环境同位素在北京平谷盆地山前 侧向补给研究中的应用

王新娟,韩旭,许苗娟,孙颖,刘久荣 北京市地质环境监测所,北京,100195 1922 ~ 2022 Pre-pub. on line: www. geojournals.cn/georev

内容提要:利用地下水水化学和同位素测试分析成果,结合区域地质、水文地质条件研究了平谷北山山区侧向补给情况和中桥水源地地区第四系松散孔隙水和下伏岩溶水关系。结果表明:研究区第四系松散孔隙水和基岩岩溶地下水均来源于大气降水,地下水化学类型均为 HCO₃--Ca²⁺ • Mg²⁺型;平谷北山山前基岩岩溶水侧向补给平原区第四系松散孔隙水和下伏岩溶地下水;通过 D 值估算得到中桥水源地第四系浅层地下水的山区岩溶水侧向补给和 垂向降水入渗补给比例为 57:43;中桥水源地基岩岩溶水接受山区岩溶水侧向补给和第四系孔隙水垂向越流补给比例为 87:13。研究成果为平谷地区地下水资源量评价和地下水动力场数值模型的建设提供了关键参数,为区域地下水的合理开采和有序回补涵养提供了科学依据。

关键词:山区侧向补给;第四系孔隙水;基岩岩溶水;混合比例;北京平谷

地下水资源作为北京市的主要供水水源,其开 采量占全市供水量的 50%~70%。平谷盆地地下水 资源多年来是当地的生产和生活用水的主要来源, 而且从 2004 年开始作为应急水源地为北京城区供 水。1999年以来的多年连续干旱以及地下水超量 开采,使区域地下水位持续下降,形成了地下水降落 漏斗。2014年以后南水进京,区域地下水的紧张局 面得到缓解,在条件允许的情况下可以回补地下水, 使地下水资源得到恢复。在南水进京的新水情下如 何合理利用地下水资源,是水资源能够满足供给的 情况下得到合理储备,以备不时之需的关键所在。 开展区域地下水资源计算评价,提出地下水合理开 采和有序回补涵养方案是地下水合理开发利用和保 护的重要基础。对于平谷盆地地下水资源来说,其 补给项包括:垂向和侧向补给,垂向补给包括降水入 渗、地表河流及灌溉入渗补给,已非常明确;山区侧 向补给各段补给、区内基岩岩溶水和第四系松散孔 隙水之间的水力联系及相互之间的补给比例等还不 是十分环境同位素是指在自然界广泛存在的自然产 生的同位素,如H、C、O等,同位素在地下水科学中 的应用,是现代核技术发展的产物。地下水在其形 成过程中,除了形成一般的物理、化学踪迹外,还形

成大量微观的同位素踪迹,这些微观踪迹记录着地 下水的起源和循环的历史过程,稳定同位素对水起 着标记作用,而放射性同位素对水起着计时作用 (王恒纯,1991:李晨曦,2017:张雅等,2019)²H 和180 同位素是水分子的构成元素,参与水循环和 转化的各个过程,能直接体现水体所经历的"过 程",反映地下水的状态。水体在循环过程中存在 同位素分馏现象,使得不同水体间或者受不同因素 影响的水体间 D 和¹⁸O 同位素含量存在显著差别, 可体现出水分运移和转化的不同过程。国内外众多 学者利用降水和地下水的稳定同位素特征,识别了 地下水补给源、补给方式,估算补给高程和补给比 例,解决了很多与水循环相关的难题(刘存福等, 1997:宋献方等,2017:于静洁等,2017:王洁青等, 2017;周训等,2017;霍冬雪等,2019)。陈宗宇等 (2006)¹利用 δD_{λ} ¹⁸O 准确识别了黑河流域山区河 流对地下水的补给过程以及地表水与地下水相互转 化的水量,解决了以往对黑河流域地表水与地下水 转化具体过程认识不清的问题。马致远(2004)利 用 δD、δ¹⁸O 发现甘肃省东部平凉市泾河以南地区岩 溶水中存在大量现代水的混入补给,表明岩溶水的 补给条件和更新能力较好。氚同位素 (Tritium,T)

注:本文为北京市规划和国土资源规划委员会第三轮北京市地下水资源调查评价项目(项目编号:BJJF-2016-862)的成果。

收稿日期:2022-01-04;改回日期:2022-06-13;网络首发:2022-06-20;责任编辑:章雨旭。Doi: 10.16509/j.georeview.2022.06.125 作者简介:王新娟,女,1973年生,博士,教授级高级工程师,主要从地下水资源调查评价、水文地质参数试验研究等; Email: xinjuanwang@ 126. com。

