DOI:10.12119/j. yhyj. 201903005

水溶性富勒烯对 U(VI)在氧化多壁碳纳米 管上吸附的影响

王 $f^{1,2*}$,张志宏^{1,2},刘 鹏⁴,李 湛⁴,吴王锁⁴,高召永³,王 虹³, 马 丽³,王 1,2 ,庞登科^{1,2}

(1. 中国科学院青海盐湖研究所,中国科学院盐湖资源综合高效利用重点实验室,青海 西宁 810008;
2. 青海省盐湖资源化学重点实验室,青海 西宁 810008;3. 青海大学,青海 西宁 810008;
4. 兰州大学核科学与技术学院,放射化学与核环境研究所,甘肃 兰州 730000)

摘 要:采用静态试验法研究了水溶性富勒烯对 U(VI) 在氧化多壁碳纳米管上吸附的影响。结果表明,羟基化富勒烯(C₆₀(OH)_n)和羧基化富勒烯(C₆₀(C(COOH)₂)_n)的加入对 U(VI) 在氧化多壁碳纳米管上的吸附量影响作用类 似。在 pH <3 范围内,羟基化富勒烯和羧基化富勒烯对吸附几乎没有影响,在 pH >3 以后,二者开始抑制碳纳米管 对 U(VI)的吸附。较低浓度(10 mg/L)的 C₆₀(OH)_n 对 U(VI)的吸附几乎没有影响。而等量的 C₆₀(C(COOH)₂)_n 已呈现出明显的抑制作用。但两者的作用机理不同,前者可能是由于羟基化富勒烯和 U(VI) 竞争氧化多壁碳纳米 管上的吸附位点造成的,后者则可能改变了氧化多壁碳纳米管的表面电荷。用双位点模型对不同固液比和 U(VI) 初始浓度下 U(VI)的吸附率随 C₆₀(OH)_n 和 C₆₀(C(COOH)₂)_n 初始浓度的变化进行了拟合得到了很好的结果。 关键词:羟基化富勒烯;羧基化富勒烯;U(VI);吸附;氧化多壁碳纳米管

中图分类号:0658.11 文献标识码:A 文章编号:1008-858X(2019)03-0035-09

1 前 言

铀,既是一种能源资源,也是一种重要的国防 战略资源,对国民经济、核电事业和国防工业的发 展具有重要的作用和意义^[1,2]。它通过核燃料制 造行业、铜矿业、铀矿开采和加工行业等与之相关 联的活动进入水中^[3,4]。在氧化环境中通常以 +6价的铀酰离子(UO₂₊₂)形式存在。已经有很 多关于 U(VI)在多种不同材料上吸附的报 道^{[5-11]。}

碳纳米管由于其独特的性能在诸多领域得到 了广泛的应用^[12,13]。因此,难免在生产、应用和 处置过程中释放到环境中,甚至有可能成为环境 中非常重要的组成部分^[14,15]。目前,关于多种碳 纳米材料对金属离子竞争性吸附作用及机理的研 究很少报道。而研究该课题的难点在于,如果选 择多种碳纳米材料同时作为吸附剂,由于多种碳 纳米材料之间的难分离性,在实验中很难做到分 别测定每种材料对金属离子的吸附贡献。因此, 需要选择两种水溶性不同的碳纳米材料作为吸附 剂来解决这一问题。本实验采用两种水溶性截然 相反的碳纳米材料作为吸附剂,研究其对金属离 子的吸附影响,进而探索两种碳纳米材料之间的 相互作用。同时,为了考察羟基和羧基官能团与 金属离子的络合作用,选择将富勒烯分别进行羟 基化和羧基化改性处理。羟基化富勒烯和羧基化 富勒烯对 U(VI)在氧化多壁碳纳米管上吸附的 影响目前还没有文献报道过。

收稿日期:2018-12-04;修回日期:2018-12-21

基金项目:青海省科技厅自然科学基金青年项目(2015-ZJ-945Q)

作者简介:王 婧(1984 -),女,助理研究员,研究方向:盐湖资源综合利用。Email:wangjing@isl.ac.cn。

2 材料和方法

2.1 氧化多壁碳纳米管和水溶性富勒烯的制备

原料多壁碳纳米管(pristine MWCNTs),纯度 96%以上(其中无定形碳 < 3%,灰分 < 0.2%), 直径10~30 nm,长度1~10 μm,购自深圳市纳米 港公司。氧化多壁碳纳米管通过用浓硝酸氧化原 料碳纳米管制得。首先,称取 MWCNTs 3 g,加入 400 mL浓硝酸,于80℃下回流24 h,待反应完成 后加入去离子水,离心,再加入400 mL浓硝酸和 浓硫酸的混合液(1:3,V/V)继续回流48 h,离心 并用去离子水洗至 pH~6,即得氧化多壁碳纳米 管(oxidized MWCNTs, oMWCNTs)。

