铜矿、含钒水云母和硫钒铜矿等等)的形式存在。

矿床的工业意义

现有资料说明, €,含矿黑色岩系在两湖、两广、江西、浙江、云南、陕西、河南和北方的一些省区均有不同程度分布,而且层位相当稳定。其中有用组分的局部富集,构成有工业价值的矿床。已知由不同岩石类型转变为不同矿石类型的有:含矿炭质-硅质岩、各种含矿炭质板岩、含矿泥质岩(有时夹磷结核)、含矿钙质-炭质结核的磷块岩等等。

这类矿床除主要含 Ni(0.35~3.92%)、

 $V_2O_5(0.2\sim2.5\%)$ 和 $Mo(0.2\sim0.88\%)$ 外,还常伴生有一定数量的稀有、有色和贵金属以及放射性元素。

以硫砷化物和其他独立矿物存在的元素(如 Ni、Mo、Cu、Pb、Zn等),可采用浮选与重选相结合的流程加以选别,以类质同象存在的元素(如 V),可用湿法冶金回收,以吸附状态存在的元素(U、Th),则可采用离子交换法提取。

此外,含矿岩系底部的磷块岩分布相当 广泛,其中硫、磷富集程度较高,有些地区 有工业价值。

(参考文献从略)

海相火山岩型铁铜矿床黄铁矿中Co/Ni比值 特 征 及 其 地 质 意 义

王亚芬

在深入研究矿床地质和矿化特征的基础上,查明黄铁矿中 Co、Ni 的分布特点可为研究矿床成因和成矿作用提供重要信息。本文收集7个与古海底火山活动有关的铁铜矿床黄铁矿中 Co、Ni 含量资料(表1),并计算了Co/Ni比值、平均值及Co/Ni 比值的均方差(表2)。

从表1、表2可得出以下几点:

- 1. 所列矿床单个黄铁矿样品的Co/Ni比值绝大部分大于1,仅个别小于1,但平均值均大于1。
- 2.在同一矿床范围内, 黄铁矿中Co、Ni 含量及Co/Ni比值变化范围虽然很大, 但仍集中于某一区间。
- **3.**不同矿床黄矿床中Co/Ni 的平均值变化在1.93~11.35之间。
- 4.Co/Ni 比值及均方差之间有这样一种 趋势,即Co/Ni的平均值越大,其均方差也 越大,反之亦然。
- 5.根据黄铁矿中Co/Ni比的平均值及其均方差可将所列矿床分为两组。第一组 Co/Ni比的平均值为5.35~17.35,均方差4.0~11.6,第二组Co/Ni平均值为1.93~2.57,

均方差为0.4~1.5。

6.变质作用使黄铁矿中Co/Ni 比值发生 很大变化,变质深的,Co/Ni 平均值相对较 高。

现对上述矿床黄铁矿中Co、Ni分布特征简要讨论如下:

1.前人指出:内生成矿过程中形成的黄 铁矿,其Co/Ni比值大于1,而沉积成矿过 程中形成的黄铁矿,其Co/Ni比值则小于1, 看来这个认识是不全面的, 需要修正。根据 现有资料,笔者认为黄铁矿中Co/Ni比值, 特别是它们的平均值>1或<1,主要反映成 矿物质的来源, 而不一定反映成矿过程的特 点。例如,按铁铜矿床与古海底火山作用的 关系,我们可以区分以下三种情况:①成矿 物质的来源与古海底火山活动有关, 同时矿 化富集又受古海底火山活动及其火山机构控 制,因而矿床在空间、时间和成因上均与古 海底火山活动有着极为密切的关系, ②尺矿 物质的来源虽然与古海底火山活动有关,但 矿化富集主要受古地理、古气候和古构造等 因素控制: ③成矿物质来源于古陆剥蚀区, 同时矿化富集又严格受岩相 古 地 理 条件控

