江西大湖塘富钨花岗斑岩年代学、地球化学特征及成因研究

黄兰椿, 蒋少涌. 江西大湖塘富钨花岗斑岩年代学、地球化学特征及成因研究[J]. 岩石学报, 2013, 29(12): 4323-4335.
引用本文: 黄兰椿, 蒋少涌. 江西大湖塘富钨花岗斑岩年代学、地球化学特征及成因研究[J]. 岩石学报, 2013, 29(12): 4323-4335.
HUANG LanChun, JIANG ShaoYong. Geochronology, geochemistry and petrogenesis of the tungsten-bearing porphyritic granite in the Dahutang tungsten deposit, Jiangxi Province[J]. Acta Petrologica Sinica, 2013, 29(12): 4323-4335.
Citation: HUANG LanChun, JIANG ShaoYong. Geochronology, geochemistry and petrogenesis of the tungsten-bearing porphyritic granite in the Dahutang tungsten deposit, Jiangxi Province[J]. Acta Petrologica Sinica, 2013, 29(12): 4323-4335.

江西大湖塘富钨花岗斑岩年代学、地球化学特征及成因研究

  • 基金项目:

    本文受国家重点基础研究发展计划(2012CB416706)和十二五科技支撑项目(2011BAB04B03)联合资助

详细信息

Geochronology, geochemistry and petrogenesis of the tungsten-bearing porphyritic granite in the Dahutang tungsten deposit, Jiangxi Province

More Information
  • 在江西大湖塘地区发现具有高钨含量的花岗斑岩体,钨含量是普通花岗岩的几十甚至上百倍。本文对该富钨花岗斑岩进行了详细的锆石U-Pb年代学、主量元素、微量元素以及Nd-Hf同位素研究。LA-ICP-MS锆石U-Pb定年法测得大湖塘花岗斑岩成岩年龄为134.6±1.2Ma。岩相学和岩石地球化学研究表明这种花岗斑岩属于高分异的S型花岗岩,具有高硅,富碱,过铝质,较高的Ga/Al值,锆饱和温度低,轻重稀土分馏明显,Eu负异常明显的特点。大湖塘富钨花岗斑岩的εNd(t)值和锆石εHf(t)值分别变化于-7.45~-8.20,-2.43~-8.23之间,两阶段Nd 和Hf模式年龄分别为tDMC(Nd)=1534~1595Ma,tDMC(Hf)=1312~1677Ma。结合其CaO/Na2O值都小于0.3,本文认为它的源区很可能来源于双桥山群的泥质变质沉积岩。这种富钨花岗斑岩有富Li、Rb,贫Ba、Zr,ΣREE含量低,GCI值大于零的特征。Ba/Rb6可作为富钨花岗岩的判别标志而与贫钨的花岗岩区分开来。富钨的双桥山群泥质变质岩部分熔融可初步形成富钨的花岗岩浆,岩浆在高度结晶分异过程中则可使得钨进一步富集在花岗斑岩岩浆热液中并进一步形成了超大型的大湖塘钨矿床。
  • 加载中
  • [1]

    Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79

    [2]

    Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97(1-2): 1-29

    [3]

    Breiter K. 2012. Nearly contemporaneous evolution of the A-and S-type fractionated granites in the Krušné hory/Erzgebirge Mts., Central Europe. Lithos, 151: 105-121

    [4]

    Bureau of Geology and Mineral Resources of Jiangxi Province. 1984. Regional Geology of Jiangxi Province. Beijing: Geological Publishing House, 1-921 (in Chinese)

    [5]

    Candela PA and Bouton SL. 1990. The influence of oxygen fugacity on tungsten and molybdenum partitioning between silicate melts and ilmenite. Economic Geology, 85(3): 633-640

    [6]

    Champion DC and Bultitude RJ. 2013. The geochemical and Sr-Nd isotopic characteristics of Paleozoic fractionated S-types granites of North Queensland: Implications for S-type granite petrogenesis. Lithos, 162-163: 37-56

    [7]

    Chappell BW and White AJR. 1974. Two contrasting granite types. Pacific Geology, 8(2): 173-174

    [8]

    Chappell BW and White AJR. 1992. I-and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2): 1-26

    [9]

    Chappell BW. 1999. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551

    [10]

    Chen JF and Jahn BM. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284(1-2): 101-133

    [11]

    Clemens JD. 2003. S-type granitic magmas-petrogenetic issues, models and evidence. Earth-Science Reviews, 61(1-2): 1-18

    [12]

    El Bouseily AM and El Sokkary AA. 1975. The relation between Rb, Ba and Sr in granitic rocks. Chemical Geology, 16(3): 207-219