是天然水的一部分,直接参与水循环。氚同位素的 放射性使其成为水文地质研究中的一种测年技术手 段(张兵等,2004),并且被广泛应用于地下水循环 演化的研究中。

本文通过对平谷北山山前第四系浅层地下水、 基岩岩溶水、地表水及大气降水取样和测试,分析了 第四系浅层地下水和基岩岩溶水的补给来源并估算 了洳河冲洪积扇中桥水源地地区地下水的补给比 例,为平谷区域地下水流模型的建立和地下水资源 计算评价提供了技术支撑。

1 研究区概况

北京平谷地区东、北、西和东南为中、低山与丘陵环抱,中部为向西南倾斜的断陷盆地,仅西南有一出口,与华北平原相连接。平谷盆地东西长 25km,南北最宽 14km,盆地呈倒梯形。盆地地形高程由东北部的 85m 向西南逐渐下降为 20m,地形坡度为 2.3%~1.8%。山东庄—平谷镇—东高村以东地区,山前地形起伏较大,相对高差 3~10m。盆地内部地势平坦,地形最低洼处位于马坊东的泃河河床,海拔高程仅为 12m。

Fig. 1 Geological map of bedrock and distribution of water collection points in Pinggu Basin, Beijing

表 1 北京平谷盆地水样采集信息 Table1 Water sample collection information in Pinggu Basin, Beijing

样点 编号	地理位置	井深 (m)	取水层位	取样内容
DSX1	峪口镇中桥村	50	第四系	D、 ¹⁸ O 和水化学
DSX2	中桥村八厂水源地	171	第四系	D、180、T和水化学
JY1	刘家店镇翟各庄村	605	高于庄组	D、180、T 和水化学
JY2	中桥村八厂水源地	871	高于庄组	D、180、T 和水化学
JY3	中胡家务村北	300	高于庄组	D、180、T 和水化学
JY4	王辛庄镇北上营村	280	高于庄组	D、180、T 和水化学
JY5	山东庄村北	304	高于庄组	D、180、T和水化学
JY6	山东庄小北宫村	346	高于庄组	D、180、T和水化学
JY7	刘家河村东北	150	高于庄组	D、180、T 和水化学
JY8	刘家河村南	350	高于庄组	D、180、T和水化学
DQJS	刘家店镇翟各庄村		大气降水	² H, ¹⁸ O

平谷区属暖温带大陆性季风气候,春季干旱多风,夏 季炎热多雨,秋季短促凉爽,冬季严寒干燥。平谷是 北京市暴雨中心地区之一,据平谷气象站 1959~ 2020年观测资料,多年平均降水量约为 627mm,其 中最大降水量 1213mm(1984年),最小降水量 332.4mm(2020年)年际变化大。降水时间分布不 均,年内集中在6~10月,占全年降水的 80%以上。

平谷地区地层有密云群、长城系、蓟县系、青白 口系、寒武系、奥陶系、石炭系—二叠系和侏罗系以 及第四系(见图1)。其中,中元古界长城系主要分 布于北部山区和盆地底部北侧,以白云岩为主,碎屑 岩次之;蓟县系岩性以碳酸盐为主,少量火山岩及碎 屑岩。奥陶系下统冶里组(O₁y)和亮甲山组(O₁l)、 中统马家沟组(O₂m),以灰岩、白云质灰岩、豹皮灰 岩为主,夹有泥质灰岩、页岩,分布于二十里长山。 盆地内广泛发育新生界第四系地层,基岩埋深由 山前几十米到盆地中心岳各庄的715 m(袁丽娟 等,2020)。

基岩地下水以岩溶裂隙水为主,分布于西部、 西北部山区和东南部山区。主要含水岩组有高于 庄组岩溶裂隙水和蓟县系雾迷山组岩溶裂隙水含 水岩组。其水文地质条件主要受地层岩性、地质 构造及地形地貌影响,所处构造部位不同,富水性 也不同,钻孔的单位降深涌水量最大可达 2000m³/(d·m),最小只有2.4m³/(d·m)。

山区地下水的补给主要是大气降水入渗补给 和地表河流入渗补给,在山区基岩裸露区

接受大气降水补给。北部地区基岩地下水由 _ 北向南径流,东北部基岩地下水由东流向西南。 基岩地下水的主要排泄途径是人工开采、水库控制区和未控制区山前地区对第四系地下水的侧向 排泄。区内基岩地下水的开采层位主要有高于庄 组和雾迷山组。平原区地下水的补给来源主要有 大气降水、山区侧向补给、地表河流入渗补给、灌 溉入渗补给及水库控制区坝下渗漏等。地下水的 排泄有人工开采、第四系潜水蒸发和侧向流出。