富勒烯(C_{60}),纯度 > 99%,购自河南省濮阳 市永佳实验器材有限公司。富勒烯的羟基化处理 依照文献^[16]的方法,在 50 mL 含 1 mg/mL 的 C_{60} 溶液中,加入 2 mL 0.5 mol/L 的 NaOH 溶液,用 5 滴 10% 的 TBAH 作为相转移催化剂,然后加入 1 mL 30% 的 H₂O₂室温下反应 12 h,此时苯溶液 由紫色变为无色,同时水溶液由无色变为棕黄色。 用分液漏斗进行相分离,得到深棕色的 C_{60} (OH)₂₀ 溶液,加入甲醇使 C_{60} (OH)₂₀沉淀,离心去掉甲 醇;再加水使沉淀溶解,加入甲醇沉淀,重复多次 至甲醇溶液的 pH < 8,50 ℃真空干燥24 h得富勒 醇(C_{60} (OH)_a)。

羧基化富勒烯(C_{60} (C(COOH)₂)_n)制备方 法。将C₆₀溶于甲苯溶液中,加入NaH,溶液由原 来的紫色变为深红色,然后加入溴代丙二酸二乙 酯。将该溶液抽真空,接着充入Ar气,使体系在 Ar气保护下搅动10h,再将反应所得的溶液过 滤。将过滤产物旋转蒸干后,加入甲苯溶液,并加 入20倍过量的NaH。将该溶液抽真空,充入氩 气,使溶液在80℃下,在Ar气保护下继续加热搅 动10h。移去热源,立即向溶液中加入CH₃OH中 止反应,并加入2mol/LHCl。将所得产物抽滤, 抽滤所收集的沉淀物分别经甲苯,2mol/LHCl, H,0,苯洗涤两次,烘干^[17,18]。

U(VI)离子标准储备液(1 mg/mL)通过将 UO₂(NO₃)₂·6H₂O 溶于去离子水配制。 其余试剂均为化学纯,实验用水为去离子水。

2.2 吸附实验

在确定平衡时间、液固比的基础上,在一系列 聚乙烯离心管中先加入一定量固液比为 0.1 g/L 的碳纳米管悬浮液和不同离子强度的 NaNO₃ 液 进行预平衡,然后加入已知浓度的 U(VI)溶液, 用 0.01 mol/L HCl 或 NaOH 调节体系的 pH 值。 摇匀后放在恒温振荡器上振荡两天后,在 12 000 r/m转速下离心分离 30 min,取上清液 3 mL用分光光度计在 652 nm 处测其吸光度值, 计算平衡后 U(VI)在液相中的浓度,并测量平衡 后的 pH 值。吸附热力学在温度分别为 293 ± 2, 313 ± 2,333 ± 2 K 下进行。U(VI)离子的浓度采 用分光光度法测定,在最大吸收波长 652 nm 处测 其吸光度值。

3 结果与讨论

3.1 氧化多壁碳纳米管的表征

图1所示分别为氧化多壁碳纳米管、氧化多 壁碳纳米管与 $C_{\omega}(OH)$, 混合、氧化多壁碳纳米 管与 $C_{60}(C(COOH)_2)_n$ 混合分散于水溶液中的 TEM 表征图。由图 1(A) 可知, 经氧化后的多壁 碳纳米管具有完整的中空管状结构,表面较光滑, 其管壁周围无明显的无定形碳和其他颗粒存在。 而图1(B)清楚地发现氧化多壁碳纳米管表面有 物质附着,我们推测 C₆₀(OH), 连接在了氧化多 壁碳纳米管的表面。由图1(C)与图1(A)及图1 (B)对比可以看出,氧化多壁碳纳米管表面仍然 是较为光滑的,没有颗粒状的附着物存在,表明 TEM 表征无法说明氧化多壁碳纳米管与 $C_{60}(C(COOH)_2)_n$ 发生作用。氧化多壁碳纳米管 于吸附前后形貌的不同可能是由于富勒烯表面连 接的功能基团不同导致两种水溶性富勒烯的性质 有所区别而造成的。用 N₂ - BET 法测得 oMWC-NTs 的比表面积为 100 m^2/g , 孔体积为 0.34 cm³/g,孔尺寸为13.326 nm。

图1 (A)氧化多壁碳纳米管;(B)氧化多壁碳纳米管 + $C_{60}(OH)_n$;(C)氧化多壁碳纳米管 + $C_{60}(C(COOH)_2)_n$ 的 透射电镜图

Fig. 1 TEM photographs of (A) oMWCNTs; (B) oMWCNTs + C_{60} (OH), ; (C) oMWCNTs + C_{60} (C(COOH)),

图2 氧化多壁碳纳米管吸附前后的红外对比图: (A)氧化多壁碳纳米管;(B)氧化多壁碳纳米管 + C₆₀(OH)_n;(C)氧化多壁碳纳米管 + C₆₀ (C(COOH)₂)_n