    [13]

    Ertel W, O'Neill HStC, Dingwell DB and Spettel B. 1996. Solubility of tungsten in a haplobasaltic melt as a function of temperature and oxygen fugacity. Geochimica et Cosmochimica Acta, 60(7): 1171-1180

    [14]

    Feng CY, Zhang DQ, Xiang XK, Li DX, Qu HY, Liu JN and Xiao Y. 2012. Re-Os isotopic dating of molybdenite from the Dahutang tungsten deposit in northwestern Jiangxi Province and its geological implication. Acta Petrologica Sinica, 28(12): 3858-3868 (in Chinese with English abstract)

    [15]

    Fogliata AS, Rubinstein N, ávila JC and Báez FM. 2010. Depósitos de greisen asociados a granitos carboníferos post-orogénicos con potencial mineralizador, Sierra de Fiambalá, Catamarca, Argentina. Boletín Geológicoy Minero, 119(4): 509-524

    [16]

    Fogliata AS, Báez MA, Hagemann SG, Santos JO and Sardi F. 2012. Post-orogenic, Carboniferous granite-hosted Sn-W mineralization in the Sierras Pampeanas Orogen, Northwestern Argentina. Ore Geology Reviews, 45: 16-32

    [17]

    Gao JF, Lu JJ, Lan MY, Lin YP and Pu W. 2003. Analysis of trace elements in rock samples using HR-ICP-MS. Journal of Nanjing University (Natural Science), 39(6): 844-850 (in Chinese with English abstract)

    [18]

    Haggerty SE. 1976. Opaque mineral oxides in terrestrial igneous rocks. In: Rumble D Ⅲ (ed.). Oxide Minerals, Mineralogical Society of America, Washington, D.C., 3: 101-301

    [19]

    He ZY, Xu XS, Zou HB, Wang XD and Yu Y. 2010. Geochronology, petrogenesis and metallogeny of Piaotang granitoids in the tungsten deposit region of South China. Geochemical Journal, 44(4): 299-313

    [20]

    Huang LC and Jiang SY. 2012. Zircon U-Pb geochronology, geochemistry and petrogenesis of the porphyric-like muscovite granite in the Dahutang tungsten deposit, Jiangxi Province. Acta Petrologica Sinica, 28(12): 3887-3900 (in Chinese with English abstract)

    [21]

    Irber W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta, 63(3-4): 489-508

    [22]

    Ishihara S. 1977. The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27(145): 293-305

    [23]

    Jackson SE, Pearson NJ, Griffin WL and Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47-69

    [24]

    Kalsbeek F, Jepsen HF and Nutman AP. 2001. From source migmatites to plutons: Tracking the origin of ca. 435Ma S-type granites in the East Greenland Caledonian orogen. Lithos, 57(1): 1-21

    [25]

    Kempe U and Wolf D. 2006. Anomalously high Sc contents in ore minerals from Sn-W deposits: Possible economic significance and genetic implications. Ore Geology Reviews, 28(1): 103-122

    [26]

    Koester E, Pawley AR, Fernandes LAD, Porcher CC and Soliani E. 2002. Experimental melting of cordierite gneiss and the petrogenesis of syntranscurrent peraluminous granites in southern Brazil. Journal of Petrology, 43(8): 1595-1616

    [27]

    Landenberger B and Collins WJ. 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust: Evidence from the Chaelundi Complex, Eastern Australia. Journal of Petrology, 37(1): 145-170

    [28]

    Li XH. 1996. Nd isotopic evolution of sediments from the southern margin of the Yangtze Block and its tectonic significance. Acta Petrologica Sinica, 12(3): 359-369 (in Chinese with English abstract)

    [29]

    Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei GJ and Qi CS. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? Lithos, 96(1-2): 186-204

    [30]

    Liew TC and Hofmann AW. 1988. Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Indications from a Nd and Sr isotopic study. Contributions to Mineralogy and Petrology, 98(2): 129-138

    [31]

    Lin L, Zhan GL and Yu XP. 2006a. Geological characteristics and ore-search prospect of Dahutang tungsten (tin) orefield in Jiangxi. Resources Survey & Environment, 27(1): 25-28 (in Chinese with English abstract)

    [32]

    Lin L, Yu ZZ, Luo XH and Ding SH. 2006b. The metallogenic prognosis of Dahutang tungsten ore field in Jiangxi. Journal of East China Institute of Technology, (S1): 139-142 (in Chinese with English abstract)

    [33]

