signatures. Bulletin of Mineralogy, Petrology and Geochemistry, 23(1):1-4(in Chinese with English abstract)

    [3]

    Bralia A, Sabatini G and Troja F. 1979. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Mineralium Deposita, 14(3):353-374

    [4]

    Brill BA. 1989. Trace-element contents and partitioning of elements in ore minerals from the CSA Cu-Pb-Zn deposit, Australia, and implications for ore genesis. The Canadian Mineralogist, 27(2):263-274

    [5]

    Chang YF, Liu XP and Wu YC. 1991. The Copper-iron Belt of the Lower and Middle Reaches of the Changjiang River. Beijing:Geological Publishing House, 1-379(in Chinese)

    [6]

    Chen BG, Jiang ZP, Zhang WP, Xu ZW, Lu XC, Lu JJ, Liu SM and Huang SS. 2002. Study on altered fluids of diplogenetic stratified copper hydrothermal solution in Dongguashan, Anhui Province. Jiangsu Geology, 26(2):65-69(in Chinese with English abstract)

    [7]

    Chen GY, Sun DS and Yin HA. 1987. Genetic Mineralogy and Prospecting Mineralogy. Chongqing:Chongqing Publishing House, 1-874(in Chinese)

    [8]

    ChenYL, Yang ZF and Zhao ZD. 2005. Isotopic Geochronology and Geochemistry. Beijing:Geological Publishing House, 1-441(in Chinese)

    [9]

    Corsini F, Cortecci G, Leone G and Tanelli G. 1980. Sulfur isotope study of the skarn-(Cu-Pb-Zn) sulfide deposit of Valle del Temperino, Campiglia Marittima, Tuscany, Italy. Economic Geology, 75(1):83-96

    [10]

    Drüppel K, Wagner T and Boyce AJ. 2006. Evolution of sulfide mineralization in Ferrocarbonatitie, Swartbooisdrif Northwestern Namibia:Constraints from mineral compositions and sulfur isotopes. The Canadian Mineralogist, 44(4):877-894

    [11]

    Gadzhiev GG, Ismailov SM, Khamidov MM, Abdullaev KK and Sokolov VV. 2000. Thermophysical properties of sulfides of lanthanum, praseodymium, gadolinium, and dysprosium. High Temperature, 38(6):875-879

    [12]

    Gu LX and Kangboer B. 1974. Co and Ni geochemistry of different genetic pyrrhotite. Geology and Prospecting,(3):65-71(in Chinese)

    [13]

    Gu LX and McClay KR. 1999. Metallogenic implications of pressure solution and overgrowth of sulphides in the stratiform lead-zinc deposits of western Canada. Chinese Science Bulletin, 44(Suppl. 2):78-81

    [14]

    Gu LX, Hu WX, He JX, Ni P and Xu KQ. 2000. Regional variations in ore composition and fluid features of massive sulphide deposits in South China:Implications for genetic modeling. Episodes, 23(2):110-118

    [15]

    Gu LX, Zheng YC, Tang XQ, Wu CZ and Hu WX. 2006. Advances in research of sulphide ore textures and their implications for ore genesis. Progress in Natural Science, 16(10):1007-1021

    [16]

    Gu LX, Khin Z, Hu WX, Zhang KJ, Ni P, He JX, Xu YT, Lu JJ and Lin CM. 2007. Distinctive features of Late Paleozoic massive sulphide deposits in South China. Ore Geology Reviews, 31(1-4):107-138

    [17]

    Guo WM, Lu JJ, Zhang RQ and Xu ZW. 2010. Ore textures and genetic significance of pyrrhotite from Dongguashan ore deposit in Tongling area, Anhui Province. Mineral Deposits, 29(3):405-414(in Chinese with English abstract)

    [18]

    Guo WM, Lu JJ, Zhang RQ, Zhao ZJ and Xu ZW. 2011. The Superimposed mineralization of the Dongguashan Cu deposit in Tongling area, Anhui Province:Evidence from the ore texture. Acta Geologica Sinica, 85(7):1223-1232(in Chinese with English abstract)

    [19]

    Gustafson LB. 1963. Phase equilibria in the system Cu-Fe-As-S. Economic Geology, 58(5):667-701

    [20]

