doi:10.3969/j.issn.1674-3636.2013.01.159

WDXRF 和 EDXRF 在我国土壤岩石分析中的应用

黄光明,侯鹏飞,江 冶,肖 灵,张 梅,张培新

(江苏省地质调查研究院,江苏南京 210018)

摘要:介绍了 20 世纪 80 年代末以来 WDXRF 和 EDXRF 在我国土壤岩石检测领域的应用情况,包括样品的前处理中的薄样制样,粉末压片法制样和溶融法制样 3 种主要的样品前处理技术,同时介绍了样品基体效应、元素间吸收 - 增强效应、谱线干扰的处理方法,简单介绍了便携式荧光仪在土壤、岩石分析中的应用以及 X 射线荧光仪及其测定技术的应用发展。

关键词:WDXRF;EDXRF;土壤;岩石;分析

中图分类号:0657.34;P575 文献标识码:A

文章编号:1674-3636(2013)01-0159-10

0 引 言

自 1948 年弗利德曼(Friedman)和伯克斯(Birks)首先研制了第一台商品性的波长色散 X 射线荧光(WDXRF)光谱仪(吉昂等,2003)以来,X 射线荧光光谱仪和 X 射线荧光光谱分析技术一直在发展。我国 X 射线荧光光谱分析技术的建立始于20 世纪 50 年代末 60 年代初,经过引进、消化、吸收、开发等一系列过程,X 射线荧光光谱分析应用技术有了长足的发展。目前,我国 X 射线荧光光谱分析技术的基础研究、应用研究和仪器制造方面都取得了可喜的进展。长期以来,我国学者主要从事波长色散谱仪方面的工作,直到 20 世纪 80 年代才引进能量色散谱仪。因此,涉及到波长色散 X 射线荧光光谱分析的研究领域更多一些。

笔者从实际应用的角度出发,对20世纪80年 代末以来波长色散型 X 射线荧光仪(以下简称"波 谱仪")和能量色散型 X 射线荧光仪(以下简称"能 谱仪")在我国土壤分析中的应用作了简单介绍。

1 波长色散型 X 射线荧光光谱分析 (WDXRF)的应用

WDXRF 在土壤、岩石分析中的样品前处理方

法通常有化学前处理制样(薄样技术)、粉末压片制 样和熔融制样几大类型。

1.1 化学前处理制样(薄样技术)

前处理制样就是将试样用不同的方法分解,通 过一定的方法分离富集后,用特殊载体制成薄样,波 长色散 X 射线荧光光谱仪进行测定的分析技术。

刘德慧(1990)采用汞型活性碳纸薄试样片 (Hg)·ACP测定地质试样中痕量碘,由于样片基体 成分简单、纯净(少量纤维素和高纯活性碳),因此 背景低,无需作克服基体影响的校正。1g试样测定 限可达 0.25 µg/g。

李敏等(1992)研究了用 10% N_{7402} (甲基三烷 基氯化铵)-MIBK (甲基异丁基酮)萃取预富集,测 定岩石、土壤中 Pb、Zn、Cu、Cd、Mo、Bi、Sn 等痕量元 素的方法,选 Sm 作内标,检出限较直接粉末压片法 约降低 2 个数量级。8 个分析元素中,PbL_β 与 BiL_β,CdK_α与 SnK_α间有不同程度的干扰。Pb 与 Bi 及 Cd 与 Sn 含量相差很大时,需用干扰系数法进行 校正,即用一组含干扰元素而不含分析元素的试 样,求出干扰系数,用干扰系数法求出干扰元素在分 析线上所贡献的强度,加以扣除。曾力等(1993)研 究了用离子交换结合液 – 液萃取的分离方法,以除 去岩石矿物及土壤中的大量基体元素,用内标薄膜 X 射线荧光光谱法测定其中的 Co、Ni、Cu、Pb、Zn、Zr 等微量元素,方法的检出限可降低 2~3 个数量级。

收稿日期:2011-12-13;编辑:侯鹏飞

邱林友等(1992)在0.5 mol/L 盐酸介质中,通 过 As(Ⅲ) 与琉基纸上的 Sb(Ⅲ) 进行离子交换反 应使之富集,继而测量 AsK_α和 SbK_α线强度的总变 量进行痕量砷的 X 射线荧光光谱法测定,方法的检 出限为 0.10 μg/g。

熊光平等(1995)提出含微量 Zr、Hf 的岩矿样品 经碱熔分解后用强阳离子交换树脂静态吸附分离大 量干扰元素,再用 P507-PMBP SIFP 富集 Zr、Hf,然 后用 XRF 光谱仪直接测定 SIFP 上 Zr、Hf 的方法。 Zr 的分析线为 K_a,而测 Hf 则为 L_a,显然 L_a线的强 度远低于 K_a线,即测 Hf 的灵敏度远低于测 Zr 的灵 敏度。

李田义等(2010)建立了滤纸制样,X 射线荧光 光谱测定矿石中 Fe、Cu、Pb、Zn 的方法。除了采用 内标 Co 校正外,又采用经验系数法对基体效应的 影响进行进一步的校正。国家一级标准物质验证, 测量值与标准值吻合。

1.2 粉末法 WDXRF 测定

粉末压片法以简单、方便、快捷的特点在土壤、 岩石的测定中被广泛采用。但粉末压片法要求将试 样粉碎到一定的粒度,尽可能消除粒度效应和矿物 效应给分析结果带来的影响,但是试样粒度总是存 在的,对分析结果特别是主量组分的影响也是存在 的,所以粉末法测定主量组分的结果并不十分理想, 除了充分利用各种方法进行校正外,还要注意试样 基体的一致性。

张玉清等(1990)为提高地球化学样品中主元 素的准确度,更有效地消除矿样的颗粒效应,在制 样前再用理学盘式振动磨研磨 2min(未注明研磨后 的粒度),然后压片成型,测定矿样中的 24 个元素。 使主元素 SiO₂ 在 60% ~90%的质量分数范围内,绝 对误差控制在 1 % 以下;Al₂O₃ 在 10% ~25%的质 量分数范围内,绝对误差控制在 0.5% 以下,能显著 改善分析结果的准确度。

喻德科(1992)用铝环 – 双层压片法制样,经验 系数法校正吸收 – 增强效应,对少量土壤样品中的 常量 和 微量 元素 进行 了 定量 测定。取样量 为 500 mg,制样与测量精确度好于 5%。张启超等 (1992)采用了 X 射线荧光光谱透明胶带法分析土 壤样品中的 Al、Si、Fe、Ti、Na、K、Mg、Ca 8 个主量元 素氧化物的含量。用样量约 2 mg,取得不错的效 果。以上制样方法为少量和极少量试样的粉末法测 姜桂兰等(1994)用粉末压片制样,X 荧光光谱 法直接测定地质物料中的微量 Rb、Cs、U、Th、Zr、Hf、 Nb、Ba、Sr 等元素,对某待测试样进行 20 角扫描,依 据谱图确定各元素分析线的背景位置,并测出背景 点处的强度 *I*_{B1}和谱峰处的背景强度 *I*_{B2}求得背景扣 除因子 *f* = *I*_{B2}/*I*_{B1}。采用基体元素对待测元素的影 响系数法校正基体效应,取得了较好的效果。