2 采样与测试

本次工作于 2017 年 6 月在平谷北山山前采 集 11 组水样(见表 1),水样类型有基岩岩溶水、 第四系松散孔隙水和大气降水。地下水采样于以 生活用水井和水源地水源井,井深为 50 ~ 350 m, 采样点分布见图 1。其中,DSX1、DSX2 为中桥水 源地第四系松散孔隙水,JY1~JY8 为基岩岩溶 水,DOJS 为大气降水。

用于 D、¹⁸O 测试的样品利用 50 mL 的 PPE(聚 苯醚)水样瓶。首先用待采水样把采样瓶充分冲洗 至少 3 次,然后直接用采样瓶采取水样,水样必须装 满水样瓶,盖上内盖和外盖,使采样瓶内不留气泡。 常温保存,避免高温或低温情况(防止结冰)。氚的 采集:采样及前处理:氚的采样规范相对宽松,只需 保证在采样过程中尽量少接触空气、在采样瓶中不 留空气即可。

样品的测试 D、¹⁸O 在中国科学院地理科学与资 源研究所,采用液态水同位素分析仪(DLT-100)测 试,测试精度:δD<±1‰,δ¹⁸O<±0.1‰;氚含量是在 核工业北京地质研究院进行,采用低本底液闪仪 (Quantulus 1220-003)测试,检出限为1.3 TU(1 TU

表 2 北京平谷盆地水样水化学测试结果
Table 2 Results of hydrochemistry test of water samples
in Pinggu Basin Beijing

样点	离子质量浓度, $\rho(mg/L)$						TT		
编号	Ca ²⁺	Mg ²⁺	Na ⁺	K ⁺	HCO ₃ ²⁻	SO_4^{2-}	Cl	TDS	рн
DSX2	65.4	26.2	10.2	1.43	253	22.5	16.1	455	7.70
JY2	50.5	22.7	10.0	2.61	247	17.2	7.10	384	7.60
JY1	55.9	21.4	9.16	1.48	151	36.8	15.5	384	7.94
JY7	68.3	26.6	3.65	0.94	305	11.3	4.85	451	7.12
JY8	54.1	26.7	4.70	1.00	235	16.7	10.2	387	7.22
JY5	56.4	22.6	3.10	1.09	254	8.73	5.51	374	7.15
JY6	37.4	20.1	3.60	1.01	195	6.96	4.17	283	7.17
JY3	44.7	23.3	8.02	1.47	244	11.9	7.20	228	7.73
JY4	41.3	22.6	5.73	1.47	220	16.1	9.30	220	7.78
DSX1	55.7	25	6.87	1.49	281	9.80	11.9	262	7.69

=118 Bq/m³)下同),精密度 $\sigma \leq 0.6$ TU。水化学分析由北京市水文地质工程地质大队(北京市地质环境监测总站)化验室测定,其中 K⁺、Na⁺、Ca²⁺、Mg²⁺等阳离子含量采用电感耦合等离子体发射光谱仪分析,HCO₃⁻、Cl⁻采用 ZDJ-4A 型自动电位滴定。

3 成果分析

通过在北山山区平原分界线附近布置地下水、 泉水和大气降水水化学和同位素取样测试,利用水 文地球化学分析和同位素水文地质学原理,开展平 谷北山山区侧向补给情况分析研究。首先,利用 D,¹⁸O分析区域地下水的起源,然后,通过水化学和 D,¹⁸O分析、部分T和¹⁴C测试结果分析山区、平原 区地下水的补排关系,最后,利用 D,¹⁸O分析含量估 算平原区地下水的补给比例和地下水补给高程。

3.1 地下水水化学特征

本次研究所取水样中泉水、基岩岩溶水、第四系 地下水水化学类型差别不大,均为无色、无味、透明, pH 值一般在 7.12~7.94 之间,为中性水,所取水样 的主要阴阳离子含量见表 2。

3.1.2 对应水样点的水化学分析

Stiff 图是一种同时可以展示六种主要阴阳离子 组分含量的一种多边形图,图中有一垂直轴,此轴的 左右两侧分别表示阳离子和阴离子,其单位为毫克 当量/升。与垂直轴垂直的有四条平行轴,顶轴有毫 克当量/升的比例刻度。

利用水化学测试结果编制水样 stiff 图,DSX1、 DSX2、JY1和JY2水样 stiff 图见图 3,DSX1 点为中 桥水源地地区浅层第四系井样,DSX2 为中桥水源 地第四系深层地下水水样,JY1 翟各庄为水源地上 游山区长城系高于庄组岩溶水,JY2 为中桥水源地 高于庄组基岩岩溶水样。从图可以看出,JY2 水样 和 DSX1、DSX2 及 JY1 都很相似,这说明中桥水源 地浅层、深层第四系水松散孔隙水、基岩岩溶水水化 学特征相近。

