Contributions to Geology and Mineral Resources Research

 $doi: 10.\,6053/j.\,issn.\,1001-1412.\,2014.\,02.\,023$

黑龙江争光金矿水文地质特征浅析

徐庆华

(辽宁省冶金地质勘查局四〇二队,辽宁 鞍山 114001)

摘要: 争光金矿床是黑龙江省近年来在其西北部地区发现的一个中(大)型的热液-构造蚀变岩 型金矿床。文章论述了争光金矿床岩石赋水特征及其地下水补径排条件,认为采用"大井"法计算 露采场基岩裂隙水水量是适宜的,其水文地质参数确定合理。

关键词: 争光金矿床,含水岩组划分;地下水动态;"大井"法计算;参数选择;黑龙江 中图分类号: P641.4,P618.51 文献标识码: A

0 引言

争光金矿床位于黑龙江省黑河市境内,三矿 沟一多宝山一铜山一争光 NW 向铜金多金属成矿 带的东南部,是黑龙江省近年来在西北部地区新发 现的一个中(大)型岩金矿床。区域出露地层为奥陶 系、志留系、泥盆系,以及少量的石炭系、二叠-三叠 系、下白垩统等。侵入岩分布有加里东期辉石橄榄 石、蛇纹岩,华力西中晚期花岗闪长岩、花岗闪长斑 岩、斜长花岗岩,燕山早期花岗闪长岩、石英闪长岩、 闪长岩。区内铜、钼、铅、锌、金矿产大多赋存于中奥 陶统多宝山组地层中,而且多宝山、铜山铜矿床与华 力西中期花岗闪长岩、花岗闪长斑岩有关,三矿沟铜 铁矿床与燕山早期花岗岩有关,争光金矿床与燕山 早期闪长岩、闪长玢岩关系极为密切。

争光金矿床产于中奥陶统多宝山组中性火山岩 和早燕山期中酸性侵入体中,受NWW、NNW向断 裂构造带控制,矿体呈脉状,具有膨缩和尖灭再现特 点。中奥陶统多宝山组中性火山岩为金矿之矿源 层,早燕山期中酸性侵入岩为金矿的形成提供了热 源,断裂构造为含金热液的流动与迁移提供了通道。 金矿矿床成因为热液-构造蚀变岩型^[1]。本文将对 争光金矿床的水文地质特征作初步浅析。

1 区域水文地质概况

1.1 自然地理

争光金矿区位于黑河市西部,行政区划属黑河 市爱辉区罕达汽镇。

金矿区地势属低山丘陵区,地势较平缓,沟谷不 发育。矿区海拔350~570 m,相对高差30~70 m; 山顶形状为近圆形、椭圆形,植被较发育。

区内水系不甚发育,主要为东部的裸河,距矿床 约3km,由北流向东南入泥鳅河(区外)。裸河在矿 区以上流域面积107.47km²,流量12355.2m³/d (2006-09-30),径流深156.1mm。西部的争光西 沟为小溪,水流向由北北西→南南东,流量不详。

区内多年的平均降水量为483.18 mm,其中山 区470~500 mm,丘陵地带400~460 mm,低平原 300~400 mm,具有山区大于平原的显著特点。降 水量年际变化较大,最大年降水量达866 mm (1998),最小年降水量不足200 mm。降水量年内 分布不均匀,主要集中在7~9月,占年降水量的 70%左右;年降水量有减少的趋势。多年的平均日 最大降水量为49.12 mm。

区内蒸发量与降水量的分布相反,由平原向山 区递减。多年平均蒸发量1300~1700 mm,蒸发

收稿日期: 2014-02-12; 改回日期: 2014-03-21; 责任编辑: 王传泰

作者简介: 徐庆华(1965-),男,高级工程师,长期从事矿产地质勘查及研究工作。通信地址:辽宁省鞍山市铁东区五一路 60 号,辽宁省 冶金地质勘查局四〇二队;邮政编码:114001;E-mail:xuqinghua0218@163.com

量年际、年内变化均较大,其中 4~6 月蒸发量最大, 可占全年的 50%左右,11 月份、3 月份的蒸发量小, 仅为全年的 10%。

区内年无霜期 120~150 d,最大冻土厚度 2.0 ~2.9 m,冻土期 5 个月以上,解冻期为 5 月份。

1.2 岩石的赋水性

争光金矿区内地层广泛分布中奥陶统多宝山组 (O₂d)、铜山组(O₂t),在东北部有少量的上奥陶统 裸河组(O₃l)和爱辉组(O₃a),以及下志留统黄花沟 组(S₁h),其间分布有早燕山期闪长岩(Jδ)、次安山 岩(Jaπ)。在沟谷低洼地带,分布有第四系堆积物 (Q)。