    Hall SR and Stewart JM. 1973. The crystal structure refinement of chalcopyrite, CuFeS2. Acta Crystallographica Section B, 29(3):579-585

    [21]

    Han YW, Ma ZD, Zhang HF, Zhang BR, Li FL, Gao S and Bao ZY. 2003. Geochemistry. Beijing:Geological Publishing House, 54-92(in Chinese)

    [22]

    Hawley JE and Nichol I. 1961. Trace elements in pyrite, pyrrhotite and chalcopyrite of different ores. Economic Geology, 56(3):467-487

    [23]

    Hou ZQ, Yang ZS, Lü QT, Zeng PS, Xie YL, Meng YF, Tian SH, Xu WY, Li HY, Jiang ZP, Wang XC and Yao XD. 2011. The large scale Dongguashan deposit, Shizishan district in East China:Carboniferous sedex-type massive sulfides overprinted by Late Jurassic skarn Cu mineralization. Acta Geologica Sinica, 85(5):659-686(in Chinese with English abstract)

    [24]

    Huang CK, Bai Y, Zhu YS, Wang HZ and Shang XZ. 2001. Copper Deposits in China. Beijing:Geological Publishing House, 1-705(in Chinese)

    [25]

    Huang SS, Xu ZW, Gu LX, Hua M, Lu XC, Lu JJ, Nie GP and Zhu SP. 2004. A discussion on geochemical characteristics and genesis of intrusions in Shizishan orefield, Tongling area, Anhui Province. Geological Journal of China Universities, 10(2):217-226(in Chinese with English abstract)

    [26]

    Jiang ZP, Chen BG, Lu XC, Lu JJ, Xu ZW, Huang SS and Hua M. 2001. Geological and geochemical properties of the rock mass relevant to diplogenetic layered copper deposit of Donguashan. Jiangsu Geology, 25(2):87-91(in Chinese with English abstract)

    [27]

    Khin Z, Large RR and Huston DL. 1997. Petrologic and geochemical significance of a Devonian replacement zone in the Cambrian Rosebery massive sulfide deposit, western Tasmania. The Canadian Mineralogist, 35(5):1325-1349

    [28]

    Kuang YQ. 1991. Some problems on the application of trace-element geochemistry. Geology and Prospecting,(3):48-52(in Chinese with English abstract)

    [29]

    Li HM, Shen YC, Mao JW, Liu TB and Zhu HP. 2003. REE features of quartz and pyrite and their fluid inclusions:An example of Jiaojia-type gold deposits, northwestern Jiaodong Peninsula. Acta Petrologica Sinica, 19(2):267-274(in Chinese with English abstract)

    [30]

    Li SR, Chen GY, Shao W and Sun DS. 1994. A study on the zonal structure of pyrite from the Shuangshanzi gold mine, East Shandong Province. Acta Mineralogica Sinica, 14(2):152-156(in Chinese with English abstract)

    [31]

    Li SR. 2008. Crystallography and Mineralogy. Beijing:Geological Publishing House, 1-346(in Chinese)

    [32]

    Li WD, Wang WB, Fan HY, Dong P, Zhou TF and Xie HG. 1997. The conditions to form copper(gold) ore deposit concentrated areas and the possibilities to discover super giant copper(gold) ore deposit in the Middle-Lower Yangtze area. Volcanology and Mineral Resources, 20(Suppl.):1-131(in Chinese with English abstract)

    [33]

    Li YB and Liu JM. 2006. Calculation of sulfur isotope fractionation in sulfides. Geochimica et Cosmochimica Acta, 70(7):1789-1795

    [34]

    Li ZL, Xu WD and Pang WZ. 1989. Distribution characteristics of microelements in the Au-bearing sulfides from the gold ore deposits in East Shandong Province. Contributions to Geology and Mineral Resources Research, 4(4):35-46(in Chinese with English abstract)

    [35]

    Liang JF, Xu XC, Xiao QX and Wang P. 2011. LA-ICP-MS in situ trace element analysis of pyrite from the Dongguashan Cu-Au deposit in Tongling, Anhui, and its significance for deposit genesis. Acta Mineralogica Sinica,(Suppl.):1011-1012(in Chinese)

    [36]