Fig. 2 FTIR spectrum of (A) oMWCNTs; (B) oMWC-NTs + C_{60} (OH)*n*; (C) oMWCNTs + C_{60} (C(COOH)₂)*n*

氧化多壁碳纳米管吸附前后的红外对比表征 如图 2 所示。图 2(A)为原始多壁碳纳米管经氧 化处理后的红外表征图,3 429 cm⁻¹左右出现较 宽的中等强度的吸收峰,为羧基基团中 – OH 伸 缩振动峰;2 922 和 2 853 cm⁻¹的峰为碳管侧壁 – CH 的伸缩振动峰;1 734 cm⁻¹出现了 RCOOH 化 合物中的 C = O 伸缩振动峰;1 628 和1 418 cm⁻¹ 附近的峰为 C = C 的伸缩振动峰;而出现在 1 560 cm⁻¹附近的峰则为羧基和羧基阴离子的伸缩振 动峰;位于 1 000 和 1 380 cm⁻¹左右出现的强峰, 为 – C – O 的伸缩振动峰和醇羟基、酚羟基与羧 基的 – OH 的弯曲振动峰。表明酸化过程使得 MWCNTs 表面产生大量的羟基、羧基等含氧官能 $D^{[19]}$ 。这些官能团都是亲水性的,使得多壁碳纳 米更易于分散到水溶液中^[20]。从图中可以看到, 氧化多壁碳纳米管吸附后的红外吸收峰仍然存 在。由图2(B)可知,吸附C₆₀(OH)_n后,氧化多壁 碳纳米管在2922和2853 cm⁻¹处的-CH的伸 缩振动峰,1734 cm⁻¹处的C=O伸缩振动峰以及 1628和1418 cm⁻¹处的C=C的伸缩振动峰的 峰强度均有增加,并且在1404 cm⁻¹处出现了新 的吸收峰(此为脂肪族 – OH 的弯曲振动峰)。这 些变化可能是由于C₆₀(OH)_n吸附到氧化多壁碳 纳米管上引起的^[19]。

图 3 展示了氧化多壁碳纳米管的 zeta 电位随 羟基化富勒烯和羧基化富勒烯浓度变化的趋势 图。图中红线表示羟基化富勒烯对氧化多壁碳纳 米管 zeta 电位值的影响, 蓝线则代表羧基化富勒 烯的影响。随着羟基化富勒烯和羧基化富勒烯浓 度的增大,氧化多壁碳纳米管表面的负电荷随之 增多。但从图中可以很明显地看到,氧化多壁碳 纳米管的 zeta 电位随着羟基化富勒烯浓度的增大 规律地降低,我们推测可能是吸附到氧化多壁碳 纳米管表面的羟基化富勒烯改变了氧化多壁碳纳 米管的表面电荷。因此,随着羟基化富勒烯浓度 的增大,氧化多壁碳纳米管表面的负电荷随之增 多。而羧基化富勒烯对氧化多壁碳纳米管 zeta 电 位没有明显的影响,这说明羧基化富勒烯与氧化 多壁碳纳米管的结合同羧基化富勒烯与其结合的 方式不同。这一推论有待进一步印证。

图 3 C₆₀(OH)_n和 C₆₀(C(COOH)₂)_n对氧化多壁碳 纳米管 zeta 电位的影响:红色线代表 C₆₀(OH)_n的影 响;蓝色线代表 C₆₀(C(COOH)₂)_n的影响。

Fig. 3 Effect of $C_{60}(OH)_n$ and $C_{60}(C(COOH)_2)_n$ on the zeta potential of oMWCNTs; red line represent $C_{60}(OH)_n$; blue line represent $C_{60}(C(COOH)_2)_n$

图 4 氧化多壁碳纳米管在溶液中的分散性随不同浓度 水溶性富勒烯的变化:(A)未加入富勒烯;(B)oMWCNTs +10 mg C_{60} (C(COOH)₂)_{*n*};(C)oMWCNTs +100 mg C_{60} (C(COOH)₂)_{*n*};(D)oMWCNTs +1 000 mg C_{60} (C (COOH)₂)_{*n*};(E)oMWCNTs +10 mg C_{60} (OH)_{*n*};(F)oM-WCNTs +100 mg C_{60} (OH)_{*n*};(G)oMWCNTs +1 000 mg C_{60} (OH)_{*n*}

Fig. 4 The dispersibility of oMWCNTs after adding different concentration soluble fullerene: (A) single oMWCNTs; (B) oMWCNTs + 10 mg $C_{60}(C(COOH)_2)_n$; (C) oMWCNTs + 100 mg $C_{60}(C(COOH)_2)_n$; (D) oMWCNTs + 1 000 mg $C_{60}(C(COOH)_2)_n$; (E) oMWCNTs + 10 mg $C_{60}(OH)_n$; (F) oMWCNTs + 100 mg $C_{60}(OH)_n$; (G) oMWCNTs + 1 000 mg $C_{60}(OH)_n$; (G) oMWCNTs + 1 000 mg $C_{60}(OH)_n$