上述地层,依其岩性、富水条件和特征,可划分为2个含水岩组。

(1)第四系松散岩类孔隙含水岩组(Qh,Qp)

全新统冲洪积孔隙含水层(Qh^{aL+pL})。分布于 矿区东部裸河及西部争光西沟小溪两岸地带。岩性 为粉质黏土、砂土及卵砾石,厚度4.1~9.8 m,水位 埋深0.65~1.425 m,抽水试验涌水量为0.45~ 0.49 L/s•m,为中等富水性。地下水化学类型为 HCO₃⁻ - Ca²⁺; TFe 含量0.04~0.60 mg/L, NO₃⁻ 含量为1.20~20.00 mg/L, NO₂⁻ 含量为0~ 0.02 mg/L, NH⁺₄ 含量<0.02 mg/L; 矿化度0.23 ~0.29 g/L, pH 值7.74~7.88。

上更新统坡残积孔隙含水层(Qp^{al+d})。分布 于区内沟谷及山脚地带。岩性为黏性土及碎石,厚 约1~5m,微透水,基本不含水。

(2)基岩裂隙含水岩组(O_2 , O_3 , S_1 , $J\delta$, $J\alpha\pi$)

分布于整个矿区,地层层位较多,岩性复杂。有 奧陶系、志留系变质岩层状岩类,又有早燕山期火成 岩块状岩类;主要岩石有安山质凝灰岩、细粒闪长 岩、安山岩、绢云绿泥板岩等。这些层状及块状岩类 均含风化裂隙水和少量的构造裂隙水,各种岩石之 间不存在隔水层,应视为统一的含水岩组。总体上, 岩石的赋水性较差,含水部位多在浅部的风化裂隙 中,深部的含水性更弱。区内东部的两眼泉水流量 为0.045 4~2.708 L/s•m(2006 - 10 - 20),属弱-中等富水性。地下水化学类型为 HCO₃⁻ - Ca²⁺或 HCO₃⁻ - Ca²⁺(Mg²⁺); TFe 含量0.2~0.8 mg/L, NO₃⁻ 含量为1.2~1.4 mg/L,NO₂⁻ 含量为 0,NH⁺ 含量<0.02 mg/L;矿化度0.23~0.24 g/L,pH 值 7.62~7.69。

1.3 地下水补径排条件

大气降水后,一部分水以地表径流形式排泄补

给裸河和争光西沟小溪成为地表水体,另一部分水则沿松散岩类孔隙和基岩风化裂隙下渗形成孔隙水 和基岩裂隙水。

地下水径流条件好坏,取决于岩石孔隙及节理 裂隙发育程度及连通程度。就本区而言,属于一般 或较好。

地下水排泄以地下径流形式排泄为主,次为少 量泉水溢出形式和人工开采形式排泄。

2 矿区水文地质条件

争光金矿区属低山丘陵地形,并以低山为主。 区内北部最高山标高为527.8 m,南部最高山标高 525.4 m,东部最高山标高 520 m,西部最高山标高 为510.9 m;最低标高位于矿区东南部,约为460 m, 相对高差不大;山坡角很缓,约5°。植被较发育,但 区内勘探区槽探工程较多,加上露采地段,使植被受 到一定程度的破坏。侵蚀基准面标高约在420 m, 金矿体分布于侵蚀基准面以上和以下部位。

争光金矿区出露的主要地层为中奥陶统多宝山 组一、二、三段(O₂d¹, O₂d², O₂d³)及燕山早期闪长 岩(Jδ)、次安山岩(Jaπ),岩性为安山质凝灰岩、安山 岩、细粒闪长岩、绢云绿泥板岩。仅在东部及西南部 分布有少量的第四系堆积物。