JY3 和 JY4 点, JY5 和 JY6 点; JY7 和 JY8 点 stiff 图见图 4, 此六点基岩岩溶水均为北山山前对应点, 取水岩层均为长城系高于庄组岩溶水, 从图中可以 看出, JY3 和 JY4 Stiff 图形状比较接近, JY5 和 JY6

第四系松散孔隙水 第四系松散孔隙水 Quaternary pore water Water

图 2 北京平谷盆地地下水水化学类型 Piper 图 Fig. 2 Piper diagram of groundwaterhydrochemical types in Pinggu basin, Beijing

3.1.1 主要组分及水化学

类型

主要组分是指地下水中 含量较高的化学元素或者化 合物,它们通常就是水中水化 学特征七大离子,占据地下水 中无机物含量 90%以上,决 定着地下水的水化学类型 (周训等,2014年)。根据表 3数据可以绘制阴阳离子水 化学 Piper 图(图 2)。

从图可以看出,在菱形图 中,10个取样点处于菱形的 水平左对角,水样中 Ca²⁺ • Mg²⁺含量占阳离子总量的 85%以上,HCO₃⁻含量占阴离 子总量的 86%以上,地下水 水水化学类型都是 HCO₃⁻一 Ca²⁺ • Mg²⁺型。地下水的 pH 值在 7.12~7.94 之间,均为 中性水。从地下水水化学类 型来看,所取水样全部为 HCO₃⁻一Ca²⁺ • Mg²⁺型,水循 环交替条件均很好。

图 3 北京平谷盆地 DSX1、DSX2、JY1 和 JY2 水样 stiff 图 Fig. 3 Stiff charts of DSX1, DSX2, JY1 and JY2 water samples from Pinggu Basin, Beijing

in Pinggu Basin,	Be	eijing	
Table 3 Isotope test results	s of	water	samples
表 3 北京平谷盆地水样	司位	z素测i	式结果

样点 编号	井深 (m)	取水层位	δD _{V-SWOM} (‰)	δ ¹⁸ O _{V-SWOM} (‰)	T (TU)
DSX1	50	第四系	-67.3	-10.15	
DSX2	171	第四系	-64.3	-9.08	10.4
JY1	605	高于庄组	-65.7	-9.23	7.2
JY2	871	高于庄组	-65.9	-9.38	7.64
JY3	300	高于庄组	-65.2	-9.24	<1.3
JY4	280	高于庄组	-65.4	-9.76	<1.3
JY5	304	高于庄组	-63.4	-8.84	11.3
JY6	346	高于庄组	-65.3	-9.18	8.3
JY7	150	高于庄组	-64.1	-9.16	8.1
JY8	350	高于庄组	-64.1	-9.10	7.6
DQJS		降水	-69.5	-10.70	

点 stiff 图形比较接近; JY7 和 JY8 点 stiff 图性比较 接近,说明这三对水样点的水化学特征相近。

3.2 地下水同位素特征

3.2.1 ²H、¹⁸O 同位素特征

本次测试平谷盆地北山山前地下水样的 δD_{v-swom}和δ¹⁸O_{v-swom}值列于表 3,水样的 δD_{v-swom} 和δ¹⁸O_{v-swom}的关系图如图 5 所示。研究区 δD_{V-SWOM} 在 - 69.5% ~ - 61.9% 之间,均值为 - 65.08%; δ_{V-SWOM} ¹⁸0在-10.7% ~ - 8.67% 之间,均值为 - 9.35%。其中DSX1水样和大气降水水样 δD_{V-SWOM} 和 $\delta^{18}O_{V-SWOM}$ 值比较接近;DSX2、JY1样 δD_{V-SWOM} 和 $\delta^{18}O_{V-SWOM}$ 与JY2比较接近;JY3和JY4水样 δD_{V-SWOM} 几乎相同, $\delta^{18}O_{V-SWOM}$ 比较接近;JY5和JY6D和 $\delta^{18}O_{V-SWOM}$ 比较接近;JY7和JY8水样 δD_{V-SWOM} 和 $\delta^{18}O_{V-SWOM}$ 近乎相同。

从对应点 δD_{v-swom} 和 δ¹⁸O_{v-swom} 值的关系,初步 可以确定 DSX2、JY1 与 JY2 点; JY3 和 JY4 点, JY5 和 JY6 点; JY7 和 JY8 点有相应的补给关系。