图4为加入不同浓度的羧基化富勒烯和羟基 化富勒烯后,氧化多壁碳纳米管在溶液中分散性 随之变化的示意图。测试前,从A管到G管预先 经过离心处理。同样地,明显看出G管中溶液均 匀分布,与其他管中液体相比,发现固液相没有分 离。这证明吸附的羟基化富勒烯提高了氧化多壁 碳纳米管在溶液中的分散性。此结果与图3所示 的结果一致。总之,这说明羟基化富勒烯改变了 氧化多壁碳纳米管表面的性质。

3.2 羟基化富勒烯和羧基化富勒烯的红外表征

原始 C_{60} 、羟基化 C_{60} 及羧基化处理所得的 $C_{60}(C(COOH)_2)_n$ 红外表征对比如图 5 所示。在 $C_{60}(OH)_n$ 的红外光谱图中(如图 5B 所示),在 3 234 cm⁻¹处较宽的中等强度的 – OH 伸缩振动 峰,1 609 cm⁻¹ 附近的 C = C 伸缩振动峰, 1 086 cm⁻¹ 附近的 C – O 伸缩振动峰以及 1 365 cm⁻¹ 附近的 – OH 面内弯曲振动峰,均为 $C_{60}(OH)_n$ 的红外特征峰^[21]。由图 5C 所示的 C_{60} (C(COOH)₂)_n的红外谱图可以看到,合成的化合 物在波数为 3 439、1 718、1 201、523 cm⁻¹处有明 显吸收峰,对照谱图确定其分别为 O – H 的骨架 振动、C = O 的骨架振动,C – O 的骨架振动,O – H 的伸缩振动,结合相关文献^[22],可以确定合成的 物质为 $C_{60}(C(COOH)_2)_n$ 。

图 5 原始 C₆₀、C₆₀(OH)_n与 C₆₀(C(COOH)₂)_n的红 外表征图

 Fig. 5
 IR spectrum of raw $C_{60} \ C_{60} \ (OH)_n$ and C_{60}
 $(C(COOH)_2)_n (A)$ raw C_{60} ; $(B) \ C_{60} \ (OH)_n$; (C)

 $C_{60} \ (C(COOH)_2)_n$

3.3 羟基化富勒烯和羧基化富勒烯对氧化多壁 碳纳米管吸附 U(VI)的研究

3.3.1 羟基化富勒烯对 U(VI)吸附的影响 羟基化富勒烯对 U(VI)在氧化多壁碳纳米 管上的吸附影响示于图 6。从图中可以看出,U (VI)的吸附曲线在羟基化富勒烯加入前和加入 后形状相同,只是在 pH >6 以后,U(VI)的吸附 急剧下降。在低酸度区(pH <3)范围内,羟基化 富勒烯对 U(VI)的吸附几乎没有影响。这与文 献^[23]中羟基化富勒烯对 Th(IV)的吸附的影响结 果类似,只是 pH 范围比 U(VI)大1 个单位(pH < 4)。而 pH >3 时,羟基化富勒烯开始抑制 U(VI) 的吸附。

第3期

图 6 $C_{60}(OH)_n$ 对 U(VI)在 oMWCNTs 上吸附边界 的影 响, m/V = 0.5 g/L, $T = 25 \pm 1$ °C, I = 0.01 mol/L NaNO₃, $C[U^{6+}]$ initial = 1.12×10⁻⁴ mol·L⁻¹

Fig. 6 Effect of C_{60} (OH)_n on U (VI) adsorption on oMWCNTs as a function of pH, m/V = 0.5 g/L, $T = 25 \pm 1$ °C, I = 0.01 mol/L NaNO₃, C [U⁶⁺] initial = 1.12 × 10⁻⁴ mol·L⁻¹

分析此结果较为合理的解释可能是氧化多壁 碳纳米管表面形成了 $C_{60}(OH)_n - oMWCNTs$ 和 U -oMWCNTs 两种化合物,但 $C_{60}(OH)_n = U(VI)$ 没有发生作用。由氧化多壁碳纳米管在吸附 $C_{60}(OH)_n$ 前后的对比表征结果已经证实 $C_{60}(OH)_n$ 前后的对比表征结果已经证实 $C_{60}(OH)_n$ 确实吸附到氧化多壁碳纳米管表面,这 可能是由二者间强烈的 $\pi - \pi$ 电子给体一受体作 用引起的^[24]。并且氧化多壁碳纳米管与 $C_{60}(OH)_n$ 间的吸附作用强于其对 Th(IV)的吸附 作用。因此,本已吸附在氧化多壁碳纳米管上的 U(VI)被吸附到氧化多壁碳纳米管上的 $C_{60}(OH)_n$ 占据了吸附位点,于是氧化多壁碳纳米 管对 U(VI)的吸附迅速下降。