2.1 岩石的含水性

依矿区水文地质条件,考虑矿床所处位置和地 层岩性分布情况及含水特征,从实际应用出发,可划 分如下两个含水岩组。

(1)第四系松散岩类及上更新统坡残积孔隙含水岩组(Qp^{aL+aL})。岩性为黏性土,底部破碎较多,厚约1~5m,微透水,基本不含水,对矿床开采没有影响。

(2) 基岩裂隙含水岩组(O_2d^1 , O_2d^2 , O_2d^3 , J δ , J $\alpha\pi$)。主要岩性为安山质凝灰岩、安山岩、细粒 闪长岩及绢云绿泥板岩等。含风化裂隙水及构造裂 隙水,含水性较弱。根据以往钻孔(竖井)抽水试验, 涌水量多为0.0011~0.095 L/s•m,局部地段为 0.14~0.16 L/s•m,为弱-中等富水性。地下水化 学类型主要为 HCO₃⁻ - Ca²⁺,少量为 HCO₃⁻ - Ca²⁺ (Mg²⁺)或 HCO₃⁻ (SO₄²⁻) - Ca²⁺; TFe 含量一般为 0.32~9.0 mg/L,最高达 13.00 mg/L; NO₃⁻ 含量 一般为 0.01~10 mg/L,最高 72 mg/L; NO₂⁻ 含量 为 0~0.55 mg/L,最高 35 mg/L; NH⁴₄ 含量为0.02

图 1 争光金矿区地下水水位随降水量变化曲线图 (ZK6002 号孔,2003 年)

Fig. 1 Curve showing variation of table of groundwater with amounts of precipitation

~ 0.16 mg/L,最高为7 mg/L;矿化度0.14~ 0.35 g/L,pH值为6.9~7.98。

2.2 地下水动态

矿区夏季多雨,冬季干燥,影响其地下水动态的 因素主要为大气降水。雨季集中在 7~9 月份,使得 潜水水位升高;雨季结束至次年雨季开始,矿区内水 源主要补给中断,潜水通过径流排泄,使得潜水水位 降低(图 1)。

受矿区生产、生活开采地下水影响,致使局部地 下水水位有上下波动的现象;在槽探工程比较集中 的 I,II号矿带,大气降水的补给强度加大,每年雨 季地下水水位上升较快,但各处水位上升幅度不等, 接近排泄区的河(沟)谷区,水位上升幅度小,远离排 泄区的高处(矿区),水位上升幅度大。地下水动态 特点:年水位变幅大而不均(由分水岭到排泄区,年 水位变幅由大到小),呈现季节性变化规律,但有能 量的滞后现象,约一个月时间。

3 矿坑涌水量预测

3.1 矿坑充水因素

矿体位于侵蚀基准面以上的较高部位,未来的 开采方式可首选露采。

矿坑充水来源以大气降水为主,其次为基岩本 身的裂隙水。而第四系、上更新统残坡积层分布很 少且基本不含水,可不考虑。至于东部的裸河和争 光西沟小溪,对开采没有影响。

3.2 计算方法及公式的选择

根据矿床水文地质条件及露天开采方式,选择 地下水动力学法中大井法计算矿坑涌水量,考虑矿 床基岩裂隙含水岩组基本为单一的潜水状态,无地 表水影响,其公式为:

$$Q_{\pm} = 1.366 K_{cp} \frac{(2H-S)S}{\lg R_0 - \lg r_0}$$
(1)

式中, Q_{\pm} 为大井法计算的露天采场涌水量,单位为 m³/d; K_{ep} 为基岩裂隙水渗透系数;H为含水层厚 度,单位为m;S为矿坑中的水位降低量,S=H,单 位为m; R_0 为露天采场中心算起的影响半径, $R_0 =$ $R+r_0$,R为露天采场边缘算起的影响半径, r_0 为露 天采场的引用半径,单位为m。

直接降落在露天采场面积上的大气降水量,按 下式计算:

$$Q_{\mathfrak{P}} = (F \cdot W)/t \tag{2}$$

式中,Q_降为直接降落在露天采场面积上的大气降 水量,单位为m³/d;F为露天采场上开口面积,单位 为m²;W为降水量,单位为m;t为时间,单位为d。

未来露天采场的总涌水量 Q_总 应是大井法计算的露天采场涌水量 Q_大 和直接降落在露天采场面积 上的大气降水量 Q_降 的总和:

$$Q_{a} = Q_{\pm} + Q_{\mu} \tag{3}$$

3.3 计算参数的确定

(1)平均渗透系数 K_{ep} 。 [号矿带与 []号矿带 为同类矿床和相邻地段,其底层岩性、矿体赋有部位 形态及所处水文地质条件基本一致,故采用 []号矿 带以往钻孔(竖井)抽水试验成果资料中具有代表性 的 3 个孔获得的渗透系数作为本次计算参数是可行 的。其中,SJ5 的 K_{ep} 值为0.085 m/d,ZK6002 的 K_{ep} 值为0.000 6 m/d,ZS1 的 K_{ep} 值为0.029 m/d。 求其算数平均值,取 K_{ep} 为0.038 2 m/d。