吉昂等(1989)和刘恩美等(1990)提出用理论 α系数校正元素间吸收 – 增强效应,在同样条件下 比较了理论α系数法、经验系数法和直接强度浓度 比法对分析结果的影响,结果表明:用 NBS GSC 程 序计算的理论α系数校正元素间吸收 – 增强效应, 在少于10个标样的情况下,可满足化探的要求,其 分析准确度均优于同样情况下的经验系数法和直接 强度浓度比法。邹海峰等(1998)利用理论α系数 代替经验系数,采用低压聚乙烯镶边垫底的粉末压 片法制样,直接测定了地质样品中痕量元素 As、Ga、 Sc、La、Y、Ce、W、Mo、Sn、Co、Pb,具有较高的准确度 和较低的检出限。陈素兰等(2006)采用理论α系 数法校正基体效应及谱线重叠干扰,测定土壤及底 泥样品中 Cu、Pb、Cr、Zn、Ni 等多种元素,经标准样 品及不同分析方法验证,结果满意。

理论 α 系数法不要求太多的标样就可得到可 靠的结果,但是要求被测试样的基体差别要小,而被 测试样的产地不同,基体差异往往较大,理论 α 系 数法往往不能满足测定要求,经验系数法和内标法 相结合的测定手段通常被应用,采用大量的标准样 品作工作曲线可以得到满意结果。

肖德明等(1990)叙述了 XRF 测定地质样品中 微量 As、Ga、Co、Ni、Br、Cl、S、F 的分析方法。采用 粉末压片法制样,对 As、Ga、Co、Ni、Br 元素,用散射 内标法和计算 Fe 对这些元素的经验影响系数校正 基体影响,而对 Cl、S、F 元素则用样品中所有造岩元 素的全经验系数校正法才能取得较为满意的结果。 李华等(1990)用逐步回归法对共存元素逐步筛选, 逐步挑选对分析元素结果的方差贡献最大的变量进 入回归方程,以散射内标与经验系数相结合校正基 体效应,粉末直接压片测定土壤中的常量元素。李 国会(2001)使用干扰系数校正谱线重叠干扰,采用 散射线内标和经验系数法校正元素间的吸收 - 增强 效应,压片制样直接测定水系沉积物和土壤样品中 的痕量 Hf、Zr。Zr 选用 K_a 线作为分析线,而 Hf 可 选用 L_{a1}或 L_{β1}线作为分析线。Hf 的 L_{a1}谱线强度较 大,但受 ZrK_{a2}和 Sr_{β1,2}谱线的重叠干扰;Hf 的 L_{β1}线 强度较小却不受 Zr 和 Sr 谱线的重叠干扰,故有的 文献中采用 L_{β1}线作为分析线。刘江斌等(2010)选 用标准样品,以经验 α 系数和散射线内标法校正基 体效应和元素谱线重叠干扰,压片法制样同时测定 地质样品中 Nb、Ta、Zr、Hf、Ce、Ga、Sc、U 等稀有 元素。

毛庆云等(2002)用纤维素做黏结剂粉末压片 法制样,直接测定地质样品中 Na、Mg、Al、Si 等 23 个 常量和微量元素。常量元素用经验系数法校正元素 间的效应,微量元素间效应的校正采用散射线内标 法,绘出各元素的工作曲线。张平等(2006)针对海 南样品的特点,加入高铝、高钙、高铁和高钛标样进 行回归。使用经验系数法和散射线内标法校正基体 效应,测定海南地球化学样品中的27个组分,分析 质量完全满足多目标地球化学样品质量管理要求。 葛江洪(2009)采用 PVC 环的粉末样品压片制样测 定土壤样品中C、N 等30个主、次痕量元素,使用经 验系数法和康普顿散射线、背景散射线作内标校正 基体效应。采用提高 X 光管的工作功率测定超轻 元素,分析质量明显改善。王小欢等(2010)采用粉 末压片法制样,快速分析盐湖黏土矿物中40种元素 的含量,元素 As、Cs、Dy、Mo、Pb、Rb、S、Sr、Ta、Th、 Ti、U、V、W、Y、Zn、Zr采用康普顿散射线做内标与经 验系数法相结合的方法进行基体校正,其他元素采 用经验系数法校正基体效应。有 30 种元素获得满 意结果。贾立宇(2010)采用粉末压片法测定土壤 样品环境质量指标 Pb、As、Zn、Cu、Ni、Cr,采用经验 系数法校正 Si、Al、Fe、Mg、Ca、Na、K、Cr 等元素的基 体效应,Ni、Cu、Zn、As、Pb 用 Rh 靶 K。线的康普顿 散射线做内标,同时使用经验系数法对基体作适度 校正,取得良好效果。

袁汉章等(1989)着重研究了关于在 Fe 吸收限 长波边微量元素的基体校正问题。采用粉末法,以 散射线内标法与经验系数法相结合来校正基体效应 的影响,主元素主要用经验系数法校正元素间的干 扰,对微量元素通常采用散射内标法来校正基体效 应,对波长在 Fe 吸收限短波侧的微量元素采用 Rh 靶 K_α线的康普顿散射作为内标线。在 Fe 吸收限 长波边微量元素的基体效应不宜采用康普顿散射线 作内标线,因为 Fe 的含量变化很大,样品的质量吸 收系数 μ 对连续背景的波长 λ 作图已不再是连续 变化的吸收曲线,应选用临近分析线的背景线作内 标线。通常在一个分析方法中,内标线不宜超过3 条,同时内标线与分析线相距不能太远,以20不超 过30°为宜。这里将内标线分为3个区间:对于波 长在铁吸收限短波侧的微量元素采用 Rh 耙 K_康普 顿散射线作为内标线;大于 Fe 吸收限的波长,在 Fe 和 V 的吸收限之间采用 0.188 nm 散射背景线作为 内标线;在 V 和 Ca 的吸收限之间采用 0.233 nm 作 为内标线。即 Co 和 Cr 采用 2θ 在 55.50°处的背景 作为内标线,对 V、La、Ba 采用 2θ 在 70.600°处的背 景作为内标线。使用 Rh 靶 Ka 康普顿散射线或散 射背景线作为内标线,只能作为校正基体效应的一 种辅助手段,同时还要考虑主元素 Fe、Ca 对微量元 素的影响。李华等(1992)比较了强度和浓度模型 校正,当分析元素含量范围较窄时,强度模型较好, 如 Cu、Pb、Co等;当分析元素含量范围宽时,浓度模 型较好,如Zr、Ba等,但用浓度模型,需要知道土壤 样品中主元素含量,且计算较复杂,故采用了比较 方便的强度模型。袁慧等(2001)对于 Fe 吸收线长 波侧元素 Cr、Co、Mn 选用邻近分析线的背景线 (55.50°)为内标; Ba, Ce 位于 Rh 靶线的短波侧, 采 用9.98°处背景线为内标。贾立宇等(2009)对小于 Fe 的 K 系吸收限波长的元素,选择 Rh 靶 K_a 线的 康普顿散射线或 LiF 200 晶体 29.50°散射背景作内 标,用分析谱线强度与内标强度比回归校正曲线,可 以在很大程度上消除基体效应和样品形态对分析谱 线强度的干扰。并指出波长大于 Rh 靶 K。康普顿 散射线的谱线基本可以视为无限厚度,但 SnK。线会 产生穿透,对测量准确度会产生一定影响。