图 7 不同 U(VI)初始浓度下 C₆₀(OH)_n对 U(VI)在 oMWCNTs 上吸附的影响, *m*/V = 0.5 g/L, pH = 7.00 ±0.10, *I* = 0.01 mol/L NaNO₃, *T* = 25±1 ℃。

Fig. 7 Effect of U (VI) initial concentrations on U (VI) adsorption on oMWCNTs as a function of C_{60} (OH)_n initial concentrations, m/V = 0.5 g/L, pH = 7.00 ± 0.10, I = 0.01 mol/L NaNO₃, $T = 25 \pm 1$ °C

图 8 不同固液比下 C₆₀(OH)_n对 U(VI)在 oMWC-NTs 上吸附的影响, pH = 7.00 ± 0.10, *I* = 0.01 mol/L NaNO₃, *T* = 25 ± 1 ℃, *C*[U⁶⁺] initial = 1.12 × 10⁻⁴ mol ·L⁻¹

Fig. 8 Effect of U(VI) adsorption on oMWCNTs as a function of C_{60} (OH) _n initial concentrations under different solid-liquid ratio, pH = 7. 00 ± 0. 10, *I* = 0.01 mol/L NaNO₃, *T* = 25 ± 1 °C, *C*[U⁶⁺] initial = 1.12 × 10⁻⁴ mol · L⁻¹

图 7 和图 8 分别对应于不同固液比下和不同 U(VI)初始浓度下,U(VI)在氧化多壁碳纳米管 上的吸附随羟基化富勒烯浓度的变化曲线。从两 图中均可以看出,U(VI)的吸附量随羟基化富勒 烯的浓度的增加是逐渐降低的。该结果与图 6 中 的现象一致。图7和图8的吸附等温线可以分成两个不同的区间。第一区间为当羟基化富勒烯浓度小于50mg/L时,U(VI)在氧化多壁碳纳米管上的吸附几乎不受羟基化富勒烯的影响,其吸附量几乎维持在一个恒定的值。第二部分则是当羟基化富勒烯浓度大于50mg/L时,U(VI)在氧化多壁碳纳米管上的吸附量随羟基化富勒烯的增多而逐渐减少。从图7中可以看出,当U(VI)的初始浓度降低一半时,其在氧化碳纳米管上的吸附量随之降低约50%,这说明即使加入了羟基化富勒烯,U(VI)只与氧化多壁碳纳米管的量为0.25g/L

时,在羟基化富勒烯的浓度超过 150 mg/L 以后, U(VI)在氧化多壁碳纳米管上的吸附逐渐趋于平 缓近似维持在约 15% 左右。当氧化多壁碳纳米 管的量为0.1 g/L 时,在羟基化富勒烯的浓度超 过 150 mg/L 以后,U(VI)在氧化多壁碳纳米管上 的吸附逐渐趋于平缓近似维持在约 5% 左右。这 间接反映出了羟基化富勒烯在氧化多壁碳纳米管 上的吸附随其浓度改变的曲线。用双吸附位点模 型^[25] 拟合实验数据得到很好的结果(见表1)。 说明用此模型可以很好地解释 C₆₀(OH)_n对 U (VI)在氧化多壁碳纳米管上吸附等温线的影响。

	Table 1 Paramet	ers of double adsorption	site model	
$((\mathbf{U}) ((\mathbf{I}^{-1}))$		Double Adsorption	Site Model	
$(m/V)/(g\cdot L^{-1})$ -	C_2/C_0	e^{c^1}/C_0	$k \cdot b$	R^2
1	267.26	- 165.72	- 773.41	0.948 5
0.5	-4 148.21	4 246.26	12 867.49	0.973 9
0.25	- 10. 97	104.89	127.13	0.975 7
0.1	-7.72	185.38	55.43	0.945 7
C /(male I ⁻¹)		Double Adsorption	Site Model	
$C_0/(\text{mol}\cdot L)$ -	C_2 / C_0	e^{c^1} / C_0	k • b	R^2
1.88×10^{-4}	-267.39	-4 148.21	- 18. 12	0.962 8
1.12×10^{-4}	368.95	4 246.26	164.01	0.973 9
5.64×10^{-5}	1 093.02	12 867.49	98.58	0.9804