(2)含水层厚度 H。本次计算范围为 38 线— 84 线,包括由物探测线确定的 1400 线和 2200 线。 根据含水层底板的一般和最大埋深,综合确定开采 水平暂定为标高+450 m。本次施工的钻孔简易水 文地质观测获得的静止水位平均标高为501.02 m, 按潜水完整井考虑, H = 501.02 m - 450 m = 51.02 m。

(3)矿坑中的水位降低量 S。本次计算范围的 矿坑中的水位降低量,S=H=51.02 m。

(4)矿坑的影响半径 R。根据库萨金经验公式: $R=2S\sqrt{HK}=142.45$ m。

(5)矿坑引用半径 r_0 。采坑坑底接近于平行四 边形,按矩形公式 $r_0 = \eta \cdot (a+b)/4$ 计算,a=310 m, $b=430 \text{ m}, \eta=1.16$,计算得 $r_0=214.60 \text{ m}$ 。

(6) 露天采场中心算起的影响半径 $R_0 = R$ + $r_0 = 142.45$ m+214.6 m = 357.05 m

(7) 露天采场上开口面积 *F*。预计开采标高为 +450 m,设计边坡角按 45°,强风化带边坡角按 35°,圈定的面积 *F*=236 004.83 m²。

(8)大气降水量 W。根据嫩江气象站 1951— 2005年的大气降水量资料,多年平均降水量(W₁) 为483.18 mm;多年最大降水量 866 mm,丰水期(7 ~9月份)水量占 70%左右,计算得月平均降水量 (W₂)约 202.07 mm;多年平均日最大降水量(W₃) 为 49.17 mm。

3.4 计算结果及评述

将有关计算参数分别带入式(1)、式(2)、式(3) 进行计算,其计算结果如表 1一表 3 所述。

在露采场上的大气降水量计算考虑了三个方面 的因素:①多年年平均降水量(W_1)为483.18 mm, 计算的矿坑总涌水量($Q_{\&1}$)为926.64 m³/d,可作为 开采正常排水量;②多年年最大降水量中丰水期(7 ~9月份)平均月降水量(W_2)为 202.07 mm,计算 的矿坑总涌水($Q_{\&2}$)为2 203.44 m³/d,可作为丰水 期的开采排水量;③多年年平均日最大降水量(W_3) 为 49.17 mm,计算的矿坑总涌水量($Q_{\&3}$)为 12 218.68 m³/d,此数字相当于多年日最大降水量 频率中的 50%,可作为暴雨期开采排水量参考。

本次采用大井法计算露采场基岩裂隙水水量是 适宜的,其参数确定基本是合理的。

4 矿区供水水源

4.1 水源及水量

(1) 依据吉林省用水定额(地方标准 DB22/

T389—2004)确定(黑龙江省目前无此标准)矿区 生产用水量。金矿生产中的产金用水量为 512.2 m³/kg,重复利用率74%。依据《黑龙江省黑 河市争光岩金矿普查报告》中年黄金产量375 kg,需 水量192 075 m³/a(526 m³/d);如果不考虑重复利 用量则为1970 m³/kg,需水量为738 750 m³/a (2024 m³/d)。由于争光岩金矿 II 号矿带已处于施 工过程中,I 号矿带的生产用水可根据实际需水量 与 II 号矿带采用同一水源,选择裸河标高为518.4~ 502.6 m 间的裸河地表水作为供水水源。由于冬季 断流,所以应采取低坝取水方式。裸河地表水流量 1.24×10^4 m³/d(2006 - 09 - 30),可以满足生产需 水量要求。