    Ling QC and Liu CQ. 2002. The characteristics of ore-forming fluid of Dongguashan starata-bound skarn Cu deposit and its significance for deposit genesis. Journal of Jilin University(Earth Science Edition), 32(3):219-224(in Chinese with English abstract)

    [37]

    Ling QC and Liu CQ. 2003. REE behavior during formation of strata-bound skarn and related deposit:A case study of Dongguashan skarn deposit in Anhui Province, China. Acta Petrologica Sinica, 19(1):192-200(in Chinese with English abstract)

    [38]

    Liu YJ, Cao LM, Li ZL, Wang HN, Chu TQ and Zhang JR. 1984. Element Geochemistry. Beijing:Science Press, 1-548(in Chinese)

    [39]

    Liu ZF, Shao YJ, Zhou X, Zhang Y and Zhou GB. 2014. Hydrogen, oxygen, sulfur and lead isotope composition tracing for the ore-forming material source of Dongguashan copper(gold) deposit in Tongling, Anhui Province. Acta Petrologica Sinica, 30(1):199-208(in Chinese with English abstract)

    [40]

    Long HS, Luo TY, Huang ZL, Zhou MZ, Yang Y and Qian ZK. 2011. Rare earth element and trace element geochemistry of pyrite ores in the Laochang large size silver ploymetallic deposit of Lancang, Yunnan Province, China. Acta Mineralogica Sinica, 31(3):462-473(in Chinese with English abstract)

    [41]

    Lu JJ, Hua RM, Xu ZW, Gao JF and Li J. 2003. A two-stage model for formation of the Dongguashan Cu-Au deposit. Geological Journal of China Universities, 9(4):678-690(in Chinese with English abstract)

    [42]

    Lu JJ, Guo WM, Chen WF, Jiang SY, Li J, Yan XR and Xu ZW. 2008. A metallogenic model for the Dongguashan Cu-Au deposit of Tongling, Anhui Province. Acta Petrologica Sinica, 24(8):1857-1864(in Chinese with English abstract)

    [43]

    Mao GZ, Hua RM, Gao JF, Long GM, Lu HJ, Li WQ and Zhao KD. 2006. Existence of REE in different phases of gold-bearing pyrite in the Jinshan gold deposit, Jiangxi Province. Acta Mineralogica Sinica, 26(4):409-418(in Chinese with English abstract)

    [44]

    Mao GZ, Hua RM, Gao JF, Li WQ, Zhao KD, Long GM and Lu HJ. 2009. Existing forms of REE in gold-bearing pyrite of the Jinshan gold deposit, Jiangxi Province, China. Journal of Rare Earth, 27(6):1079-1087

    [45]

    Mao JW, Stein H, Du AD, Zhou TF, Mei YX, Li YF, Zang WS and Li JW. 2004. Molybdenite Re-Os precise dating for molybdenite from Cu-Au-Mo deposits in the Middle-Lower Reaches of Yangtze River belt and its implications for mineralization. Acta Geologica Sinica, 78(1):121-131(in Chinese with English Abstract)

    [46]

    Mao JW, Wang YT, Lehmann B, Yu JJ, Du AD, Mei YX, Li YF, Zang WS, Stein HJ and Zhou TF. 2006. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River Valley and metallogenic implications. Ore Geology Reviews, 29(3-4):307-324

    [47]

    Mao JW, Shao YJ, Xie GQ, Zhang JD and Chen YC. 2009. Mineral deposit model for porphyry-skarn polymetallic copper deposits in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt. Mineral Deposits, 28(2):109-119(in Chinese with English Abstract)

    [48]

    Mao JW, Xie GQ, Duan C, Pirajno F, Ishiyama D and Chen YC. 2011. A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43(1):294-314

    [49]

    Marshall B, Vokes FM and Larocque ACL. 2000. Regional metamorphic remobilization:Upgrading and formation of ore deposits. Reviews in Economic Geology, 11:19-38

    [50]

    Pan YM and Dong P. 1999. The Lower Changjiang(Yangzi/Yangtze River) metallogenic belt, east central China:Intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15(4):177-242

    [51]

    Qiu SD, Xie YL, Xu JH, Wang BH, Yang ZS and Meng YF. 2007. Characteristics and evolution of ore-forming fluids associated with Yanshanian magmatic activity in Dongguashan copper deposit, Anhui Province, China. Mineral Deposits, 26(2):204-212(in Chinese with English Abstract)