表1 双吸附位点模型拟合的相关参数

3.3.2 羧基化富勒烯对 U(VI)吸附的影响

图9 对比展示了无羧基化富勒烯存在和加入 不同浓度羧基化富勒烯后 U(VI) 在氧化多壁碳 纳米管上的吸附随 pH 变化的曲线。在此发现羧 基化富勒烯对 U(VI)吸附的影响与羟基化富勒 烯的影响趋势相近,但是加入少量的羧基化富勒 烯(10 mg/L C₆₀(C(COOH)₂)_n)明显降低了 U (VI)在氧化多壁碳纳米管上的吸附,而等量的羟 基化富勒烯进入体系中对 U(VI)的吸附几乎没 有影响。说明这两种水溶性富勒烯的作用机理是 不同的。因为 C₆₀(C(COOH)₂)_n表面的羧基是吸 电子基团,降低了 C₆₀(C(COOH)₂)_n与氧化多壁 碳纳米管苯环间的 $\pi - \pi$ 堆积作用,同时由于 C₆₀(C(COOH)₂)_n 的 空 间 位 阻 效 应 强 于 $C_{60}(OH)_n$,因此, $C_{60}(C(COOH)_2)_n$ 不像 $C_{60}(OH)_n$ 一样容易吸附到氧化多壁碳纳米管的 表面。但 $C_{60}(C(COOH)_2)_n$ 带正电荷,由于其质 子化作用,增加了H⁺与U(VI)的竞争作用,使得 U(VI)在氧化多壁碳纳米管上的吸附降低。且在 pH >7 以后,氧化多壁碳纳米管对U(VI)吸附量 的下降在羧基化富勒烯存在时明显不如羟基化富 勒烯存在时显著(相同 pH = 9 时,加入等量的羧 基化富勒烯和羟基化富勒烯(均为125 mg/L),U (VI)的吸附量分别为60%和20%)。进一步证 明这两种水溶性富勒烯的性质是不同的。因此, 分析其可能的原因为羧基化富勒烯改变了氧化多 壁碳纳米管表面的电荷性质。这部分的实验还有 待进一步深入探讨。 表2 双吸附位点模型拟合的相关参数

$(m/V)/(g \cdot L^{-1})$ -	Double Adsorption Site Model				
	C_{2}/C_{0}	e^{c^1}/C_0	$k \cdot b$	R^2	
1	111.62	- 20.56	- 208.30	0.926 5	
0.5	- 11.01	102.48	215.21	0.858 0	
0.1	- 20. 54	117.05	106.87	0.853 (
$C_0/(\mathrm{mol}\cdot\mathrm{L}^{-1})$	Double Adsorption Site Model				
	C_{2}/C_{0}	e^{c^1} / C_0	$k \cdot b$	R^2	
1.88×10^{-4}	126.94	- 38.93	- 250. 79	0.878 2	
1.12×10^{-4}	278.16	- 189.93	- 760. 91	0.937 0	
5.64 $\times 10^{-5}$	292.34	- 204.14	-655.62	0.9497	

图 9 $C_{60}(C(COOH)_2)_n$ 对 U(VI)在 oMWCNTs 上吸附边界的影响, m/V = 0.5 g/L, $T = 25 \pm 1 \, ^{\circ}C$, $I = 0.01 \text{ mol/L NaNO}_3$, $C [U^{6+}]$ initial = 1. 12 × $10^{-4} \text{ mol} \cdot \text{L}^{-1}$

Fig. 9 Effect of C_{60} (C (COOH)₂)_n on U(VI) adsorption on oMWCNTs as a function of pH, m/V = 0.5 g/L, $T = 25 \pm 1$ °C, I = 0.01 mol/L NaNO₃, C[U⁶⁺] initial = 1.12 × 10⁻⁴ mol·L⁻¹

同样地,接下来分别研究了改变 U(VI)的初始浓 度和固液比,不同浓度的 $C_{60}(C(COOH)_2)_n$ 对 U (VI)在氧化多壁碳纳米管上吸附率的影响,结果 如图 10 和图 11 所示。从图中可以看出,无论是 U(VI)的初始浓度还是固液比,随着 $C_{60}(C(COOH)_2)_n$ 浓度的增大,氧化多壁碳纳米 管对 U(VI)的吸附呈明显下降趋势,进一步证明 $C_{60}(C(COOH)_2)_n$ 的降低影响比 $C_{60}(OH)_n$ 的影 响更大。同时说明尽管 $C_{60}(OH)_n$ 和 $C_{60}(C(COOH)_2)_n$ 对 U(VI)在氧化多壁碳纳米管 表面上的吸附均有不同程度的抑制作用,但两者 的作用方式有着本质的区别。用双位点吸附模型 拟合得到较好的结果。

图 10 不同 U(VI) 初始浓度下 $C_{60}(C(COOH)_2)_n$ 对 U (VI)在 oMWCNTs 上吸附的影响,m/V = 0.5 g/L, pH = 7.00 ±0.10,I = 0.01 mol/L NaNO₃, $T = 25 \pm 1$ °C **Fig.** 10 Effect of U(VI) initial concentrations on U (VI) adsorption onto oMWCNTs as a function of $C_{60}(C(COOH)_2)_n$ initial concentrations, m/V = 0.5 g/L, pH = 7.00 ±0.10,I = 0.01 mol/L NaNO₃, $T = 25 \pm 1$ °C