日本理学公司提供的分析软件中,校正采用校 准曲线、基体校正、谱线重叠为一体的回归方程,在 回归校准曲线时,可同时进行基体校正和谱线重叠 校正。杨仲平(1998)测定了地质物料中的 30 多种 组分,用强度校正代替浓度校正。提出当谱线重叠 的元素也要求报出结果时,该元素是以强度比来克 服基体效应的,此时被校正的元素就无法得到正确 的结果,在此情况下为了同时得到 2 个正确结果,可 用另一个元素来代替谱线重叠校正。梁述廷等 (2004)测定了土壤样品中 C、N、S 等 38 种元素,其 中重元素增加了靶线的非相干散射线(RhK。·C)作 内标进行基体校正。着重研究了 C 和 N 的分析条件,发现待测样片随着放置时间的延长,C 的测量强度不断增加,说明空气中 CO₂ 对样片污染比较严重。杨仲平等(2006)在实验中发现,C、S、Cl 不仅随测量次数的增加,其含量也在增加,而且与制备好的样片放置时间的长短有关。徐海等(2007)采用相同的方法测定了土壤样品中的 C、N、S、Cl 等 31 种元素。刘磊夫等(2008)指出:由于 Si 和 Al 元素的样品粒度影响较大,选择基体校正项 Si 和 Al 时,应选择强度校正,以避免相互叠代校正带来的误差。

詹秀春等(2002)报道了粉末压片-X射线荧 光光谱法测定地质样品中痕量 Cl、Br、S 的分析方 法。实验表明,对于不同岩性样品中 Br 的分析,特 别是当 Br 的质量分数低于 2 μg/g 时,采用谱峰强 度(未扣除背景)与背景强度的比进行校正所得到 的结果,明显优于 Rh 靶的康普顿散射线内标法;对 于 Cl 的分析,只需对 Ca 的影响加以校正即可得到 非常好的结果;S的校准曲线的离散性较大,矿物学 效应是影响 S 分析准确度的主要因素。李国会等 (2002)采用粉末压片法制样,使用经验系数和散射 线内标法校正元素间的吸收 - 增强效应, 对试样中 的 Cl、Br、S 3 个元素进行直接测定,结果满意。在 元素测量条件的选择中,采用了以下3条措施: (1)对于Br,选用角度分辨率大的 LiF 220 晶体代替 LiF 200 晶体,以减少或消除谱线干扰:Cl、S 选用 Ge 作为分析晶体,它不衍射二级线,且对这2个元素有 高的衍射强度。(2)使用新软件角度区间扫描程 序,对这些元素的峰值和背景的20角度进行了仔细 的选择。(3)对含量低的元素,适当增加测量时间。 首次发现 Cl、S 等元素随着试样的放置时间和测量 次数的增加,其测定值有不同程度的增加,并提出了 解决问题的相应对策。袁家义等(2004)也发现了 制好的样片因放置环境和时间的不同会使 Cl 和 S 的测定结果增高的现象(校正 Cl 的基体元素采用 Si、Fe、Ca、K:校正S的基体元素为Si、Al、Fe、Ca、 K)。张勤等(2005)采用粉末样品压片制样,测定化 探样品中 Cl、Br、S 等 34 个组分,讨论了微量元素的 背景选择和谱线重叠校正及 Cl 的测定问题。使用 经验系数法和康普顿散射线作内标校正基体效应. 经标准物质检验,分析结果与标样值吻合。试验发 现,Cl含量随测量次数增加而增加。为了得到准确 的分析结果,采用新制的样片,先测量 Cl,而后顺序 测量其他元素。

张勤等(2004)采用低压聚乙烯镶边垫底的粉 末样品压片制样,测定多目标地球化学调查样品中 的主、次、痕量组分,重点讨论了微量元素的背景选 择和谱线重叠校正问题,使用经验系数法和康普顿 散射线作内标校正基体效应。特别是对痕量元素的 测量采用了以下3条措施:(1)对于无干扰的元素分 析线,采用粗准直器和X光管过滤片 Al(200 μm),以 增加痕量元素的谱线强度和峰背比值。(2)使用荷 兰帕纳科公司的 SuperQ 软件的角度校核中的扫描 参数、背景和谱线重叠等子程序,采用多个标样,通 过在屏幕上显示扫描图,仔细地选择无干扰的背景 位置和干扰谱峰的元素。(3)对痕量元素适当增加 测量时间。经标准物质分析检验,结果与标准值 吻合。

于波等(2006)采用低压聚乙烯镶边垫底的粉 末样品压片制样,对土壤和水系沉积物样品中 C、N 等36个组分进行测定。主、次量元素间的基体效应 校正,采用经验系数法校正基体效应。痕量元素的 基体效应校正,采用康普顿散射线内标法和经验系 数法校正基体效应。谱线重叠干扰的校正,使用多 个校准样品,由选用的校正模式通过回归求取。经 标准物质校验,结果与标准值吻合。徐婷婷等 (2007)采用粉末压片,测定海洋沉积物和陆地化探 样品中的29个主、次、痕量元素,主、次量元素间基 体效应使用了经验系数法和理论 α 系数相结合及 经验系数法校正。张勤等(2008)采用粉末压片制 样,用X射线荧光光谱法测定土壤、水系沉积物等 样品中 C、N、F 等 42 种元素。土壤样品中的 C、N、 F,其合格率约为80%,基体效应校正无明显效果, 谱线重叠及高次线的干扰较严重,化学价态引起谱 峰位移,矿物和颗粒度效应是引起误差的主要原因。 王志刚等(2008)采用粉末压片测定灰尘中主、次量 元素,杨剑等(2009)采用硼酸镶边垫底的粉末样品 压片制样,进行土壤和水系沉积物样品中 Na、Mg、 Al、Si、P、S、Cl 等 31 个组分的测定,都是主、次量元 素采用经验系数法进行基体效应、痕量元素采用康 普顿散射线内标法和经验系数法进行基体效应,谱 线重叠干扰的校正,使用多个校准样品,由选用的校 正模式通过回归求取。