    [52]

    Sakai H. 1968. Isotopic properties of sulfur compounds in hydrothermal processes. Geochemical Journal, 2(1):29-40

    [53]

    Shan L, Zheng YY, Xu RK, Cao L, Zhang YL, Lian YL and Li YH. 2009. Review on sulfur isotopic tracing and hydrothermal metallogenesis. Geology and Resources, 18(3):197-203(in Chinese with English abstract)

    [54]

    Springer G, Schachner-Korn D and Long JVP. 1964. Metastable solid solution relations in the system FeS2-CoS2-NiS2. Economic Geology, 59(3):475-491

    [55]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematic of oceanic basalts:Implication for mantle compostion and processes. In:Saunders AD and Norry MJ(eds.). Magmatism in Oceanic Basins. Spec. Publ. Geol. Soc. Lond., 42(1):313-345

    [56]

    Sverjensky DA. 1984. Prediction of Gibbs free energies of calcite-type carbonates and the equilibrium distribution of trace elements between carbonates and aqueous solutions. Geochimica et Cosmochimica Acta, 48(5):1127-1134

    [57]

    Tang YC, Wu YC, Chu GZ, Xing FM, Wang YM, Cao FY and Chang YF. 1998. Geology of Copper-Gold Polymetallic Deposits in the along-Changjiang Area of Anhui Province. Beijing:Geological Publishing House, 1-351(in Chinese)

    [58]

    Thomas HV, Large RR, Bull SW, Maslennikov V, Berry RF, Fraser R, Froud S and Moye R. 2011. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia:Insights for ore genesis. Economic Geology, 106(1):1-31

    [59]

    Tossell JA, Vaughan DJ and Burdett JK. 1981. Pyrite, marcasite, and arsenopyrite type minerals:Crystal chemical and structural principles. Physics and Chemistry of Minerals, 7(4):177-184

    [60]

    Vokes FM. 2000. Ores and metamorphism:Introduction and historical perspectives. Reviews in Economic Geology, 11:1-18

    [61]

    Walshe JL. 1977. The geochemistry of the Mount Lyell copper deposits. Hobart:University of Tasmania

    [62]

    Wang Q, Xu JF, Zhao ZH, Xiong XL and Bao ZW. 2003. Petrogenesis of the Mesozoic intrusive rocks in the Tongling area, Anhui Province, China and their constraint on geodynamic process. Science in China(Series D), 46(8):801-815

    [63]

    Wang SW, Zhou TF, Yuan F, Fan Y, Zhang LJ and Song YL. 2015. Petrogenesis of Dongguashan skarn-porphyry Cu-Au deposit related intrusion in the Tongling district, eastern China:Geochronological, mineralogical, geochemical and Hf isotopic evidence. Ore Geology Reviews, 64:53-70

    [64]

    Wang ZG, Yu XY and Zhao ZH. 1989. Rare Earth Elements Geochemistry. Beijing:Science Press, 1-535(in Chinese)

    [65]

    White WM. 2009. Geochemistry. Maryland:John-Hopkins University Press, 1-701

    [66]

    Wu CL, Zhou XR, Huang XC, Zhang CH and Huang WM. 1996. 40Ar/39Ar chronology of intrusion rocks from Tongling. Acta Petrologica et Mineralogica, 15(4):299-306(in Chinese with English abstract)

    [67]

    Xu DY, Cheng QM and Wang ZJ. 2009. Simulation of Liesegang Band in sphalerite in MVT Deposits. Earth Science(Journal of China University of Geosciences), 34(2):253-257(in Chinese with English abstract)

    [68]

    Xu KQ and Zhu JC. 2009. Origin of the sedimentary-(or volcanosedimentary-) iron-copper deposits in some fault depression belts in South China. In:Editorial Board of Collection of Xu KQ Papers(ed.). Collection of Xu KQ Papers. Beijing:Science Press, 426-499(in Chinese)

    [69]

    Xu XC, Lu SM, Xie QQ, Bo L and Chu GZ. 2008a. SHRIMP zircon U-Pb dating for the magmatic rocks in Shizishan ore-field of Tongling, Anhui Province, and its geological implications. Acta Geologica Sinica, 82(4):500-509(in Chinese with English abstract)