床	样品号	Co (ppm)	Ni (ppm)	Co/Ni	矿床	样品号	Co (ppm)	Ni (ppm)	Co/Ni
	1	400	130	30,8	白	37	30	10	3.0
	2	790	150	5.2	银	38	30	10	3.0
于	3	1200	150	8,0		39	65	10	6.5
家	4	4600	400	11.5	黄	40	260	74	3.5
鎥	5	3600	200	18.0	侠	41	85	37	2.3
盤子钻	6	2800	120	23 3	29"	42	560	190	2.9
97) 853	7	2900	150	19.0	型	43	190	150	1.3
钢铁矿床	8	3600	200	18.0	例	44	65	10	6.5
15X:	9	260	50	5.2	79°	45	81	150	0.5
19/ 13=	10	4900	200	24.5	床	46	240	10	24.0
<i>M</i>	11	5200	120	43.3			i		
	12	180	130	1.4	大红	47	220	83	2,7
玅.	13	6100	50 0	12.2	114	48	5000		
拉拉厂钢	14	3700	2500	1.5	铜	40	5000	5800	0.9
厂	15	6100	1200	5.1	1 7 1	49	15 10	370	4.1
锕	16	5600	300	18.7	床	4.5	1910	370	4.1
存	17	110 0	200	5.5				/	
床	18	6000	8000	7.5	刘	50	60	26û	0.2
	19	640	80	8.0	山岩铜	51	200	300	0.7
撤	20	730	100	7.3 1.9 2.3	铜	52	220	60	2.8
尔	21	2 100	1100	1.9	床	11/			-
塔	22	2200	970	2.3	床	53	400	100	4.0
	23	1600	310	5.2					
拉	24	1900	230	8.3	类	54	400	000	
火	25	570	50	11.40	英阳	54	400	220	1,8
ជា	26	410	90	4.6	关铁矿	55	130	70	2.6
<u>~</u>	27	1100	130	8.5	铁		100	10	2.0
	28	1000	370	$\frac{2.7}{4}$	79	56	290	110	2.2
液	29 30	6100 1900	2500 180	2.4 10.5	床		230	110	2.2
型	31	£50	290	10.9	ii .				
铁	32	6800	2700	2.3 2.5					
W.	33	2800	200	14.0				i	
	34	410	110	3.7	(1 }				
床	35	1100	90	12.7	i i				
ļ	36	1700	310	5.5	ļ ļ		i	1	

若干海相火山岩铁铜矿床黄铁矿中Co、Ni含量变化及其数值特征表

表 2

矿床名称	样品个数	Co含量(ppm)		Ni含量(ppm)				Co/Ni			
		变化范围	平均	变化范围	平均	变化范围	平均含 量	均方差	矿体赋存岩性	矿床成因类型	
于家堡子钴、 铜、铁矿床	12	5200~180	2836	400~50	167	43.3~1.4	17.35	11,6	中酸性凝灰岩	变质火山气液 混合 岩化作用富集成矿	
拉拉厂铜矿床	6	6100~1100	4767	250 0~2 00	9 17	18.7~1.5	8.42	5.6	同上	火山气液型铜矿床	
谢尔塔拉铁矿 床	18	6806~410	1873	2700~50	545	14~1.9	6.28	4.0	透辉石石榴石 夕卡岩		
白银厂黄铁矿 型镧矿床	10	560~30	1 6 1	190~10	65	24~0.5	5.35	6.5	酸性凝灰岩	火山气液型黄 铁矿 型铜矿床	
大红山铜矿床	3	5600~220	2243	5800~83	2084	4.1~0.9	2.57	1,3	中基性凝灰岩 夹副岩系		
刘山岩黄铁矿 型铜矿床	4	460~60	220	300~80	185	4~0.7	1,93	1.5	酸性凝灰岩	与次火山岩有关的 热液充填矿床(也有认 为是火山沉积矿床)	
英阳关铁矿床	8	400~180	290	220~70	133	2.6~1.8	2.33	0.4	中基性沉凝灰 岩一凝灰质沉 积岩		

制。对于上述前两种情况,其黄铁矿中 Co/Ni 比的平均值均大于1(表2),而后一种情况,根据前人资料,其黄铁矿中 Co/Ni平均值则小于1。因此不能笼统地说在沉积成矿过程中形成的黄铁矿的 Co/Ni 平均值必定