王祎亚等(2010)的研究表明,价态对S的荧光 强度影响不是主要因素,主要原因是不同样品中存 在不同的重金属硫化物,从而对 S 的分析产生了严重的矿物效应,使分析结果产生较大的误差。考虑到土壤和水系沉积物标准物质基体差别不大,因而建立了土壤和水系沉积物系列样品中 S 的分析测试方法,基体校正元素为 Ca、Cu 和 Pb。

1.3 熔融法

20 世纪 50 年代,加拿大学者 Claisse 创立了玻 璃熔片 X 射线荧光测定法以来,熔融法得到了广泛 应用。玻璃熔片的实质是冷却的固体溶液,能消除 不同颗粒间的矿物组成差别和颗粒大小差别,使熔 片在原子水平上达到了均匀。根据样品在熔剂中的 稀释情况,基体效应有不同程度减小,特别是二次荧 光、三次荧光强度减小得更多。理论 α 系数可以得 到较好的应用。

由于理论 α 系数可由理论参数进行计算而不 需要大量的标样, 葛正杰(1990) 用 NBSGSC 程序计 算非金属地质样品熔融片体系的理论 α 系数,将其 输入理学 3530 X 射线荧光光谱仪的 DATA-FLEX-181B软件中,对该类样品的10个常见主、次量成分 进行分析,结果可与化学法相比。 $m_{\#_{H}}: m_{\#_{M}} = 1:5$ 。 李国会(1989)以0.7g样品和5.6gLi₂B₄O₇混合, 以 LiNO, 作氧化剂,加入少量的 LiBr 以增加熔融体 的流动性并使制备的样片易于脱模。测定了各种类 型的地质样品中14个主次元素。由于各元素含量 变化范围大,为了补偿理论 α 系数对基体效应校正 的不足,采取了两项措施:一是采用较大比例的稀释 $(m_{\#_{H}}: m_{\#_{N}} = 1:8); 二是分段作工作曲线。杨玉华$ 等(1991)熔片制样测定高铝岩矿样品,选用相近样 品类型的理论 α 系数与由少量标样产生的经验 α 系数相结合的影响系数进行基体效应校正,同样获 得了满意的结果, Al, O, 的测定上限可达 85%。

林惠芳等(1995)采用溶融法测定硅酸盐岩石 中 25 个元素。样品的稀释比选用熔剂为 m(Li₂B₄O₇):m(LiBO₂)=1:3,m_¥al:m_{熔剂}=1:3。低 稀释比对微量组分的测定有利,采用理论α系数校 正 Si、Fe、Al、Ca、Mg、K、Na、Mn、P、Ti、Ba、Sr、Rb 13 个主要元素间的干扰,采用经验系数法校正 Cu、Pb、 Zn、Ce、Cr、La、Ni、Nb、Zr、Ga、Y、V 12 个微量元素的 基体效应,其中 Cu、Pb、Zn、Ni、V、Zr 同时采用内标 法,使大部分元素都能获得较满意的结果。同时指 出,当样品中 Cu 质量分数高于 400 μg/g 时熔体黏 性大,成型后难以脱模,加大脱模剂 LiBr 的用量,同 时考虑样品稀释比变化的影响。唐力君等(2001) 也研究制定了在 X 射线荧光光谱分析中适用于多 类型地质样品的低稀释比制样技术。确定了用 Li₂B₄O₇和 LiBO₂ 混合试剂作为熔剂,使用 m_#[#] m_k=1:3的稀释比制样,对4种不同种类的地质物 料进行了试验,并采用基本参数法和理论 α 系数法 校正基体效应,得到了准确度较高的定量分析结果。

李国会等(1994)在 Li₂B₄O₇和 LiBO₂ 混合熔剂 熔融 制 样 中 加 入 氧 化 剂 LiNO₃,温 度 不 超 过 1 000 ℃,测定硅酸盐等样品 中的 S 等 20 种元素。 除 Sr,Zr,Rb,Cu,Ni、Nb 6 个元素用康普顿散射线作 内标校正基体效应外,其他元素均用理论 α 系数校 正元素间的吸收 – 增强效应。加入氧化剂把不同价 态的 S 都氧化成正 6 价,即硫酸盐的形式来保护硫, 使熔融温度不超过 1 000 ℃,防止 S 在高于 1 000 ℃ 熔融制样时的损失,使熔融法测 S 变为现实。

江伟等(2007)采用熔融玻璃法, m_{#A}: m_{β剂} = 1:10, 测定地质样品中的多元素, 用经验系数法和理 论 α 系数法校正谱线干扰及基体效应, 分析结果与 标准值相符。徐婷婷等(2008)选择 1:12 的熔样比 例熔融制备样片, 测定海洋沉积物样品中 16 种组 分, 用理论 α 系数校正基体效应, 测定值与标准值 相符。周建辉等(2009)用 1:9的熔样比熔融制样, 测定页岩样品中 Si、Al、Fe、Ca、K、Mg、Na 7 个主量 元素, 使用理论 α 系数和经验系数相结合的方法校 正基体效应; 谱线重叠干扰校正系数, 使用多个校准 样品, 线性回归求得, 分析结果与化学法结果进行对 比基本一致。

1.4 粉末与熔融联合测定法

土壤、岩石中部分微量元素的含量很低,稀释后 测定的结果并不理想,粉末与熔融联合测定法往往 可以解决。武朝晖等(1995)采用熔融法制备样片, 个别元素采用压片法制样,用散射线内标法与经验 系数相结合的方法进行基体校正,测定复杂地质样 品中 U、Th 等成分,其准确度和精密度能够满足地 质工作的需要。李国会(1997)采用熔片法和压片 法相结合的方式测定了海洋沉积物中的 35 种元素, 其中,除 La、Nd、Th 用 L_{α1}线,Ce 和 Pb 用 L_{β1}线作为 分析线外,其余元素均使用 K_α 线作为分析线。测 定主、次量元素样品经熔融,消除了颗粒度和矿物效 应,降低了元素间的基体效应,采用理论 α 系数法 校正元素间的效应;微量元素 V、Cr、Se、La、Nd、S、Cl 等,用经验系数法校正基体效应;其余微量元素则用 散射线内标法校正元素间的效应;谱线重叠干扰的 校正采用含量校正法;结果与化学法相媲美。