3.2.2 地下水补给来源分析

水中稳定同位素 δD_{v-swom} 和 δ¹⁸O_{v-swom} 的组成 受气象过程的影响,它提供了水的起源的标志特征, 其含量和分布特征是调查和分析地下水补给来源、 补给高程和补给温度的基础。

水样 δD_{v.swon} 和 δ¹⁸O_{v.swon} 组成见图 5,从图 5 中可以看出,所有水点均落在北京大气降水线的左 下方,靠近大气降水线的,说明地下水补给均来源于 大气降水,且其补给来源于海拔高且寒冷季节补给。 其次,从第四系地下水、基岩岩溶水 δD_{v.swon} 和 δ¹⁸O_{v.swon} 同位素趋势线来看,第四系地下水、和基

图 4 北京平谷盆地 JY3 和 JY4 点, JY5 和 JY6 点; JY7 和 JY8 点水样 stiff 图 Fig. 4 Stiff charts of JY3 and JY4, JY5 and JY6; JY7 and JY8 point water samples from Pinggu Basin, Beijing

岩岩溶地下水在形成过程中均经历了蒸发作用,其 中,基岩岩溶水的趋势线斜率最小,说明其补给径流 过程经历了强烈蒸发作用。

3.2.3 补给高程估算

大气降水中的 δD_{v-swom} 和 δ¹⁸O_{v-swom} 会随着地 形高度的升高而降低,因此可以利用同位素的高程 效应估算地下水的补给高程。常用的计算公式如 下:

方法一:中国大气降水中 δD_{V-SWOM} 值的高程效 应公式(周训等,2010):

$$\delta D_{v-swom} / ‰ = -0.03 ALT / m-27$$
 (1)
ALT 为海拔高程值。

方法二:我国西部降水的δ值与高程 H 的关系 式为(于津生等,1997):

 $\delta^{18}O_{v-SWOM} / \% = -0.0031 \ H/m - 6.2$

δD_{V-SWOM}/‰=-0.026H/m-30.2 (2) 利用式(1)和(2)计算的结果再求取平均值,结 果列于表4。

表 4 北京平谷盆地地下水补给高程计算成果 Table 4 Calculation results of groundwater recharge elevation in Pinggu Basin, Beijing

	方法一	方法	T 11.45	
样点编号	补给高程	$\delta^{18} O_{V-SWOM}$	δD_{V-SWOM}	半均值 (m)
	(m)	补给高	(111)	
DSX1	1363	1337	1447	1405
DSX2	1263	980	1332	1297
JY1	1355	1075	1430	1393
JY2	1317	1080	1393	1355
JY3	1343	1083	1416	1380
JY4	1330	1237	1404	1367
JY5	1264	931	1328	1296
JY6	1326	1042	1399	1362
JY7	1324	1074	1391	1357
JY8	1310	1040	1377	1343

对表4计算结果进行分析,从表4可以看出方 法二中(δ¹⁸O_{V-SWOM})计算的结果偏小,其他两种方法 求得的数值比较相近。因为地下水中的δ¹⁸O_{V-SWOM} 更易与围岩发生同位素交换反映,所以用δ¹⁸O_{V-SWOM} 值计算的结果有偏差。为了降低因取样和测试产生 的误差,将使用δD两种方法计算结果的平均值作 为地下水的补给高程。补给高程的估算结果显示北 部山前第四系地下水和基岩岩溶地下水均来自北部 山区裸露基岩补给区,补给高程在1296~1405m之 间,这一信息也印证了δD_{V-SWOM}和δ¹⁸O_{V-SWOM}补给来 源分析中补给来自高寒地区降水补给。

3.2.4 氚测试结果

氚测试结果见表 3, 从表 3 可以看出, JY1 翟各 庄村东井氚含量和 JY2 中桥村八厂水源地井水样氚 含量接近, 一个值为 7.2TU, 一个值为 7.64 TU, 说 明两个水的年龄均较小, 为比较新的补给水。而中 桥八厂水源基岩岩溶水井氚含量稍微比翟各庄村生 活用水井高, 另外中桥八厂水源地第四系井氚含量 更大一些, 这也可以说明中桥八厂水源地基岩岩溶 水即接受山区岩溶水侧向补给, 也接受上伏第四系 松散孔隙水越流补给。JY3 和 JY4 氚含量均小于 1.3TU, 说明这两个水样地下水补给来源均为大于 54 年补给水, 氚含量相近也说明两个水有补给关 系。JY5 和 JY6、JY7 和 JY8 也都是年龄比较小的 水, 相互之间也有补给关系。