    [70]

    Xu XC, Lu SM, Xie QQ, Lou JW and Chu PL. 2008b. Trace element geochemical characteristics of fluid inclusions of Dongguashan ore deposit in Tongling, Anhui Province, and their geological implications. Acta Petrologica Sinica, 24(8):1865-1874(in Chinese with English abstract)

    [71]

    Xu XC, Yin T, Lou JW, Lu SM, Xie QQ and Zhu PL. 2010. Origin of Dongguashan stratabound Cu-Au skarn deposit in Tongling:Restraints of sulfur isotope. Acta Petrologica Sinica, 26(9):2739-2750(in Chinese with English abstract)

    [72]

    Xu ZW, Lu JJ, Lu XC, Gao JF, Liu SM, Luo QC and Jiang ZP. 2000. The geological characteristics and genesis of Dongguashan copper-gold deposit in Tongling area, Anhui Province. Bulletin of Mineralogy, Petrology and Geochemistry, 19(4):233-234(in Chinese)

    [73]

    Xu ZW, Huang SS, Ni P, Lu XC, Lu JJ, Fang CQ, Hua M and Jiang SY. 2005. Characteristics and evolution of ore fluids in Dongguashan copper deposit, Anhui Province, China. Geological Review, 51(1):36-41(in Chinese with English abstract)

    [74]

    Xu ZW, Lu XC, Gao G, Fang CQ, Wang YJ, Yang XN, Jiang SY and Chen BG. 2007. Isotope geochemistry and mineralization in the Dongguashan diplogenetic stratified copper deposit, Tongling area. Geological Review, 53(1):44-51(in Chinese with English abstract)

    [75]

    Yang JH, Ma HM, Zhou XH and Feng BZ. 2000. Genesis and significance of component zones in pyrites from Penglai gold deposit, Shandong Province. Scientia Geologica Sinica, 35(2):168-174(in Chinese with English abstract)

    [76]

    Yang S, Du YS, Cao Y, Zhang ZY and Liu SF. 2012. Forming process of Dongguashan stratabound skarn Cu deposit in Tongling, Anhui Province:Evidence from pyrrhotite. Geoscience, 26(1):54-60(in Chinese with English abstract)

    [77]

    Yang XN, Xu ZW, Lu XC, Jiang SY, Ling HF, Liu LG and Chen DY. 2011. Porphyry and skarn Au-Cu deposits in the Shizishan orefield, Tongling, East China:U-Pb dating and in-situ Hf isotope analysis of zircons and petrogenesis of associated granitoids. Ore Geology Reviews, 43(1):182-193

    [78]

    Zeng PS, Yang ZS, Meng YF, Pei RF, Wang YB, Wang XC, Xu WY, Tian SH and Yao XD. 2004. Temporal-spatial configuration and mineralization of Yanshanian magmatic fluid systems in Tongling ore concentration area, Anhui Province. Mineral Deposits, 23(3):298-309(in Chinese with English abstract)

    [79]

    Zeng PS, Pei RF, Hou ZQ, Meng YF, Yang ZS, Tian SH, Xu WY and Wang XC. 2005. The Dongguashan deposit in the Tongling mineralization cluster area, Anhui:A large-sized superimposition-type copper deposit. Acta Geologica Sinica, 79(1):106-113(in Chinese with English abstract)

    [80]

    Zhai YS, Yao SZ, Lin XD, Lin DX, Zhou XR, Wan TF, Jin FQ and Zhou ZG. 1992. Fe-Cu(Au) Metallogeny of the Middle-Lower Changjiang Region. Beijing:Geological Publishing House, 1-235(in Chinese)

    [81]

    Zhang J, Deng J, Chen HY, Yang LQ, Cooke D, Danyushevsky L and Gong QJ. 2014. LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China:Implication for ore-forming process. Gondwana Research, 26(2):557-575

    [82]

    Zhou TF, Yuan F, Yue SC and Zhao Y. 2000. Two series of copper-gold deposits in the Middle and Lower Reaches of the Yangtze River area(MLYRA) and the hydrogen, oxygen, sulfur and lead isotopes of their ore-forming hydrothermal systems. Science in China(Series D), 43(Suppl. 1):208-218