李国会等(1998)在测定多金属结核中 37 种组分时,对主、次量元素测定采用硼酸盐熔融法,以消除样品的粒度效应,提高分析的准确度和精密度;对于痕量元素则用粉末压片法,以得到较低的检出限。由于多金属结核中重金属元素含量较高(Cu、Ni等),熔融时对黄铂合金坩埚有损害,故采用玻璃碳坩埚熔融再粉碎压片的办法。Na₂O、MgO、Al₂O₃、SiO₂、P₂O₅、SO₃、K₂O、CaO、TiO₂、Mn、Fe、Co、Ni、Cu、Ba等主、次量元素采用理论α系数校正元素间的效应;对痕量元素Sc、V、Cr、La、Ce、Nd采用经验系数法校正元素间的效应;其余痕量元素采用散射线内标法校正基体效应。方法经大洋多金属结核标准物质分析验证,其分析结果与标准值符合。

夏晨光等(2006)利用熔片法标定海底钴结壳 样品作为标样,添加到国家一级标样中作标准曲线, 再用压片法测定海底钴结壳样品中的多元素。样品 中极有可能含有还原状金属元素,会损坏铂金器皿, 所以要小心使用。由于待测样品中的 Mn、Fe 含量 很高,因此采用1:20 的稀释比制备样品。对于粉末 压片法,轻元素 Na、Mg、A1、Si 的测定中,粒度和矿 物效应的影响比较严重,所以要求待测样品的粒度 小于0.076 mm。对于主量元素,采用经验和理论 α 系数校正基体影响,对于微量元素 Cu、Co、Pb、Ni、 Mo、Sr、V、Zn、Zr、Y、Ba,采用经验系数法或内标法 校正。

2 能量色散型 X 射线荧光光谱分析 (EDXRF)的应用

能谱仪与波谱仪的最大区别在于波长色散 X 射线光谱仪用分析晶体(如 LiF)作分光元件,能量 色散 X 射线谱仪用正比探测器如 Si(Li)及电子学 线路作分光元件。前者用分析晶体(如 LiF)作分光 元件分辨率高,但探测效率低,一般只能进行顺序多 元素分析,仪器结构复杂,价格较贵;后者用正比探 测器如 Si(Li)及电子学线路作分光元件,分辨率较 差,但探测效率高,可以方便地进行多元素同时分 析,仪器结构紧凑,价格相对便宜。能量色散 X 射 线荧光光谱仪已发展为 4 个分支:(1)传统的 EDXRF 谱仪:最大电压为 50 kV,功率9~50 W,通 常对原子序数小于 45 的 Rh(Rh Kα = 20.12 keV) 元素进行分析时,用 K 系线;原子序数大于 45 的重 元素用 L 系线。在这一能量区间,轻元素的 K 系线 与重元素的 L 系线和 M 系线重叠严重,影响分析效 果,特别对环境、生物样品中 Cd、Hg、Pb 等有害元素 的检测,常常不能满足要求。(2)微束 EDXRF 谱 仪:使用聚束毛细管透镜方法,聚焦光斑最小可达 30 μm,已广泛应用于文物、司法鉴定等领域。 (3)手持式 EDXRF 谱仪:质量约 2.5 kg,可使用电 池工作 8h,适用于物料识别、现场分析或原位分析。 (4)高能 EDXRF 谱仪:高能 EDXRF 谱仪的发展在 某种意义上是为了弥补传统的 EDXRF 和 WDXRF 的不足,提高重元素的检测下限(吉昂等,2003)。

滕彦国等(2003)采用成都理工大学地学核技 术四川省重点实验室研制的 CIT-3000 高灵敏度多 元素 EDXRF 分析仪,同时测定土壤中的 Cu、Pb、Zn、 Cr、As、Ni 等重金属元素时,检出限达15~200 μg/g。 该分析仪采用低能 X 光管和同位素源(⁵⁵Fe)双激发 方式,选用国外最新研制成功的电致冷半导体探测 器作为探测系统,开发了有效地提高仪器性能的方 法技术。

詹秀春等(2003)首次采用偏振激发的能量色 散 X 射线荧光光谱仪(Spectro X-Lab 2000)快速分 析地质样品中的34种元素,在总测量时间为600 s (每个样品)的条件下,得到的各元素的检出限达到 0.5~30 μg/g。仪器配备端窗 Pd 靶,最大功率 400 W;Si(Li) 探测器, 能量分辨率(5.9 keV 处) < 150 eV; HOPG、Al,O, 偏振靶, Mo、Co、Ti 二级靶。轻 元素(原子序数低于 Fe)采用基本参数法校正基体 效应,重元素采用康普顿散射内标法校正基体效应。 有些元素(Na、Mg、Pr、Nd等)的灵敏度较低,难以准 确测量: Na、Mg 为轻元素, Pr 和 Nd 的激发效率较 低:Co元素受地质样品主成分 Fe 的强烈重叠干扰, 含量低时难以准确测量:另一些元素如 Cd、In、I、 Te、Se、Ta、Hg 等主要是由于地质样品中的含量过 低,难以准确测量;Al、Si等主量元素的准确度稍差, 这主要是由制样方法造成的;Th 元素的结果系统偏 高,可能是因 Pb、Bi 等的重叠干扰扣除不完全所致。 王祎亚等(2009)采用 P-EDXRF 光谱仪(Spectro X-Lab 2000)测定地质样品中的 18 种元素,各元素的 检出限为0.4~10.9 µg/g,并对各组分的相对不确 定度进行了评述。储彬彬等(2010)采用 Spectro X-Lab 2000 仪测定铅锌矿区土壤重金属 Pb、As、Cd、 Cu、Zn。由于 Pb 的 L_a 谱线与 As 的 K_a 谱线几乎完 全重合,故一般选用 PbL_β和 AsK_a,并扣除 Pb 的干 扰。KBr 靶是可以激发 As 元素的靶材,而 Br 的 K_β (K_{β1} = 13.29 keV),能够激发 Pb 的 L 系线,运用 KBr 靶激发 As 的 K_a 谱线时, Pb 元素的含量不应 太高。