    Ling HF, Shen WZ, Zhang BT, Liu JS, Yang JD and Tao XC. 1992. Nd isotopic composition and material source of pre-and post-Sinian sedimentary rocks in Xiushui area, Jiangxi Province. Chinese Journal of Geochemistry, 11(1): 80-87

    [34]

    Linnen RL. 2005. The effect of water on accessory phase solubility in subaluminous and peralkaline granitic melts. Lithos, 80(1-4): 267-280

    [35]

    Liu YJ, Li ZL and Ma DS. 1982. The geochemical studies of tungsten built in South China. Science in China (Series B), (10): 939-950 (in Chinese)

    [36]

    Ludwig KR. 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Kenneth R. Ludwig, 70

    [37]

    Ma CX and Xiang XK. 1993. Preliminary study of the Nd isotopic model ages of the precambrian metamorphic stratum in northeastern Jiangxi Province. Scientia Geologica Sinica, 28(2): 145-150 (in Chinese with English abstract)

    [38]

    Mao ZH, Cheng YB, Liu JJ, Yuan SD, Wu SH, Xiang XK and Luo XH. 2013. Geology and molybdenite Re-Os age of the Dahutang granite-related veinlets-disseminated tungsten ore field in the Jiangxin Province, China. Ore Geology Reviews, 53: 422-433

    [39]

    Maulana A, Watanabe K, Imai A and Yonezu K. 2013. Origin of magnetite-and ilmenite-series granitic rocks in Sulawesi, Indonesia: Magma genesis and regional metallogenic constraint. Procedia Earth and Planetary Science, 6: 50-57

    [40]

    McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253

    [41]

    Miller CF, McDowell SM and Mapes RW. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529-532

    [42]

    Olade MA. 1980. Geochemical characteristics of tin-bearing and tin-barren granites, northern Nigeria. Economic Geology, 75(1): 71-82

    [43]

    Patchett PJ, White WM, Feldmann H, Kielinczuk S and Hofmann AW. 1984. Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth's mantle. Earth and Planetary Science Letters, 69(2): 365-378

    [44]

    Pu W, Gao JF, Zhao KD, Ling HF and Jiang SY. 2005. Separation method of Rb-Sr, Sm-Nd using DCTA and HIBA. Journal of Nanjing University (Natural Sciences), 41(4): 445-450 (in Chinese with English abstract)

    [45]

    Robb L. 2005. Introduction to Ore-Forming Processes. Oxford, UK: Blackwell Publishing Company, 1-386

    [46]

    Rudnick RL and Gao S. 2004. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64

    [47]

    Shu XJ, Wang XL, Sun T, Xu XS and Dai MN. 2011. Trace elements, U-Pb ages and Hf isotopes of zircons from Mesozoic granites in the western Nanling Range, South China: Implications for petrogenesis and W-Sn mineralization. Lithos, 127(3-4): 468-482

    [48]

    Srivastava PK and Sinha AK. 1997. Geochemical characterization of tungsten-bearing granites from Rajasthan, India. Journal of Geochemical Exploration, 60(2): 173-184

    [49]

    Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29-44

    [50]

    Taylor RP, Strong DF and Fryer BJ. 1981. Volatile control of contrasting trace element distributions in peralkaline granitic and volcanic rocks. Contributions to Mineralogy and Petrology, 77(3): 267-271

    [51]

    Teixeira RJS, Neiva AMR, Gomes MEP, Corfu F, Cuesta A and Croudace I. 2012. The role of fractional crystallization in the genesis of early syn-D3, tin-mineralized Variscan two-mica granites from the Carrazeda de Ansies area, northern Portugal. Lithos, 153: 177-191

    [52]

    Turekian KK and Wedepohl KH. 1961. Distribution of the elements in some major units of the earth's crust. Geological Society of America Bulletin, 72(2): 175-192

    [53]

    Van Achterbergh E, Ryan CG, Jackson SE and Griffin WL. 2001. Data reduction software for LA-ICP-MS. Laser-Ablation-ICPMS in the earth sciences: Principles and applications. Mineralogical Association of Canadian (Short Course Series), 29: 239-243

    [54]

    Vervoort JD and Blichert-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63(3-4): 533-556

    [55]

    Wade J, Wood BJ and Norris CA. 2013. The oxidation state of tungsten in silicate melt at high pressures and temperatures. Chemical Geology, 335: 189-193

    [56]

    Wang DZ, Liu CS, Shen WZ and Chen FR. 1994. S-type volcanic complexes in south China and metallogenesis. Journal of Nanjing University (Natural Sciences Edition), 30(2): 321-332 (in Chinese with English abstract)

    [57]

    Watson EB and Harrison TM. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295-304

    [58]

    Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419

    [59]

    Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC and Sun DY. 2003. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis. Lithos, 66(3-4): 241-273

    [60]

    Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126

    [61]

    Wu YB and Zheng YF. 2004. The genesis of zircon and the constraints on the interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese)

    [62]

    Xie L, Wang RC, Chen J, Zhu JC, Zhang WL, Wang DZ and Yu AP. 2009. Primary Sn-rich titianite in the Qitianling granite, Hunan Province, southern China: An important type of tin-bearing mineral and its implications for tin exploration. Chinese Science Bulletin, 54(5): 798-805

    [63]

    Yan MC and Chi QH. 1997. The Chemical Compositions of the Continental Crust and Rocks in the Eastern part of China. Beijing: Science Press, 1-291 (in Chinese)

    [64]

    Zhang HY, Sun DZ, Zhu BQ and Tu XL. 2000. Pb, Nd isotopic study of Proterozoic metamorphic sediments in North Jiangxi and its tectonic significance. Regional Geology of China, 19(1): 66-71 (in Chinese with English abstract)

    [65]

    Zhong YF, Ma CQ, She ZB, Lin GC, Jin XH, Wang RJ, Yang QG and Liu Q. 2005. SHRIMP U-Pb zircon geochronology of the Jiuling granitic complex batholith in Jiangxi Province. Earth Science, 30(6): 685-691 (in Chinese with English abstract)

    [66]

    Zhou J. 2013. Geology and geochemistry of tungsten-bearing granites in the eastern Jiangnan orogen belt. Ph. D. Dissertation. Nanjing: Nanjing University, 1-107 (in Chinese with English summary)

    [67]

    附中文参考文献

    [68]

    丰成友, 张德全, 项新葵, 李大新, 瞿泓滢, 刘建楠, 肖晔. 2012. 赣西北大湖塘钨矿床辉钼矿Re-Os同位素定年及其意义. 岩石学报, 28(12): 3858-3868

    [69]

    高剑峰, 陆建军, 赖鸣远, 林雨萍, 濮巍. 2003. 岩石样品中微量元素的高分辨率等离子质谱分析. 南京大学学报(自然科学版), 39(6): 844-850

    [70]

    黄兰椿, 蒋少涌. 2012. 江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究. 岩石学报, 28(12): 3887-3900

    [71]

    江西省地质矿产局. 1984. 江西省区域地质志. 北京: 地质出版社, 1-921

    [72]

    李献华. 1996. 扬子南缘沉积岩的Nd同位素演化及其大地构造意义. 岩石学报, 12(3): 359-369

    [73]

    林黎, 占岗乐, 喻晓平. 2006a. 江西大湖塘钨(锡)矿田地质特征及远景分析. 资源调查与环境, 27(1): 25-28

    [74]

    林黎, 余忠珍, 罗小洪, 丁少辉. 2006b. 江西大湖塘钨矿田成矿预测. 东华理工学院学报, (增刊): 139-142

    [75]

    刘英俊, 李兆麟, 马东升. 1982. 华南含钨建造的地球化学研究. 中国科学(B辑), (10): 939-950

    [76]

    马长信, 项新葵. 1993. 赣东北前寒武纪变质地层钕模式年龄初步研究. 地质科学, 28(2): 145-150

    [77]

    濮巍, 高剑峰, 赵葵东, 凌洪飞, 蒋少涌. 2005. 利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd的方法. 南京大学学报(自然科学版), 41(4): 445-450

    [78]

    王德滋, 刘昌实, 沈渭洲, 陈繁荣. 1994. 华南S型火山杂岩与成矿. 南京大学学报(自然科学版), 30(2): 321-332

    [79]

    吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604

    [80]

    鄢明才, 迟清华. 1997. 中国东部地壳与岩石的化学组成. 北京: 科学出版社, 1-291

    [81]

    张海祥, 孙大中, 朱炳泉, 涂湘林. 2000. 赣北元古代变质沉积岩的铅钕同位素特征. 中国区域地质, 19(1): 66-71

    [82]

    钟玉芳, 马昌前, 佘振兵, 林广春, 续海金, 王人镜, 杨坤光, 刘强. 2005. 江西九岭花岗岩类复式岩基锆石SHRIMP U-Pb年代学. 地球科学, 30(6): 685-691

    [83]

    周洁. 2013. 江南造山带东段含钨花岗岩地质地球化学研究. 博士学位论文.南京: 南京大学, 1-107

  • 加载中
计量
  • 文章访问数:  8508
  • PDF下载数:  9155
  • 施引文献:  0
出版历程
收稿日期:  2013-08-01
修回日期:  2013-11-02
刊出日期:  2013-12-31

目录