    [83]

    Zhou TF, Zhang LJ, Yuan F, Fan Y and Cooke DR. 2010. LA-ICP-MS in situ trace element analysis of pyrite from the Xinqiao Cu-Au-S deposit in Tongling, Anhui, and its constraints on the ore genesis. Earth Science Frontiers, 17(2):306-319(in Chinese with English abstract)

    [84]

    Zhou TF, Fan Y, Yuan F and Zhong GX. 2012. Progress of geological study in the Middle-Lower Yangtze River Valley metallogenic belt. Acta Petrologica Sinica, 28(10):3051-3066(in Chinese with English abstract)

    [85]

    Zhou TF, Wang SW, Fan Y, Yuan F, Zhang DY and White NC, 2015. A review of the intracontinental porphyry deposits in the Middle-Lower Yangtze River Valley metallogenic belt, Eastern China. Ore Geology Reviews, 65(Part 1):433-456

    [86]

    Zu B, Xue CJ, Ya XE, Wang QF, Liang HY, Zhao Y and Liu MT. 2013. Sulfide zonal texture and its geological significance of ores from the Hongshan copper deposit in Shangri-la, Yunnan Province, China. Acta Petrologica Sinica, 29(4):1203-1213(in Chinese with English abstract)

    [87]

    毕献武, 胡瑞忠, 彭建堂, 吴开兴. 2004. 黄铁矿微量元素地球化学特征及其对成矿流体性质的指示. 矿物岩石地球化学通报, 23(1):1-4

    [88]

    常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带. 北京:地质出版社, 1-379

    [89]

    陈邦国, 姜章平, 张卫平, 徐兆文, 陆现彩, 陆建军, 刘苏明, 黄顺生. 2002. 安徽冬瓜山叠生式层状铜矿热液改造型流体研究. 江苏地质, 26(2):65-69

    [90]

    陈光远, 孙岱生, 殷辉安. 1987. 成因矿物学与找矿矿物学. 重庆:重庆出版社, 1-874

    [91]

    陈岳龙, 杨忠芳, 赵志丹. 2005. 同位素地质年代学与地球化学. 北京:地质出版社, 1-441

    [92]

    顾连新, 康伯尔B. 1974. 不同成因类型磁黄铁矿中镍、钴的地球化学. 地质与勘探,(3):65-71

    [93]

    郭维民, 陆建军, 章荣清, 徐兆文. 2010. 安徽铜陵冬瓜山矿床中磁黄铁矿矿石结构特征及其成因意义. 矿床地质, 29(3):405-414

    [94]

    郭维民, 陆建军, 章荣清, 招湛杰, 徐兆文. 2011. 安徽铜陵冬瓜山铜矿床的叠加改造成矿机制:来自矿石结构的证据. 地质学报, 85(7):1223-1232

    [95]

    韩吟文, 马振东, 张宏飞, 张本仁, 李方林, 高山, 鲍征宇. 2003. 地球化学. 北京:地质出版社, 54-92

    [96]

    侯增谦, 杨竹森, 吕庆田, 曾普胜, 谢玉玲, 蒙义峰, 田世洪, 徐文艺, 李红阳, 姜章平, 王训成, 姚孝德. 2011. 安徽铜陵冬瓜山大型铜矿:海底喷流-沉积与矽卡岩化叠加复合成矿过程. 地质学报, 85(5):659-686

    [97]

    黄崇轲, 白冶, 朱裕生, 王惠章, 尚修志. 2001. 中国铜矿床. 北京:地质出版社, 1-705

    [98]

    黄顺生, 徐兆文, 顾连兴, 华明, 陆现彩, 陆建军, 聂桂平, 朱士鹏. 2004. 安徽铜陵狮子山矿田岩浆岩地球化学特征及成因机制探讨. 高校地质学报, 10(2):217-226

    [99]

    姜章平, 陈邦国, 陆现彩, 陆建军, 徐兆文, 黄顺生, 华明. 2001. 与冬瓜山叠生式层状铜矿有关岩体地质地球化学特征. 江苏地质, 25(2):87-91

    [100]

    匡耀求. 1991. 微量元素地球化学应用中的若干问题. 地质与勘探,(3):48-52

    [101]