3.3 中桥水源地地区地下水补给来源及

补给比例的估算

由于 δD 和¹⁸O 稳定同位素的保守性,决定了它

们除了能确定补给来源、估算补给高程和补给温度 外,还可确定两种不同水的混合比例。利用中桥水 源地地区大气降水、山区基岩岩溶地下水 JY1,水源 地第四系地下水样 DSX1、DSX2,水源地基岩岩溶地 下水 JY2 的δ²H 计算分析水源地第四系浅层地下 水、基岩岩溶水的补给来源和补给比例。

不同水样混合比计算公式为:

$$Y = \frac{\delta_{\rm A} - \delta_{\rm ff}}{\delta_{\rm ff} - \delta_{\rm B}} \tag{3}$$

式中: Y 为混合比例; δ_A 为水样 A 的 δD_{V-SWOM} 或 $\delta^{18}O_{V-SWOM}$ 值; $\delta_{\ell\ell}$ 为混合水的 δD_{V-SWOM} 或 $\delta^{18}O_{V-SWOM}$ 值; δ_B 为水样 B 的 δD_{V-SWOM} 或 $\delta^{18}O_{V-SWOM}$ 值。

3.3.1 中桥村第四系浅层水的补给分析

中桥村第四系浅层地下水主要接受山区基岩岩 溶水侧向径流补给和大气降水入渗补给,其次是洳 河河水补给,但是,在2017年取样期间该段河流无 水,因此,认为主要以基岩岩溶水和大气降水补给为 主。经计算分析,中桥村浅层第四系松散孔隙水大 气降水和山前基岩岩溶水补给比例为57:43 = 1.325。中桥水源地地区浅层第四系松散孔隙水除 了接受当地降水入渗补给外,还接受山区基岩岩溶 水的侧向补给,并且山区侧向补给量还稍大于垂向 降水入渗补给,这和在永定河和潮白河冲洪积扇上 游地下水侧向补给:垂向降水入渗补给比例为4:3 = 1.333比较接近。另外,在峪口冲洪积扇顶部地区 第四系浅层水地下水水力梯度较大,为2‰~2.8‰ 和永定河冲洪积扇上游的水力梯度2‰~3‰接近。

3.3.2 中桥水源地基岩岩溶水补给分析

从前面分析可以知道,中桥水源地基岩岩溶水 除了接受山区岩溶水侧向补给外,还接受上覆第四 系深层地下水的垂向越流补给。分别利用 DSX2、 JY1、JY2 三组取样点的 δ²H 值、T 值估算 DSX2 和 JY1 的混合比例,计算结果见表 5。

从表 5 中可以看出,δD_{v.swon}和 T 值计算结果 比较接近,以δD_{v.swon}和 T 值计算结果的均值确定 混合比例,JY1:DSX2 混合比例为 87:13。中桥水 源地地区第四系地下水和基岩岩溶水的水力联系非 常密切,其变化情况分两个阶段,水源地开采前,基 岩岩溶水水位高于第四下地下水,岩溶水越流补给 第四系;2004年中桥水源地给市区供水后,第四系 松散孔隙水位高于基岩岩溶水,补给方向逆转。

利用分析结果在平谷区域地下水资源计算中, 结合山区平原分界处剖面、地下水流场等计算了平 原区北山山前侧向补给量,年均补给量为5014万

表 5 北京平谷盆地中桥水源地基岩岩溶水 补给混合比例估算结果

Table 5 Estimation results of basal karst water recharge mixing ratio in Zhongqiao water source, Pinggu Basin, Beijing

编号	δD _{V-SWOM} (%)	T (TU)	δD _{V-SWOM} ,计算 (‰)	T _{计算} (TU)	比例 确定
JY2	-65.9	7.64			
JY1	-65.7	7.20	87.5	86.25	87
DSX2	-67.3	10.4	12.5	13.75	13

m³。利用平谷区地下水流数值模型模拟计算了第 四系地下水越流补给基岩岩溶水量,年均补给量为 1255万m³。

4 结论

(1)通过水化学特征、δD、¹⁸O及T含量分析,确定了研究区地下水起源于大气降水,补给高程在 1296~1405m之间,为北部山区高寒补水;理清了平 谷北山山前地下水侧向补给关系,即山前岩溶水的 侧向排泄去向,山前岩溶地下水即补给平原区隐伏 岩溶水,又补给平原区第四系松散孔隙水。

(2)分析了洳河冲洪积扇上游中桥水源地浅层 第四系松散孔隙水的垂向和侧向补给情况,利用 δD、¹⁸O值估算了中桥水源地地区第四系浅层地下 水的山区侧向补给和垂向降水入渗补给比例,计算 结果为57:43;通过同位素和水化学分析认为中桥 水源地基岩岩溶水,即接受山区岩溶水侧向补给,又 接受上覆第四系地下水的越流补给。利用²H、T 含 量估算了中桥水源地地区基岩岩溶水接受山区岩溶 水侧向补给和第四系孔隙水垂向越流补给比例,计 算结果为 87:13。这两项成果均可以说明山前地区 地下水水交替条件非常好。