图 11 不同固液比下 C₆₀(C(COOH)₂)_n 对 U(VI)在 oMWCNTs 上吸附的影响, pH = 7.00 ± 0.10, *I* = 0.01 mol/L NaNO₃, *T* = 25 ± 1 ℃, *C*[U⁶⁺] initial = 1.12×10⁻⁴ mol·L⁻¹

Fig. 11 Effect of oMWCNTs dosage on U(VI) adsorption onto oMWCNTs as a function of $C_{60} (C(COOH)_2)_n$ initial concentrations, pH = 7.00 ±0.10, *I* = 0.01 mol/L NaNO₃, $T = 25 \pm 1 \ ^{\circ}C$, $C[U^{6+}]$ initial = 1.12 × 10⁻⁴ mol·L⁻¹

结 论

 $C_{60}(OH)_{n}$ 和 $C_{60}(C(COOH)_{2})_{n}$ 对 U(VI)在 氧化多壁碳纳米管上的吸附均表现为抑制作用, 且抑制趋势相类似,但二者的作用机理不同,分析 $C_{60}(OH)_{n}$ 的抑制作用可能为 $C_{60}(OH)_{n}$ 和 U (VI)竞争氧化多壁碳纳米管上的吸附位点,而 $C_{60}(C(COOH)_{2})_{n}则可能改变了氧化多壁碳纳米$ 管上的表面电荷性质,此部分研究内容有待进一步更加深入系统的研究。

参考文献:

- [1] Östhols E, Manceau A, Farges F, et al. Adsorption of Thorium on Amophous Silica: An EXAFS Study [J]. Journal of Colloid and Interface Science, 1997, 194(1): 10-21.
- [2] Anirudhan, T. S., Bringle C., Rijith S.. Removal of uranium (VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay[J]. Journal of Environmental Radioactivity, 2010, 101 (3): 267 – 276.
- [3] McKinley J. P., Zachara J. M., Smith S. C., et al. The influence of uranyl hydrolysis and multiple site-binding reactions on adsorption of U(VI) to montmorillonite [J]. Clays and Clay Minerals, 1995, 43(5): 586-598.
- [4] Turner, G. D., Zachara J. M., Mckinley J. P., et al. Surfacecharge properties and UO₂²⁺ adsorption of a subsurface smectite
 [J]. Geochimica et Cosmochimica Acta, 1996, 60 (18): 3399 - 3414.
- [5] Li J., Wang X. X., Zhao G. X., et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions[J]. Chemical Society Reviews, 2018, 47(7):2322-2356.
- [6] Ramasamy D. L., Khan S., Repo E., et al. Synthesis of mesoporous and microporous amine and non-amine functionalized silica gels for the application of rare earth elements (REE) recovery from the waste water-understanding the role of pH, temperature, calcination and mechanism in light REE and heavy REE separation[J]. Chemical Engeering Journal, 2017, 322: 56 – 65.
- [7] Ai Y. J., Liu Y., Lan W. Y., et al. The effect of pH on the U (VI) sorption on graphene oxide (GO): a theoretical study
 [J]. Chemical Engineering Journal, 2018, 343: 460 466.
- [8] Kowal-Fouchard A., Drot R., Simoni e., et al. Use of spectroscopic techniques for uranium (VI)/montmorillonite interaction modeling [J]. Environmental Science & Technology, 2004, 38(5): 1399-1407.