    李厚民, 沈远超, 毛景文, 刘铁兵, 朱和平. 2003. 石英、黄铁矿及其包裹体的稀土元素特征——以胶东焦家式金矿为例. 岩石学报, 19(2):267-274

    [102]

    李胜荣, 陈光远, 邵伟, 孙岱生. 1994. 胶东乳山金矿双山子矿区黄铁矿环带结构研究. 矿物学报, 14(2):152-156

    [103]

    李胜荣. 2008. 结晶学与矿物学. 北京:地质出版社, 1-346

    [104]

    李文达, 王文斌, 范洪源, 董平, 周涛发, 谢华光. 1997. 长江中下游铜(金)矿床密集区形成条件和超大型矿床存在的可能性. 火山地质与矿产, 20(增刊):1-131

    [105]

    李兆龙, 许文斗, 庞文忠. 1989. 胶东地区含金硫化物矿物微量元素分布规律. 地质找矿论丛, 4(4):35-46

    [106]

    梁建锋, 徐晓春, 肖秋香, 王萍. 2011. 安徽铜陵冬瓜山铜金矿床黄铁矿微量元素LA-ICP-MS原位分析及其成矿意义. 矿物学报,(增刊):1011-1012

    [107]

    凌其聪, 刘从强. 2002. 冬瓜山层控夕卡岩型铜矿床成矿流体特征及其成因意义. 吉林大学学报(地球科学版), 32(3):219-224

    [108]

    凌其聪, 刘从强. 2003. 层控夕卡岩及有关矿床形成过程的稀土元素行为——以安徽冬瓜山矿床为例. 岩石学报, 19(1):192-200

    [109]

    刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学. 北京:科学出版社, 1-548

    [110]

    刘忠法, 邵拥军, 周鑫, 张宇, 周贵斌. 2014. 安徽铜陵冬瓜山铜(金)矿床H-O-S-Pb同位素组成及其示踪成矿物质来源. 岩石学报, 30(1):199-208

    [111]

    龙汉生, 罗泰义, 黄智龙, 周明忠, 杨勇, 钱志宽. 2011. 云南澜沧老厂大型银多金属矿床黄铁矿稀土和微量元素地球化学. 矿物学报, 31(3):462-473

    [112]

    陆建军, 华仁民, 徐兆文, 高剑峰, 李娟. 2003. 安徽铜陵冬瓜山铜、金矿床两阶段成矿模式. 高校地质学报, 9(4):678-690

    [113]

    陆建军, 郭维民, 陈卫锋, 蒋少涌, 李娟, 颜晓蓉, 徐兆文. 2008. 安徽铜陵冬瓜山铜(金)矿床成矿模式. 岩石学报, 24(8):1857-1864

    [114]

    毛光周, 华仁民, 高剑峰, 龙光明, 陆慧娟, 李伟强, 赵葵东. 2006. 江西金山含金黄铁矿的稀土元素赋存状态研究. 矿物学报, 26(4):409-418

    [115]

    毛景文, Stein H, 杜安道, 周涛发, 梅燕雄, 李永峰, 藏文栓, 李进文. 2004. 长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示. 地质学报, 78(1):121-131

    [116]

    毛景文, 邵拥军, 谢桂青, 张建东, 陈毓川. 2009. 长江中下游成矿带铜陵矿集区铜多金属矿床模型. 矿床地质, 28(2):109-119

    [117]

    邱士东, 谢玉玲, 徐九华, 王葆华, 杨竹森, 蒙义峰. 2007. 安徽铜陵冬瓜山铜矿床成矿流体特征及演化. 矿床地质, 26(2):204-212

    [118]

    陕亮, 郑有业, 许荣科, 曹亮, 张雨莲, 连永牢, 李闫华. 2009. 硫同位素示踪与热液成矿作用研究. 地质与资源, 18(3):197-203

    [119]

    唐永成, 吴言昌, 储国正, 邢凤鸣, 王永敏, 曹奋扬, 常印佛. 1998. 安徽沿江地区铜金多金属矿床地质. 北京:地质出版社, 1-351

    [120]

    王中刚, 于学元, 赵振华. 1989. 稀土元素地球化学. 北京:科学出版社, 1-535

    [121]