(3)在山区侧向补给混合比例估算成果的基础 上,结合山区平原分界处剖面、地下水流场等计算获 得山前侧向补给第四系地下水量为5014万m³/a; 在中条水源地基岩岩溶水的补给比例估算成果的基 础上,利用平谷盆地地下水流数值模型模拟计算了 第四系地下水越流补给基岩岩溶水量为1255万 m³/a。

注释 / Note

 北京市水文地质工程地质大队,2013. 顺平地区 岩溶水数值模拟研究.

参考文献 / References

(The literature whose publishing year followed by a "&" is in Chinese with English abstract; The literature whose publishing year followed by a "#" is in Chinese without English abstract)

Adelana S M A. 2005. Environmental Isotopes in Hydrogeology. New Jersey: John Wiley & Sons Inc.

- 陈宗宇,万力,聂振龙,申建梅,陈京生. 2006. 利用稳定同位素识别 黑河流域地下水的补给来源.水文地质工程地质,33(6):9~ 14.
- 霍冬雪,周训,刘海生,余鸣潇,张彧齐. 2019. 云南祥云县王家庄碱 性温泉水化学特征与成因分析.现代地质,33(3):681~690.
- 李晨曦. 2017. 基于环境同位素的洛川塬区地下水补给机制研究. 导师:李志. 陕西杨凌:西北农林科技大学硕士学位论文: 5~8.
- 刘存富, 王佩仪, 周炼. 1997. 河北平原地下水氢、氧、碳、氯同位素组成的环境意义. 地学前缘, 4(1~2):267~274.
- 马致远. 2004. 环境同位素方法在平凉市岩溶地下水研究中的应用, 地质论评, 50(4):433~439.
- 宋献芳,李发东,于静洁,唐常源,杨聪,佐仓保夫,近滕昭彦. 2007. 基于氢氧同位素与水化学的潮白河流域地下水循环特征.地理 研究,26(1):12~21.
- 王恒纯. 1991. 同位素水文地质概论,北京:地质出版社.
- 王洁青,周训,李晓露等,2017.云南兰坪盆地羊吃蜜温泉水化学特征 与成因分.现代地质,31(4):822~831.
- 于静洁,宋献方,刘相超,杨聪,唐常源. 2017. 基于 δD 和 δ¹⁸ O 及水 化学的永定河流域 地下水循环特征解析. 自然资源学报, 22 (3):416~423.
- 袁丽娟,孔祥军,高剑,沈鹏飞,何云成. 2020年.北京市延庆地热田 成因模式,地质论评,66(4):933~941.
- 张兵,宋献方,张应华,韩冬梅,杨丽虎. 2014. 基于氚和 CFCs 的三 江平原浅层地下水更新能力估算. 自然资源学报,29(11)1860 ~1868.
- 张雅,苏春丽,马燕华,刘伟江. 2019.6 水化学和环境同位素对济南 东源饮用水源地地下水演化过程的指示,环境科学,40(6), 2667~2774.
- 周训,金晓娟,梁四海,沈晔,张红梅. 2017.地下水科学专论(第二版.彩色版).北京:地质出版社: 31~44.
- Chen Zongyu, Wan Li, Nie Zhenlong, Shen Jianmei, Chen Jingsheng. 2006&. Identification of groundwater recharge sources in Heihe River Basin by stable isotopes, Hydrogeology & Engineering Geology, 33(6):9~14.
- Huo Dongxue, Zhou Xun, Liu Haisheng, Yu Mingxiao, Zhang Yuqi. 2019&. Characteristic and formation of the Wangjiazhuang alkaline hotspring in Xiangyun County of Yunnan. Geoscience, 33(3): 681 ~690.
- Li Chenxi. 2017&. The Study on Groundwater Recharge Mechanism in Luochuan Loess Tableland Based on Environmental Isotope. Adviser: Li Zhi. Yangling, Shaanxi: Thesis for Master's Degree of Northwest A&F University: 5~8.
- Liu Chunfu, Wang Peiyi, Zhou Lian. 1997&. Environmental meaning of groundwater isotopic components of hydrogen, oxygen, carbon, and chlorine in Hebei Plain. Earth Science frontiers, 4(1~2):267~ 274.
- Ma Zhiyuan. 2004&. Application of the environmental isotope technique to the study of karst groundwater in Pingliang City. Geological Review, 50(4):433~439.
- Song Xianfang, Li Fadong, Yu Jingjie, Liu Xiangchao, Sakura Yasuo, Kondoh Akihiko. 2007&. Characteristics of groundwater cycle using

deuterium, oxygen-18 and hydrochemistry in Chaobai River Basin. Geography Research, 26(1)12~21.