樊守忠等(2006)采用粉末样品压片制样,用偏振 能量色散型 X 射线荧光光谱仪(PANalytical Epsilon 5) 对水系沉积物和土壤样品中多种元素(40种)进行测 定。仪器的主要指标:高压发生器 100 kV.600 W:侧 窗型铍窗厚 30 µm;分别采用了 Al₂O₂、W、BaF₂、CsI、 Ag、Rb、Mo、Zr、SrF2、KBr、Ge、Fe、Ti、Al等不同偏振靶 (或二级靶)对被分析元素进行选择激发和测定。除 Na、Si、Fe 外,其余元素利用经验系数和二级靶的康 普顿散射线作内标校正基体效应。在总测量时间为 2 000s(每个样品)的条件下,除 Na、Mg、A1、Si、P、K 等轻元素外,其余各元素的检出限达到 0.25~14.8 μg/g。李国会等(2007)又将 Epsilon 5 EDXRF 的应用范围扩充至 63 个元素。其中包括了 由于地质样品中含量过低,同时多种型号的 WDXRF 谱仪及常规的偏振激发 EDXRF 谱仪难以测定的 Pr-Lu的13个稀土元素和Cd、Se、Ta、Tl、I等元素, 充分展示了 Epsilon 5 EDXRF 在痕量重元素领域的检 测能力。王平等(2008)应用 Epsilon 5 同时测定土壤 中6种金属元素,方法线性良好,Cr、Mn、Pb、Cu、As、 Se的检出限分别为 3.62, 3.65, 0.91, 0.23, 0.35, 0.01 mg/kg,土壤标准样品的测定结果均符合要求, 实际样品测定的 RSD 为 0.5% ~ 10.0%, 与原子吸收 法、原子荧光法的测定结果相吻合。李玉璞等(2010) 用 Epsilon 5 测定土壤样品中 27 种元素。除 Na、Si、 Fe 外,其余元素除扣除相应谱线的重叠干扰外,还要 用康普顿内标法和经验系数法校正基体效应。各元 素的检出限在 0.01~3.65 μg/g。

樊兴涛等(2011)应用车载台式 XEPOS 型偏振 激发能量色散 X 射线荧光光谱仪现场分析地球化 学样品中 K、Ca、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Ga、As、 Rb、Sr、Y、Zr、Nb、Ba、Pb、Th 等 20 余种元素,与实验 室分析数据进行对比有良好的一致性,质量分数超 过 10 μg/g 时,除了 V 和 Ba,其他元素的平均相对 偏差均小于 25%,增强了现场的决策能力。

3 便携式荧光仪的应用

便携式荧光仪可分为波长色散和能量色散两大 类,是为野外、现场 X 荧光分析应用专门开发的仪 器类型。具有体积小、重量轻等特点。以 SPEC-TROSCAN-U 便携式波长色散 X 射线荧光光谱仪应 用为例,该仪器的主要参数为:X 射线管功率:4 W、 40 kV、10 μA;分辩率:60 eV(FeK_α);谱线探测: Ca—U 晶体衍射;功耗:100 W;质量:25 kg。李国会 等(2001)使用该仪器并采用粉末样品压片制样测 定了水系沉积物及土壤样品中的 Zr、Y、Rb、Sr、Zn、 Ti、V、Cr、Mn、Fe、Ca 11 个元素,得到了较好的精密 度(RSD < 10%, n = 10)和准确度,为野外现场测试 作了有益的尝试。

便携式(手持式)能谱仪的型号较多,使用电制 冷式半导体探测器的仪器体积可以做得很小,携带 和使用都极为方便。陈永君等(2001)使用自行研 制的便携式能谱仪(质量 3 kg)测定了土壤和岩石 样品中的主量元素 Ca、Fe 及微量元素 Ti、V、Cr、Mn、 Cu、Zn、Rb、Sr、Zr 等 11 个组分,效果不错。任家富 等(2007)采用自行研制的便携式 X 射线荧光分析 仪(质量为 6 kg)对地质土壤和水系列沉积物样品 中 Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Rb、Sr、Y、Zr、 Nb、Pb 等多种元素进行分析。基体效应校正主要考 虑了主元素 Fe 对分析元素的吸收影响,可以通过多 标准统计分析方法获得 Fe 的 β 系数校正其影响。 对原子序数比较大的元素采用了²⁴¹Am 源的 N_p L_x 线作内标法校正。

张勤等(2006)使用粉末样品压片制样,用 PANalytical Minipal 4 便携式能量色散 X 射线荧光 光谱仪(SDD 探测器)测定化探样品中的 Na₂O、 MgO、A1₂O₃、SiO₂、CaO、Fe₂O₃、K₂O、As、Ba、Br、Ce、 Co、Cr、Cu、Ga、La、Mn、Nb、Ni、P、Pb、Rb、Sr、Th、V、 Y、Zn、Zr、Ti、Mo 共 30 种组分,方法简便、快速。

4 结 论

4.1 仪器发展

为了扩大分析元素的范围、提高分析灵敏度,特 别是提高超轻元素的检测灵敏度,使超轻元素的准 确测定变为可能,各仪器厂商采取了一系列措施。 如采用大电流和超薄铍窗的 X 射线管提高仪器的 激发效率、X 射线管超尖锐的尖端设计缩短 X 光管 与样品的距离、人工合成多层膜晶体的开发应用降 低晶体的温度效应、特殊的多层大间距薄膜弯曲晶 体(如石墨晶体)提高了超轻元素的光谱强度和灵 敏度,等等。此外,仪器的功能结构向多用途和小型 化方向发展。计算机技术的迅速发展,使仪器的计 算机硬件和软件都有了很大改进,极大地促进了分 析应用软件的完善、改进和创新。除采用传统的经 验系数法软件校正基体效应外,理论 α 系数和基本 参数法定量分析软件的应用也日益完善,使得分析 样品中的基体校正的准确性不断提高。软件的另一 个重要发展是半定量分析软件的推出,这一软件对 于分析样品繁杂而又缺少合适标准样品的分析非常 适用。

4.2 技术应用

X 射线荧光分析技术作为土壤分析的一种方法,在解决化学性质极为相似的 Nb、Ta、Zr、Hf 及稀土元素的测定方面,主、次量组分快速分析方面发挥了重要作用。研究热点还表现在微区和原位分析、价态和化学形态的分析,另外一些轻元素如 C、N、F 的测定还不是很令人满意,有待进一步开发研究。随着仪器的进步、实验方法的改进,X 射线荧光分析法以其快速、经济、绿色、多元素分析等特点,并且将进一步降低分析的检测限,提高测定的选择性和精密度,在与土壤学密切相关的农业科学、人体健康、古气候解释、估算构造事件、地貌变迁、地质背景异常调查等领域的研究继续发挥作用。

参考文献:

- 陈永君,邓赛文,马天芳,等.2001.便携式 X 射线荧光分析仪 的研制与应用[J]. 岩矿测试,20(2):136-140.
- 陈素兰,胡冠九,周春宏,等.2006.X 射线荧光光谱法测定土 壤及底泥中多种元素[J].环境监测管理与技术,18 (4):15-18.
- 储彬彬,罗立强.2010.铅锌矿区土壤重金属的 EDXRF 分析 [J].光谱学与光谱分析,30(3):825-828.
- 樊守忠,张勤,李国会,等.2006. 偏振能量色散 X 射线荧光光 谱法测定水系沉积物和土壤样品中多种组分[J]. 冶金 分析,26(6):27-31.
- 樊兴涛,李迎春,王广,等.2011.车载台式能量色散X射线荧 光光谱仪在地球化学勘查现场分析中的应用[J].岩矿 测试,30(2):155-159.

