# Mn<sup>2+</sup> 在玻碳电极上的阳极氧化机理

唐玉玲<sup>1,2</sup>,房 艳<sup>1</sup>,房春晖<sup>1</sup>,周永全<sup>1</sup>,戈海文<sup>1</sup>,刘红艳<sup>1,2</sup>,杨子祥<sup>1,2</sup> (1.中国科学院青海盐湖研究所,青海 西宁 810008;2.中国科学院大学,北京 100049)

摘 要:采用三电极体系,以Ag/AgCl 为参比电极,Ti 片为辅助电极,用伏安法和电化学阻抗谱(EIS)研究了 酸性溶液中  $Mn^{2+}$ 在玻碳电极表面的氧化机理,讨论了扫描速度、温度、酸度等对  $Mn^{2+}$ 氧化电位及电流的影 响。结果表明,常温下控制  $Mn^{2+}$ 和  $H_2SO_4浓度, 阳极反应为 <math>Mn^{2+} \rightarrow MnOOH$ 。当温度升高时,由于阳极大量 释放  $O_2$ ,进而发生  $4MnOOH + O_2 \rightarrow 4MnO_2 + 2H_2O 反应。因此,通常 <math>Mn^{2+}$ 在  $H_2SO_4溶液中升温电解的主$  $要阳极反应为, <math>Mn^{2+} \rightarrow Mn^{4+} \rightarrow Mn(OH)_4$ ,当温度升高至 70 °C 以上时有  $Mn^{3+}$ 生成,  $(Mn^{3+} - Racc定生歧)$ 化反应生成  $Mn^{2+}$ 和  $MnO_2$ 。

关键词:伏安法;EIS;玻碳电极;氧化机理

中图分类号:0657.1 文献标识码:A

文章编号:1008-858X(2015)02-0044-07

# 1 引 言

氧化锰由于其多变的结构和特殊的物理化 学性质,以及价格低廉、环境友好、电位窗口较 宽和比电容高等优点,被广泛应用在催化<sup>[1]</sup>、 吸附<sup>[2]</sup>和电化学<sup>[3]</sup>等领域。此外,氧化锰在传 感<sup>[4]</sup>、磁学<sup>[5]</sup>和微波吸收<sup>[6]</sup>等领域也表现出了 潜在的应用价值。近些年,氧化锰作为一种廉 价的金属氧化物电极材料在电池和超级电容器 方面的研究也备受关注<sup>[7]</sup>。

氧化锰材料的合成途径包括湿法、干法和 干湿法。具体分为水热法、氧化还原沉淀法、固 相法、溶胶—凝胶法、电解法等,其中电解法由 于工艺简单、耗资少等优点被广泛应用<sup>[8]</sup>。但 是电解过程得到的产品很多,为了得到高纯度 的目标产物,有必要加强电解过程中 Mn<sup>2+</sup>氧化 机理研究。

目前电解  $MnO_2$ 的反应机理仍有争议,且普 遍认为存在两种机理<sup>[9-10]</sup>,分别为  $Mn^{2+} \rightarrow$ 

### 2 实验部分

#### 2.1 试剂、设备和主要仪器

MnSO<sub>4</sub>·H<sub>2</sub>O(AR,天津市凯信化学工业有限公司);H<sub>2</sub>SO<sub>4</sub>(AR,兰州裕隆气体有限责任公司);蒸馏水( $\kappa < 1.0 \mu$ S/cm<sup>2</sup>),使用前煮沸除去 CO<sub>2</sub>。

高精度低温恒温槽(GDH-1015W,宁波海 曙赛福实验仪器厂);稳压电源(YJ44,上海沪 光仪器厂);超声波清洗器(KH5200E,昆山禾

 $Mn^{3+} \rightarrow MnOOH \rightarrow MnO_2 和 Mn^{2+} \rightarrow Mn^{4+} \rightarrow Mn(OH)_4 \rightarrow MnO_2$ 。针对这两种机理,研究者 们至今仍未给出明确的解释。本文根据  $Mn - H_2O系统电势 - pH 图^{[11]},结合理论研究$ 思路,采用三电极体系,研究了以玻碳电极为工 作电极时MnSO<sub>4</sub>酸性溶液的伏安特性,探讨了 扫描速度、酸浓度及温度对 MnSO<sub>4</sub> - H<sub>2</sub>SO<sub>4</sub> 溶 液中 Mn<sup>2+</sup> 阳极氧化机理的影响。