Wang Hengcun. 1991 #. An Introduction to Isotopic Hydrogeology. Beijing: Geological Publishing House.

6月

- Wang Jieqing, Zhou Xun, Li Xiaolu, Wang Mengmeng, Shen Ye, Fang Bin. 2017&. Hydrochemical characteristics and genesis of Yangchimi Hot Spring in Lanping Basin, Yunnan Province. Geoscience, 31(4):822~831.
- Yu Jingjie, Song Xianfang, Liu Xiangchao, Yang Cong, Tang Changyuan. 2017&. A study of groundwater cycle in Yongding River Basin by using δD, δ¹⁸O and hydrochemical data. Journal of Natural Resources, 22(3):416~423.
- Yuan Lijuan, Kong Xiangjun, Gao Jian, Shen Pengfei, He Yuncheng. 2020&. Genetic model of the Yanqing geothermal field, Beijing.

Geological Review, 66(4): 933~941.

- Zhang Bing, Song Xianfang, Zhang Yinghua, Han Dongmei, Yang Lihu. 2014&. Estimation of groundwater renewal rate by tritium and chlorofluorocarbons in Sanjiang Plain, Journal of Natural Resources, 29(11)1860~1868.
- Zhang Ya, Su Chunli, Ma Yanhua, Liu Weijiang. 2019&. Indicators of groundwater evolution processes based on hydrochemistry and environmental isotopes: A case study of the Dongyuan drinking water source area in Ji'nan City. Environmental Science, 40(6), 2667 ~ 2774.
- Zhou Xun, Jin Xiaomei, Liang Sihai, Shen Ye, Zhang Hongmei. 2017# . Monograph of Groundwater Science (Second Edition, Color Edition). Beijing; Geological Publishing House: 31~44.

Application of environmental isotopes in the study of lateral recharge in front of Pinggu Basin Beijing

WangXinjuan, Han Xu, Xu Miaojuan, Sun Ying, Liu Jiurong Beijing Geological Environment Monitoring Institute, Beijing, 100195

Obejctive: As an important water source of Beijing, Pinggu basin provides an important support for the Beijing municipal water supply, in order to better understand the lateral recharge of Pinggu mountain area and the recharge and drainage relationship between Quaternary groundwater and underlying bedrock karst water in Zhongqiao water source area, establish and improve regional groundwater flow model, calculation and evaluation of regional groundwater reasonable utilization and protection measures.

Methods: Based on the basic theories of water cycle and hydrogeology, the regional hydrogeological conditions are analyzed. and the recharge sources, recharge relations, recharge elevations and recharge ratios of different recharge sources of regional groundwater are analyzed by hydrochemistry and isotope hydrology

Results: The quaternary water and bedrock karst groundwater in the study area all come from atmospheric precipitation, and the chemical type of groundwater is $HCO_3^--Ca^{2+} \bullet Mg^{2+}$. The quaternary loose pore water and the underlying karst groundwater are supplied by The bedrock karst water in front of the North Mountain. According to the estimation of ²H, ¹⁸O and T values, the ratio of lateral recharge of karst water to vertical precipitation infiltration recharge of Quaternary shallow groundwater in Zhongqiao water source area is 57: 43. The ratio of bedrock karst water to lateral recharge of mountain karst water and vertical overflow recharge of Quaternary pore water is 87: 13.

Conclusions: Mountain karst groundwater not only supplies the underlying bedrock karst water in the plain area, but also supplies the quaternary loose pore water in the plain area. There is a close relationship between bedrock karst water and Quaternary loose pore water in the water source area of Zhongqiao.

Keywords: Lateral recharge in mountainous area, Quaternary pore water, Bedrock karst water, Mixing ratio

Acknowledgement: During the writing of this paper, Prof. ZHOU Xun from China University of Geosciences (Beijing) provided valuable advice on in-depth description of regional hydrogeological conditions and isotope analysis. I would like to express my deep gratitude to Prof. Zhou

First author: WANG Xinjuan, female, born in 1973, Ph. D., professor level senior engineer, mainly engaged in investigation and evaluation of groundwater resources and environment; Email: xinjuanwang@126. com

Manuscript received on: 2022-01-04; Accepted on: 2022-06-13; Network published on: 2022-06-20

Doi: 10.16509/j.georeview. 2022.06.125

Edited by: ZHANG Yuxu