- 葛正杰. 1990. 理论 α 系数在非金属地质样品 X 射线荧光光 谱分析中的应用[J]. 地质实验室,6(1):30-32.
- 葛江洪. 2009. X 射线荧光光谱法测定土壤样品中 C 和 N 等 30 个主、次、痕量元素[J]. 化学工程师,23(7):44-48.
- 吉昂,陶光仪,汪玉琴,等. 1989. 理论 α 系数在 X 射线荧光 光谱分析化探样品主量元素中的应用[J]. 光谱学与光 谱分析,9(6):40-44.
- 姜桂兰,刘树田,季桂娟,等.1994.地质物料中铷铯铀钍锆铪 等元素的直接测定方法[J].长春地质学院学报,20 (4):473-477.
- 吉昂,陶光仪,卓尚军,等.2003.X射线荧光光谱分析[M]. 北京:科学出版社.
- 江伟,杜婷婷.2007. 熔片法测地质样品中的多元素[J]. 新疆 有色金属,(增刊1):82-83.
- 贾立宇,史玉芳,李大勇,等.2009.X射线荧光光谱法测定土 壤中主、次、微量元素[J].贵州地质,26(1):65-72.
- 贾立宇. 2010. 土壤环境质量指标 Pb、As、Zn、Cu、Ni、Cr 的 X 射线荧光光谱法快速测定[J]. 环保科技, 16(1):14 -16.
- 李国会. 1989. 熔片法 X 射线荧光光谱测定多种类型地质样 品中 14 个主次要元素[J]. 光谱学与光谱分析,9(1): 66-71.
- 刘德慧.1990. 汞型活性碳纸富集 XRF 法测定地质试样中 痕量碘[J]. 岩矿测试,(3):175 – 178.
- 刘恩美,张仕定,吉昂,等.1990.理论α系数-X射线荧光光
 谱法分析水系沉积物中主次量元素[J].分析化学,18
 (2):121-125.
- 李华, 贺春福, 袁秀顺. 1990. 土壤中常量元素的 X 射线荧光 光谱测定[J]. 分析化学, 18(6):549-552.
- 李华, 贺春福, 袁秀顺. 1992. X 射线荧光光谱经验系数法分析土壤中痕量元素[J]. 分析试验室, 11(4):53-56.
- 李敏,陈远盘,苏惠娴. 1992. 萃取法富集 XRF 光谱测定岩 石、土壤中的痕量元素[J]. 光谱学与光谱分析,12(3): 111-116.
- 李国会,卜维,樊守忠. 1994. X 射线荧光光谱法测定硅酸盐 中硫等 20 个主、次、痕量元素[J].光谱学与光谱分析, 14(1):105-110.
- 李国会. 1997. X 射线荧光光谱法测定海洋沉积物中 35 种元 素[J]. 地质实验室, 13(4):225 - 229.
- 李国会,王晓红,王毅民.1998.X射线荧光光谱法测定大洋 多金属结核中多种元素[J]. 岩矿测试,17(3):197 -202.
- 罗丽,包生祥.1998.岩石样品中主、次、微量元素的 X 射线荧 光光谱测定[J].分析化学,26(9):1125-1128.
- 林惠芳,苏晓鸣. 1999. X 射线荧光光谱法测定硅酸盐岩石中 25 个元素[J]. 地质实验室,15(2):110-113.

- 李国会. 2001. X 射线荧光光谱法测定土壤和水系沉积物中的痕量铪和锆[J]. 岩矿测试,20(3):217-219.
- 李国会,陈永君,樊守忠,等.2001.便携式波长色散 X 射线荧 光光谱仪及初步应用[J].岩矿测试,20(4):301-304.
- 李国会,樊守忠,潘晏山.2002.X射线荧光光谱法测定水系 沉积物、土壤等样品中Cl、Br和S三元素[J].地质与勘 探,38(增刊1):219-221.
- 梁述廷,刘玉纯,胡浩.2004.X射线荧光光谱法同时测定土 壤样品中碳氮等多元素[J]. 岩矿测试,23(2):102 -108.
- 李国会,吉昂.2007. Epsilon 5 偏振能量色散 X 射线荧光光谱 仪分析土壤样品中 63 个元素[C]//全国土壤污染监测 与控制修复、盐渍化利用技术交流研讨会文集.北京:中 国环境科学学会,4-13.
- 刘磊夫,张孟星,曲淑凡. 2008. 岩石、土壤中 23 种主次痕量 元素的 XRF 测定[J]. 现代科学仪器,(2):75-78.
- 李田义, 柯玲. 2010. 滤纸制样 X 射线荧光光谱法测定矿石中的多元素[J]. 岩矿测试, 29(1):77-79.
- 李玉璞, 于庆凯. 2010. X 射线荧光光谱分析法在土壤样品多
 元素分析中的应用[J]. 环境科学与管理, 35(3):99
 102.
- 刘江斌,赵峰,余宇,等.2010.X 射线荧光光谱法同时测定地 质样品中铌钽锆铪铈镓钪铀等稀有元素[J]. 岩矿测 试,29(1):74-76.
- 毛庆云,杨迎花,柳明春.2002. 地质样品中23 个常量元素和 微量元素的X 射线荧光光谱仪测定[J]. 齐齐哈尔大学 学报:自然科学版,18(3):30-32.
- 邱林友,赵尔燕. 1992. 离子交换反应富集 XRF 测定地质样 中痕量砷[J]. 矿物岩石,12(4):109 – 110.
- 任家富, 廣先国, 陈永君, 等. 2007. 便携式 X 荧光仪在土壤和 水系沉积物样品中的应用研究[J]. 物探化探计算技 术, 29(4):346-348.
- 唐力君,罗立强,江葛.2001.低稀释比制样技术与多类型地 质样品 X 射线荧光分析方法研究[J]. 岩矿测试,20 (4):253-262.
- 滕彦国, 庹先国, 倪师军, 等. 2003. EDXRF 方法在土壤重金 属污染评价中的应用[J]. 核技术, 26(6):440-443.
- 武朝晖,王鹤,朱宁,等.1995.复杂地质样品中铀、钍等成分 X 射线荧光光谱分析[J].铀矿地质,11(3):177-184.
- 王平,王焕顺,李玉璞.2008.偏振能量色散X射线荧光光谱
 法测定土壤中金属元素[J].环境监测管理与技术,20
 (3):41-43.
- 王祎亚, 詹秀春, 刘以建, 等. 2009. 偏振能量色散 X 射线荧光
 光谱法测定地质样品中 18 种元素[J]. 分析试验室, 28
 (9):90-94.
- 王小欢,孟庆芬,董亚萍,等.2010.X射线荧光光谱法快速分

析盐湖黏土矿物元素含量[J].光谱学与光谱分析,30(3):829-833.