(2)依据黑龙江省用水定额(地方标准 DB23/ T7273—2003)确定矿区生活用水量。在集中供水、 室外厕所条件下,用水量为 70 L/人日,按 500 人计 算为12 775 m³/a(35 m³/d)。生活用水选择争光西 沟为地下水供水水源地,水源地范围 0.1 km²(500 m×200 m)。根据《争光岩金矿勘探报告》(2010 年 1月)中所观测的 2 个钻孔所测并换算为降深 10 m、 口径 0.219 m 的涌水量,1 号孔的涌水量为 190 m³/ d,2 号孔的涌水量为 790 m³/d。供水水源地单井最 大可开采量为 790 m³/d,可以满足生活需水量要 求。此外,在矿区东侧裸河支谷与裸河河谷的交汇 处,有一常年性泉水,据《争光岩金矿勘探报告》 (2010 年 1月)测得平均泉流量为 223 m³/d(2006 年 10 月观测),可作为生活备用水源。

(3)矿区地下水开采利用条件。根据 2010 年 1 月的《争光岩金矿勘探报告》中的 2 号观测孔资料, 生活用水供水水源地含水层为第四系孔隙潜水含水 层与奥陶系安山质凝灰岩的风化裂隙含水层。含水 层埋深 3~20 m,厚度13.00~18.57 m,中等富水 性。可布置水源井一眼,井深 40 m,上部带过滤器

表1 大井法计算的露天采场涌水量

Table 1 Inflow v	olume of wa	er in oper	ı pit calcula	ated with	big well	method
------------------	-------------	------------	---------------	-----------	----------	--------

计算范围	计算标高/m	$K_{ m cp}/{ m m}$ • d ⁻¹	$H/{ m m}$	S/m	R_0/m	r_0/m	$\mathbf{Q}_{\mathbf{t}}/\mathrm{m}^{3}$ • d ⁻¹
38—84 线	+450	0.0382	51.02	51.02	357.05	214.60	614.33

表 2 直接降落在露天采场面积上的大气降水量

Table 2	Amount of	direct	precipitation	onto	area o	of open pi	t
---------	-----------	--------	---------------	------	--------	------------	---

计算英国 计算标言 /m		E/m	W /m	W /	W /m	4 / 1	4 /J	4 /J	$oldsymbol{Q}_{oldsymbol{lpha}}/\mathrm{m}^3ullet\mathrm{d}^{-1}$		
昇氾団	异 你 向 / 1	II I'/III	<i>w</i> 17 III	<i>w</i> ₂ / 111	<i>WW</i> 3 / 111	<i>t</i> ₁ /u	ι_2 / u	<i>t</i> ₃ / u	$Q_{ m Pk1}$	$Q_{ m eta_2}$	$Q_{ m Phi^3}$
38-84 线	+450	236004.83	0.48318	0.20207	0.04917	365	30	1	312.41	1589.64	11604.35

表 3 未来露天采场总涌水量

 Table 3
 Total inflow of water into the future open pit

计算范围	计管标支/m	$Q_{\pm}/\mathrm{m}^3 \cdot \mathrm{d}^{-1} Q_{\nexists 1}/\mathrm{m}^3 \cdot \mathrm{d}^{-1} \ Q/\mathrm{m}^3 \cdot \mathrm{d}^{-1} \ Q_{\# 3}/\mathrm{m}^3 \cdot \mathrm{d}^{-1}$		O_{m} /m ³ · d ⁻¹	$\mathbf{Q}_{ar{ar{ar{B}}}}$ / m^3 • d ⁻¹			
	Ⅰ异你同/Ⅲ			Q/m ·u Qβ≩3/m ·u		$oldsymbol{Q}_{\&1}$	$Q_{\&2}$	$Q_{\&3}$
38—84 线	+450	614.33	312.41	1589.64	11604.35	926.74	2203.97	12218.68

的护壁管口径273 mm,下入深度 20 m,下部裸孔口 径 219 mm。推求钻孔最大涌水量7.90×10² m³/d, 水源地可开采量参考 GB15218—94《地下水资源分 类分极标准》,精度为 C 级,误差大体在 50%以内。 可以满足生活需水量要求。采用深井潜水泵取水。

4.2 水源与水质

矿区内地下水水化学类型分析显示,主要有 HCO₃⁻ - Ca²⁺, HCO₃⁻ - Ca²⁺ • Mg²⁺, HCO₃⁻ -Ca²⁺ • Na⁺, HCO₃⁻ • SO₄²⁻ - Ca²⁺, HCO₃⁻ • CL⁻ -Ca²⁺ 共 5 种类型。其中,以 HCO₃⁻ - Ca²⁺ 型水为 主,分布于矿区的所有地段; HCO₃⁻ - Ca²⁺ • Mg²⁺ 型水呈条带状和片状分布于矿区的东北部和西南 部; HCO₃⁻ - Ca²⁺ • Na⁺型水呈点状分部于西北部, HCO₃⁻ • SO₄²⁻ - Ca²⁺型水分布于矿区中南部的局 部地带。区内水质多为低矿化、弱酸-弱碱、软-微硬 水。在 II 号矿带所采的矿坑水样表明,由于在露天 开采过程中经火药爆破,残留有微量的硫酸、硝酸、 亚硝酸溶入地下水中,在自然环境中净化较为缓慢。

