CCSD主孔揭示的东海超高压榴辉岩中的金红石:微量元素地球化学及其成矿意义

王汝成 王硕 邱检生 倪培. CCSD主孔揭示的东海超高压榴辉岩中的金红石:微量元素地球化学及其成矿意义[J]. 岩石学报, 2005, 21(2): 465-474.
引用本文: 王汝成 王硕 邱检生 倪培. CCSD主孔揭示的东海超高压榴辉岩中的金红石:微量元素地球化学及其成矿意义[J]. 岩石学报, 2005, 21(2): 465-474.
WANG RuCheng,WANG Shuo,QIU JianSheng and NI Pei State Key Laboratory for Mineral Deposits Research,Department of Earth Sciences,Nanjing University,Nanjing 210093,China. Rutile in the UHP eclogites from the CCSD main drillhole (Donghai, eastern China): Trace-element geochemistry and metallogenetic implications[J]. Acta Petrologica Sinica, 2005, 21(2): 465-474.
Citation: WANG RuCheng,WANG Shuo,QIU JianSheng and NI Pei State Key Laboratory for Mineral Deposits Research,Department of Earth Sciences,Nanjing University,Nanjing 210093,China. Rutile in the UHP eclogites from the CCSD main drillhole (Donghai, eastern China): Trace-element geochemistry and metallogenetic implications[J]. Acta Petrologica Sinica, 2005, 21(2): 465-474.

CCSD主孔揭示的东海超高压榴辉岩中的金红石:微量元素地球化学及其成矿意义

  • 基金项目:

    国家重点基础研究发展规划项目(2003CB716507)国家自然科学基金优秀创新群体项目(40221301)“中国大陆科学钻探工程”国家杰出青年基金(40025209)的联合资助成果

Rutile in the UHP eclogites from the CCSD main drillhole (Donghai, eastern China): Trace-element geochemistry and metallogenetic implications

  • 金红石是榴辉岩中的主要含钛副矿物。中国大陆科学钻探工程主孔100-2000m岩心样品中,金红石榴辉岩、多硅白云母榴辉岩和蓝晶石榴辉岩中都程度不等地含有金红石。金红石既可以与其它矿物一起包裹在主要变质矿物中,也可以呈粒间矿物,但在榴辉岩经受角闪岩相退变质作用过程中,金红石亦会退变为榍石。本文利用电子探针除了分析了金红石的主要元素外,还仔细测量了Nb、Cr、Zr含量。结果显示,Nb平均含量为147ppm,最高含量为670ppm,Cr的平均含量为614ppm,最高含量为3630ppm,低Nb特征(<1000ppm)显示榴辉岩原岩为镁铁质岩石;此外,三类榴辉岩也具有不同的金红石Nb、Cr地球化学特征,即金红石榴辉岩中的金红石表现为低Cr(<500ppm)、Nb变化大(0-670ppm)的特征,多硅白云母榴辉岩中的金红石以中等Cr含量(500-1200ppm)、Nb变化较大(0-480ppm)为特征,而蓝晶石榴辉岩中的金红石显著富Cr(2000-3630ppm),而Nb则非常贫乏(<140ppm)。在总共289个金红石Zr含量数据中,大部分Zr含量分布在150-240ppm之间,均值约为200ppm;利用Zacketal.(2004)提出的金红石温度计,计算得到金红石的形成温度介于690℃和7870℃之间。研究结果表明,金红石的微量元素分析是研究榴辉岩原岩特征及其钛成矿作用的实用方法之一。
  • 加载中
  • [1]

    张泽明 许志琴 刘福来 游振东 沈昆 杨经绥 李天福 陈世忠.中国大陆科学钻探工程主孔(100~2050m)榴辉岩岩石化学研究[J].岩石学报,2004,20(1):27-42,.

    [2]

    Carswell D A, Wilson R N, Zhai M G. 1996. Ultra-high pressure aluminous titanites in carbonate-bearing eclogites at Shuanghe in Dabieshan, central China. Mineralogical Magazine, 60:361 -371.

    [3]

    Enami M, Suzuki K, Liou J G, Bird D K. 1993. Al-Fe3 and F-OH substitutions in titanite and constraints on their P-T dependence.European Journal of Mineralogy, 5:219 -231.

    [4]

    Fialin M, Remy H, Richard C, Wagner C. 1999. Trace element analysis with the electron microprobe: new data and perspectives. American Mineralogist, 84:70 -77.

    [5]

    Huang J P, Ma D S, Liu C, Wang H. 2002. Rutile deposit in eclogite of ultra-high pressure metamorphic belt in the Northeast of Jiangsu Province and ore genesis. Journal of Nanjing University (Natural Sciences), 38:512-524.

    [6]

    Kretz R. 1983. Symbols for rock-forming minerals. American Mineralogist, 68:277 -279.

    [7]

    Liu F L, Xu Z Q, Katayama I, Yang J S, Maruyama S, Liou J G. 2001. Mineral inclusions in zircons of para- and orthogneiss from pre-pilot drillhole CCSD-PP1, Chinese Continental Scientific Drilling Project.Lithos, 59: 199 -215.

    [8]

    Liu F L, Xu Z Q, Liou J G, Katayama I, Masago H, Maruyama S, Yang J S. 2002. Ultrahigh-pressure mineral inclusions in zircons from gneissic core samples of the Chinese Continental Scientific Drilling site in eastern China. European Journal of Mineralogy, 14, 499 -512.

    [9]

    Oberti R, Smith D C, Rossi G, Caucia F. 1991. The crystal-chemistry of high-aluminous titanites. European Journal of Mineralogy, 3,777 -792.

    [10]

    Rudnick R L, Ingo Horn M B, McDonough W F. 2000. Rutile-bearing refractory eologites: missing link between continents and depleted mantle. Science, 287:278-281.

    [11]

    Xu J, Chen Y C, Wang D H, Yu J J, Li C J, Fu X J, Chen Z Y. 2004. Titanium mineralization in ultrahigh-pressure metamorphic rocks from Chinese Continental Scientific Drilling 100~2000m main hole.Acta Petrologica Sinica, 20:119 - 126.

    [12]

    Xu Z Q. 2004. The scientific goals and investigation progresses of the Chinese Continental Scientific Drilling Project. Acta Petrologica Sinica, 20: 1 - 8.

    [13]

    Zack T, Kronz A, Foley S F, Rivers T. 2002. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology 184: 97-122.

    [14]

    Zack T, Moraes R, Kronz A. 2004. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib Mineral Petrol (2004) 148: 471 -488.

    [15]

    Zhang R Y, Hirajima T, Banno S, Cong B L, Liou J G. 1995. Petrology of ultrahigh-pressure rocks from the southern Su-Lu region, eastern China. Journal of Metamorphic Geology, 13, 659 -675.

    [16]

    Zhang Z M, Xu Z Q, Xu H F. 2000. Petrology of ultrahigh-pressure eclogites from the ZK703 drillhole in the Donghai, eastern China.Lithos, 52:35 -50.

    [17]

    Zhang Z M, Xu Z Q, Liu F L, You Z D, Shen K, Yang J S, Li T F,Chen S Z. 2004. Geochemistry of eclogites from the main hole (100~2050m) of the Chinese Continental Scientific Drilling Project.Acta Petrologica Sinica, 20:27 -42.

  • 加载中
计量
  • 文章访问数:  8105
  • PDF下载数:  5554
  • 施引文献:  0
出版历程
修回日期:  2005-01-16
刊出日期:  2005-03-31

目录