    吴才来, 周珣若, 黄许陈, 张成火, 黄文明. 1996. 铜陵地区中酸性侵入岩年代学研究. 岩石矿物学杂志, 15(4):299-306

    [122]

    徐德义, 成秋明, 王志敬. 2009. MVT型矿床中闪锌矿结晶的Liesegang环带模拟. 地球科学, 34(2):253-257

    [123]

    徐克勤, 朱金初. 2009. 我国东南部几个断裂拗陷带中沉积(或火山沉积)-热液叠加类铁铜矿床成因探讨. 见:徐克勤文集编辑委员会.徐克勤文集. 北京:科学出版社, 426-499

    [124]

    徐晓春, 陆三明, 谢巧勤, 柏林, 储国正. 2008a. 安徽铜陵狮子山矿田岩浆岩锆石SHRIMP定年及其成因意义. 地质学报, 82(4):500-509

    [125]

    徐晓春, 陆三明, 谢巧勤, 楼金伟, 褚平利. 2008b. 安徽铜陵冬瓜山铜金矿床流体包裹体微量元素地球化学特征及其地质意义. 岩石学报, 24(8):1865-1874

    [126]

    徐晓春, 尹滔, 楼金伟, 陆三明, 谢巧勤, 褚平利. 2010. 铜陵冬瓜山层控矽卡岩型铜金矿床的成因机制:硫同位素制约. 岩石学报, 26(9):2739-2750

    [127]

    徐兆文, 陆建军, 陆现彩, 高剑峰, 刘苏明, 罗庆春, 姜章平. 2000. 安徽省铜陵冬瓜山铜金矿床地质特征及成因. 矿物岩石地球化学通报, 19(4):233-234

    [128]

    徐兆文, 黄顺生, 倪培, 陆现彩, 陆建军, 方长泉, 华明, 蒋少涌. 2005. 铜陵冬瓜山铜矿成矿流体特征和演化. 地质论评, 51(1):36-41

    [129]

    徐兆文, 陆现彩, 高庚, 方长泉, 王云健, 杨小男, 蒋少涌, 陈帮国. 2007. 铜陵冬瓜山层状铜矿同位素地球化学及成矿机制研究. 地质论评, 53(1):44-51

    [130]

    杨进辉, 马红梅, 周新华, 冯本智. 2000. 山东蓬莱金矿黄铁矿成分环带的成因及成矿意义. 地质科学, 35(2):168-174

    [131]

    杨爽, 杜杨松, 曹毅, 张智宇, 刘绍锋. 2012. 安徽铜陵冬瓜山层控矽卡岩铜矿床形成过程——来自磁黄铁矿的证据. 现代地质, 26(1):54-60

    [132]

    曾普胜, 杨竹森, 蒙义峰, 裴荣富, 王彦斌, 王训诚, 徐文艺, 田世洪, 姚孝德. 2004. 安徽铜陵矿集区燕山期岩浆流体系统时空结构及成矿. 矿床地质, 23(3):298-309

    [133]

    曾普胜, 裴荣富, 侯增谦, 蒙义峰, 杨竹森, 田世洪, 徐文艺, 王训诚. 2005. 安徽铜陵矿集区冬瓜山矿床:一个叠加改造型铜矿. 地质学报, 79(1):106-113

    [134]

    翟裕生, 姚书振, 林新多, 林多新, 周珣若, 万天丰, 金福全, 周宗桂. 1992. 长江中下游地区铜(金)成矿规律. 北京:地质出版社, 1-235

    [135]

    周涛发, 张乐骏, 袁峰, 范裕, Cooke DR. 2010. 安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约. 地学前缘, 17(2):306-319

    [136]

    周涛发, 范裕, 袁峰, 钟国雄. 2012. 长江中下游成矿带地质与矿产研究进展. 岩石学报, 28(10):3051-3066

    [137]

    俎波, 薛春纪, 亚夏尔, 王庆飞, 梁华英, 赵毅, 刘铭涛. 2013. 云南香格里拉红山铜矿石硫化物环带及地质意义. 岩石学报, 29(4):1203-1213

  • 加载中
计量
  • 文章访问数:  7727
  • PDF下载数:  5459
  • 施引文献:  0
出版历程
收稿日期:  2014-07-27
修回日期:  2015-10-21
刊出日期:  2016-02-29

目录