矿区水质超标项主要体现在铁、锰、酚、"三氮"、 高锰酸盐指数及其物理性质等方面。其中,铁、锰含 量较高,铁锰超标严重区主要分布于矿区的中部地 带,分别高达13.00 mg/L和2.30 mg/L;河(沟)谷 地带未超标或超标较轻,其他地区介于二者之间。

4.3 水文地质类型

综合矿区所处自然地理条件,地形地貌特征,地 层岩性,地质构造,岩石的含水类型,含水部位特征, 岩石的富水性、透水性、含水层之间的水力联系,地 表水体发育情况及地下水的部径排条件和地下水化 学特征等因素,本矿区水文地质条件可归属为简单 类型。

5 结论

(1)本矿床水文地质条件属简单类型。根据矿

床水文地质条件,采用大井法预测+450 m 水平涌 水量是适宜的。无需进行更深水平的涌水量计算, 深部水平涌水量,应依浅部开采实际排水量,采用比 拟法进行更深部涌水量预测更切合实际。

(2)本次计算的露天采场总涌水量(Q_{\pm})考虑了 三个方面的大气降水(W)因素:一是考虑多年年平 均降水量(W_1)因素,计算的露采场总涌水量($Q_{\pm 1}$) 为926.64 m³/d,可作为开采中正常排水量;二是考 虑多年年最大降水量中丰水期月平均降水量(W_2) 因素,计算的露采场总涌水量($Q_{\pm 2}$)为2 203.44 m³/ d,可作为开采中丰水期的排水量,即 $Q_{\pm 1}$ 和 $Q_{\pm 2}$ 可 作为开采设计依据;三是考虑多年平均日最大降水 量(W_3)因素,计算的露采场总涌水量($Q_{\pm 3}$)为 12 218.68 m³/d,此数字相当于多年日最大降水量 频率中的 50%,可作为暴雨期开采排水量参考。

(3)本次计算的露采场涌水量,是采场底标高为 +450 m水平,上述提到的排水量既可用泵排出,也 可依有利地形地貌采取自然疏干排水的办法。

(4)露天采场周边,必须依地形地貌修筑排水明 渠(防渗),避免地表水溃入露天采场,从而引发或加 剧不必要的崩塌、滑塌、滑坡等地质灾害发生。

(5)矿山建设、开采过程中,应遵循有关规范和 设计,科学开发,注意保护土地和植被,合理排放废 石和尾矿,避免造成局部地面沉降变形、滑塌、泥石 流或导致土地荒漠化、水土流失等地质灾害发生,保 护好环境质量。

(6)矿山开采中应进行一定的水文地质、工程地 质及环境地质观测或监测工作,不断积累有关资料, 为科学、合理、安全开发金矿资源提供依据。

参考文献:

- [1] 赵广江,候玉树,程富强.黑龙江黑河市争光岩金矿床地质特 征及成因浅析[J].有色金属,2007,59(3):91-94.
- [2] 陆海,徐庆华.黑龙江省争光岩金矿详查报告[R].鞍山:辽宁 省冶金地质勘查局四〇二队,2012.

Preliminary discussion on hydrogeological characteristics of Zhengguang Au deposit in Heilongjiang province XU Qinghua

(Geological team 402, Liaoning Metallurgical geology Bureau, Anshan 114000, Liaoning, China)

Abstract: Zhengguang Au deposit is a medium (large) sized hydrothermally altered cataclastic rock type Au deposit discovered in northwest Heilongjiang province. According to occurrence characteristics of water in rocks of Zhengguang Au deposit and supply, run-off and drainage condition of the water it is proper to adopt "big well" method for calculation of fissure water volume of the bed rock. The hydrogeological parameter is reasonable.

Key Words: Zhengguang Au deposit; division of water-bearing rock formations; dynamic state of groundwater; Big well calculation method; choice of parameter; Heilongjiang province