- [9] Yao W., Wang X. X., Liang Y., et al. Synthesis of novel flower-like layered double oxides/carbon dots nanocomposites for U(VI) and ²⁴¹Am(III) efficient removal: Batch and EX-AFS studies[J]. Chemical Engineering Journal, 2018, 332: 775-786.
- [10] Catalano J. G., and Brown J. G. E. Uranyl adsorption onto montmorillonite: Evaluation of binding sites and carbonate complexation [J]. Geochimica et Cosmochimica Acta, 2005, 69 (12): 2995 – 3005.
- [11] Zhang C. L., Li X., Chen Z. S., et al. Synthesis of ordered mesoporous carbonaceous materials and its highly efficient capture of uranium from solutions [J]. Science China (Chemistry), 2018, 61: 281 – 293.
- [12] Mauter, M. S. and Elimelech M. Environmental Applications of Carbon-Based Nanomaterials [J]. Environmental Science & Technology, 2008, 42(16): 5843 - 5859.
- [13] Pan, B. and Xing B. Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes[J]. Environmental Science & Technology, 2008, 42(24): 9005 - 9013.
- [14] Shakur H. R., Saraee K. R. E., Abdi M. R., et al. A novel PAN/NaX/ZnO nanocomposite absorbent: synthesis, characterization, removal of uranium anionic species from contaminated water [J]. Journal Material Science, 2016, 51: 9991 – 10004.
- [15] Nowack B., and Bucheli T. D.. Occurrence, behavior and effects of nanoparticles in the environment[J]. Environmental Pollution, 2007, 150(1): 5-22.
- [16] Chen, W., Duan L., and Zhu D.. Adsorption of Polar and Nonpolar Organic Chemicals to Carbon Nanotubes [J]. Environmental Science & Technology, 2007, 41 (24): 8295 – 8300.
- [17] Li, T., Li, X., Huang, K., et al. Synthesis and characterization of hydroxylated fullerene epoxide-an intermediate for forming fullerol [J]. Journal of Central South University of Technology (English Edition), 1999, 6 (1): 35 – 36.
- [18] Ye C., Chen C. Y., Chen Z. ,et al. In situ observation of C₆₀ (C(COOH)₂)₂ interacting with living cells using fluorescence microscopy[J]. Chinese Science Bulletin, 2006, 51(9):1060 -1064.
- [19] Avilés, F., Cauich-Rodríguez J. V., Moo-Tah L. *et al.* Evaluation of mild acid oxidation treatments for MWCNT functionalization[J]. Carbon, 2009,47(13): 2970 – 2975.
- $[\,20\,]$ Lu C. , Liu C. , and Rao G. P. Comparisons of sorbent cost for the removal of Ni^{2+} from aqueous solution by carbon nanotubes and granular activated carbon[J]. Journal of Hazardous Materials, 2008, $151\,(1)$: 239 246.
- [21] Xu J. Y., Han K. Y., Li S. X., et al. Pulmonary responses to polyhydroxylated fullerenols, C60(OH)x[J]. Journal of Applied Toxicology, 2009, 29(7): 578 – 584.
- [22] Cheng F. Y., Yang X. L., Zhu H. S., et al. Synthesis of oli-

goadducts of malonic acid C_{60} and their scavenging effects on hydroxyl radical[J]. Journal of Physics and Chemistry of Solids, 2000, 61(7): 1145 – 1148.

- [23] Wang J., Liu P., Li Z., et al. Th(IV) adsorption onto oxidized multi-walled carbon nanotubes in the presence of hydroxylated fullerene and carboxylated fullerene [J]. Materials, 2013, 6(9): 4168 – 4185.
- [24] Chen, C. and Wang, X. K. Adsorption of Ni(II) from Aqueous Solution Using Oxidized Multiwall Carbon Nanotubes [J].

Industrial Engineering Chemical Research, 2006, 45 (26): 9144-9149.

[25] Jing Wang, Zhan Li, Shicheng Li, Wei Qi, Peng Liu, Fuqiang Liu, Yuanlv Ye, Liansheng Wu, Lei Wang, Wangsuo Wu. Adsorption of Cu(II) on Oxidized Multi-walled Carbon Nanotubes in the presence of Hydroxylated and Carboxylated Fullerenes[J]. PLoS ONE, 2013, 8(8): e72475. Doi:10. 1371/journal. pone.0072475.

Effect of Hydroxylated and Carboxylated Fullerenes on Oxidized Multi-walled Carbon Nanotubes Adsorbing U(VI)

WANG Jing^{1,2}, ZHANG Zhi-hong^{1,2}, LIU Peng⁴, LI Zhan⁴, WU Wang-suo⁴, GAO Zhao-yong³, WANG Hong³, MA Li³, WANG Min^{1,2}, PANG Deng-ke^{1,2}

(1. Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute

of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China; 2. Key Laboratory of Salt Lake

Resources Chemistry of Qinghai Province, Xining, 810008, China; 3. Qinghai University, Xining,

810016, China; 4. Radiochemistry Laboratory, School of Nuclear Science and Technology,

Lanzhou University, Lanzhou, 730000, China)

Abstract: The adsorption of U(VI) on oxidized multi-walled carbon nanotubes (oMWCNTs) as a function of two kinds of soluble fullerene (i. e. hydroxylated fullerene (C_{60} (OH)_n) and carboxylated fullerene (C_{60} (C(COOH)₂)_n) were studied under ambient conditions using batch techniques. The results indicated that the drastic effect of C_{60} (OH)_n and C_{60} (C(COOH)₂)_n on the adsorption of U(VI) on oMWCNTs have almost not been found at pH < 3, whereas the negative effect was observed at pH > 3. No obvious inhibition effect on U(VI) adsorption was induced by C_{60} (OH)_n at a lower concentration. C_{60} (C(COOH)₂)_n showed a significant effect at 10 mg/L. The mechanism of C_{60} (OH)_n may be contributed to the competitive adsorption sites on oMWCNTs between C_{60} (OH)_n and U(VI). The surface charge of oMWCNTs may be changed by C_{60} (C(COOH)₂)_n. The double site sorption model (DSSM) was applied to simulate the adsorption isotherms of U(VI) in the presence of C_{60} (OH)_n and fitted the experimental data well.

Key words: oMWCNTs; U(VI); Adsorption; $C_{60}(OH)_n$; $C_{60}(C(COOH)_2)_n$