小于1,而只能说成矿物质来源于古陆剥蚀区,并且是在沉积成矿过程中所形成的黄铁矿中Co/Ni平均值小于1。

2.如上所述,表2所列7个矿床,按黄铁矿中Co/Ni比值及其均方差可将其分为两

组。于家堡子、拉拉厂、谢尔塔拉、白银厂 等属于第一组,大红山、刘山岩、英阳关等 属于第二组。前一组矿床在空间、时间上和成 因上均与古海底火山活动密切相关, 矿床的 产出位置严格受古火山机构控制, 矿体呈透 镜状和似层状赋存在基性一酸性火山熔岩和 凝灰岩中。该组矿床主要是在火山喷气或火 山热液作用过程中形成的, 属火山气热型矿 床。后一组矿床产于中基性一酸性凝灰岩、 沉凝灰岩和凝灰质沉积岩中, 矿体呈层状、 似层状和脉状, 成矿物质来源虽然与古海底 火山活动有关, 但矿化富集又主要受岩相古 地理、古气候和古构造等因素控制。因而在矿 床成因类型上属海相火山沉积矿床或后期热 液改造矿床。根据上述情况,我们可以判断 在黄铁矿Co/Ni 平均值大于1 的这一组矿床 中,成矿过程的特点以及控制因素的差别, 是Co/Ni比的平均值及其均方差变化大的主

要原因。我们也可以利用黄铁矿中Co/Ni平 均值及其均方差数值特征, 作为进一步划分 与古海底火山作用有关的铁铜矿床类型的重 要标志。值得注意的是, 当原生火山气液型 矿床的成矿物质在后期地质作用下,被活化 转移,并在适宜的地质条件下再富生成矿时, 其黄铁矿中的Co/Ni 平均值及其均方差都比 原生矿床黄铁矿中的相应数值大大降低。如 意大利的南托 斯卡尼(Tuscany)地区的 黄铁矿有两类, 第一类矿床是在古生代海底 火山喷气过程中形成的块状黄铁矿矿床, 第 二类矿床是在中上新世,由后期热液对前类 矿床的局部活化转移的基础上形成的。前者 Co/Ni 平均值为12~22,均方差7.1~10.9, 后者Co/Ni 平均值为1.3~4。7,均方差0.7 ~1.9。因此对后者不能划为火山沉积,而 应属后期热液改造型矿床。我国刘山岩含铜 黄铁矿型铜矿床可能就属此种情况。

页岩中铅锌矿床的成因

麦花麦根、沙利文、霍华兹帕斯和麦 克阿瑟河等大型页岩中的层 控 Pb-Zn-(Cu-Ba)矿床,以及世界许 多地区类似但较小的矿化。在成因方 面已引起相当大的争论。这些矿床基 本上由碳质和钙质页岩中的"Fe-Pb -Zn硫化物组成,并常与Ba和 Ca的 硫酸盐有关。与火山作用没有任何直 接的联系, 但是在空间和时间上可能 与火山岩或浅成岩接近。所有的矿床 完好地保存明显的沉积 符 征, 并与 容矿地层完全整合和互层。仅有沙利 文矿床的下面有明显的蚀变带, 尽管 局部有裂隙的下盘和有限的上盘蚀变 现象并非罕见。在大多数矿床中有过 大量的生物活动。这一点已为异养生 物化石、高含量的有机碳或S 和 C的 同位素比值研究所证实。

这类矿床经常被视为同生矿床,

至于它们是否由附近逸 散 到 断裂带的流体、远缘 的 火山喷气溶液 较 克 直接从海水中沉淀则还有争论。 较大 的 意见从海水 可以 这类矿 尿 是 一 成岩 后 成 可 是 之上的。 无论是同生的还是 居 成 方 成 成 方 在 成 可 流 体 的 性 质 和 成 因 方 同 世 不 成 进 一 步 如 海 水 、 党 该 水 和 原 生 岩 浆 水 等。

J.P.N.巴德姆研究 这 种页岩中的层控铅锌矿床的地质、构造特征,探讨了其成因机制,并提出这种类型矿床的模式。 他指出,与硬氧化合物有关的建造水是Fe—Pb—Zn—(Ba—Cu)潜在的矿液。这 种 水溶液在埋敷期间变热、酸度和盐度变高时速过淋滤地层面获得其溶质。 通常,或种流体或者呈分散状态,或者形成碳

> 余传菁摘译自《Applied earth scienece (Section B) > vol.90, May 1981,