- 王祎亚,詹秀春,樊兴涛,等.2010.粉末压片-X射线荧光光 谱法测定地质样品中痕量硫的矿物效应佐证实验及其 应用[J].冶金分析,30(1):7-11.
- 肖德明,武朝晖. 1990. 地质样品中砷、镓、钴、镍、溴、氯、硫和 氟的 X 射线荧光光谱法测定[J]. 铀矿地质,6(5):312 -317.
- 熊光平,陈文华.1995.溶剂浸渍滤纸的制备及其在X射线萤 光光谱分析中的应用研究之三:地质样品中微量锆铪的 测定[J].岩矿测试,14(1):1-6.
- 夏晨光,武朝辉,刘牧.2006.X射线荧光光谱法测定海底钻 结壳的方法研究[J].科学技术与工程,6(18):2967 -2971.
- 徐海,刘琦,王龙山.2007.X 射线荧光光谱法测定土壤样品 中碳氮硫氯等 31 种组分[J]. 岩矿测试,26(6):490 -492.
- 徐婷婷,张波,张红,等.2007.X 射线荧光光谱法同曲线测定 海洋沉积物和陆地地化样品中的29个主次痕量元素 [J].海洋地质动态,23(3):31-36.
- 徐婷婷,夏宁,张波.2008. 熔片制样 X 射线荧光光谱法测 定海洋沉积物样品中主次量组分[J]. 岩矿测试,27 (1):74-76.
- 袁汉章,刘洋,贾乐庚.1989. 化探样品中二十五个主要、次要 和微量元素的 X 射线荧光光谱测定[J]. 分析化学,7 (7):652-655.
- 杨玉华,曹杰. 1991. 高铝岩矿样品的 X 射线荧光光谱分析 [J]. 岩石学报,(1):83-85.
- 喻德科. 1992. X 射线荧光光谱铝环 双层压片法测定土壤 中常量和微量元素[J]. 分析测试通报,11(5):84 – 87.
- 杨仲平.1998.X 射线荧光光谱快速分析地质物料主、次元素 [J].光谱实验室,15(4):101-104.
- 袁慧,张丽华,金立云.2001.X射线荧光光谱法测定土壤中
 26种主次元素和微量元素[J].核化学与放射化学,23
 (3):172-177.
- 袁家义,白雪冰,王卿,等.2004.X 射线荧光光谱法测定地质 样品中的氯和硫[J]. 岩矿测试,23(3):225-227.
- 杨仲平,靳晓珠,黄华鸾.2006.X 射线荧光光谱法测定化探 样品中的主次痕量元素[J].广西科学院学报,22(增刊 1):430-434.
- 于波,严志远,杨乐山,等.2006.X射线荧光光谱法测定土壤 和水系沉积物中碳和氮等36个主次痕量元素[J].岩矿 测试,25(1):74-78.
- 杨明太,张连平.2008. WDXRF 光谱仪与 EDXRF 光谱仪之异 同[J].核电子学与探测技术,28(5):1008-1011.
- 杨剑,万飞,王佳丽,等.2009.用X射线荧光光谱法测定Cl、

S 等 31 个元素[J]. 吉林地质, 28(2): 116-119.

- 张玉清,张长明.1990.X 射线荧光光谱测定矿样中主元素及 微量元素[J].矿产与地质,4(3):63-96.
- 张启超,贺春福,任红星.1992.X射线荧光光谱透明胶带薄 样法测定土壤中的主量元素[J].光谱实验室,(1/2): 89-91.
- 曾力,陈远盘.1993. 萃取离子交换法富集 XRF 法测定岩石
 土壤中的痕量元素[J]. 光谱学与光谱分析,13(1):131
 136.
- 邹海峰,苏克,姜桂兰,等.1998.X射线荧光光谱法直接测定 地质样品中多种痕量元素[J].岩矿测试,17(3):207 -210.
- 詹秀春,陈永君,郑妙子,等.2002.地质样品中痕量氯溴和硫的X射线荧光光谱法测定[J].岩矿测试,21(1):12 -18.
- 詹秀春,罗立强.2003.偏振激发-能量色散X射线荧光光谱 法快速分析地质样品中34种元素[J].光谱学与光谱分析,23(4):804-807.

- 张勤,樊守忠,潘宴山,等.2004.X射线荧光光谱法测定多目标地球化学调查样品中主次痕量组分[J].岩矿测试,23 (1):20-24.
- 张勤,樊守忠,潘宴山,等.2005.X射线荧光光谱法测定化探 样品中主、次和痕量组分[J].理化检验:化学分册,41 (8):547-552.
- 张平,张赤斌,张蕾,等.2006.X射线荧光法测定海南多目标 地调样品中多种元素[J].科学技术与工程,6(18): 2961-2963.
- 张勤,樊守忠,潘宴山,等. 2007. Minipal 4 便携式能量色散 X 射线荧光光谱仪在勘查地球化学中的应用[J]. 岩矿测 试,26(5):377-380.
- 张勤,李国会,樊守忠,等.2008.X射线荧光光谱法测定土壤 和水系沉积物等样品中碳、氮、氟、氯、硫、溴等42种主 次和痕量元素[J].分析试验室,27(11):51-57.
- 周建辉,白金峰.2009. 熔融玻璃片制样 X 射线荧光光谱测 定页岩中主量元素[J]. 岩矿测试,28(2):79-81.

Application of WDXRF and EDXRF in analyses of soils and rocks in China

HUANG Guang-ming, HOU Peng-fei, JIANG Ye, XIAO Ling, ZHANG Mei, ZHANG Pei-xin

(Geological Survey of Jiangsu Province, Nanjing 210018, China)

Abstract: The authors introduced the application of WDXRF and EDXRF in the fields of soils and rocks detections since the eighties of 20th century, inclusive of the three sample pre-processing technologies: thin section preparation of the samples in pre-processing, powder pressing method and melting method. The authors also introduced the treatment methods of sample matrix effects, absorption enhancement effect between elements and spectral line interference. The application of portable X-ray fluorescence spectrometer in the analysis of soils and rocks was briefly presented and X-ray fluorescence spectrometer and its application of detection technology were depicted in the text.

Keywords: WDXRF; EDXRF; Soils; Rocks; Analysis