收稿日期:2014-08-12;修回日期:2014-12-10

基金项目:国家自然科学基金项目"多聚硼酸锂溶液结构及介稳现象研究"(21373251)

作者简介:唐玉玲(1989 - ),女,硕士生,主要研究方向为溶液电化学。

通信作者:房 艳。Email:fangy8@isl.ac.cn。

创超声仪器有限公司);电化学工作站(AUTO-LAB,瑞士万通中国有限公司);YSI 3200 电导 仪(杭州汇尔仪器设备有限公司);Ag/AgCl 参 比电极(上海仪电科学仪器股份有限公司)。 玻碳电极为 φ3 mm 圆盘电极;辅助电极,截取 长5 cm,宽1 cm 的钛片,表面打磨光滑后置于 蒸馏水中,超声清洗5 min。

#### 2.2 玻碳电极的预处理

将直径为3 mm的玻碳电极先用粒度递加 的金相砂纸逐级抛光至镜面,并用二次水冲洗 电极表面;再依次用1.0、0.3 μm的Al<sub>2</sub>O<sub>3</sub>在麂 皮上抛光,每次抛光后先洗去表面污物;然后移 入超声水浴中清洗,每次2~3 min,重复3次; 最后依次用1:1乙醇、1:1 HNO<sub>3</sub>和蒸馏水超声 清洗,彻底洗涤后,在0.5~1 mol/L H<sub>2</sub>SO<sub>4</sub>溶液 中用循环伏安法活化。扫描范围1.0~ -1.0 V,反复扫描直至达到稳定的循环伏安图 为止。

#### 2.3 电导率和 pH 值测定

溶液 pH 值均采用 Orion 310P-01 pH meter(Thermo, USA)型 pH 计测量,整个测量过程 的实验误差 < 0.5%;溶液电导率采用铂黑电极 (电极常数 1.000),在 YSI 3200 benchtop 电导 仪(YSI,USA)上测量,两次测量的实验误差为 0.03%。

#### 2.4 电化学测试

采用三电极体系,以 Ag/AgCl 为参比电极,Ti 片为辅助电极,用电化学工作站(AUTO-LAB,PGSTAT 128N)测量 Mn<sup>2+</sup>在玻碳电极上的循环伏安特性,线性扫描电势及电化学阻抗谱(EIS)。其中循环伏安曲线和线性扫描电势均在 0.7~1.8 V 间测量,阻抗谱测试的交流激励信号幅值为 10 mV,频率区间为 100 kHz~0.01 Hz。

## 3 结果与讨论

#### 3.1 MnSO<sub>4</sub> 浓度、pH 及温度对电导率的影响

为更好地选择电解实验条件,测量了不同 pH、浓度和温度下 MnSO<sub>4</sub> - H<sub>2</sub>SO<sub>4</sub> 溶液的电导 率,所得数据见表1。

| <b>Table 1</b> Conductivity of MinSO <sub>4</sub> – $H_2SO_4$ solution at different pH, concentration and temperature |                                                       |       |       |       |       |       |  |  |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------|-------|-------|-------|-------|--|--|
| А                                                                                                                     | pH                                                    | -0.2  | 0.2   | 1.2   | 2.2   | 3.2   |  |  |
|                                                                                                                       | $\kappa/(\mathrm{mS}\cdot\mathrm{cm}^{-1})$           | 168.7 | 100.5 | 57.25 | 52.29 | 61.94 |  |  |
| В                                                                                                                     | $c/(\operatorname{mol} \cdot \operatorname{L}^{-1})$  | 0.1   | 0.3   | 0.5   | 0.7   | 0.9   |  |  |
|                                                                                                                       | $\kappa/(\mathrm{mS}\cdot\mathrm{cm}^{-1})$           | 9.424 | 20.98 | 34.36 | 41.67 | 47.00 |  |  |
|                                                                                                                       | $c/( \operatorname{mol} \cdot \operatorname{L}^{-1})$ | 1.1   | 1.3   | 1.5   | 1.7   | 1.9   |  |  |
|                                                                                                                       | $\kappa/(\mathrm{mS}\cdot\mathrm{cm}^{-1})$           | 51.46 | 57.09 | 60.66 | 61.94 | 59.18 |  |  |
| С                                                                                                                     | t∕°C                                                  | 25    | 50    | 75    | 90    |       |  |  |
|                                                                                                                       | $\kappa/(\mathrm{mS}\cdot\mathrm{cm}^{-1})$           | 195.6 | 228.1 | 238.7 | 254.7 |       |  |  |

表 1 不同酸度、浓度和温度下 MnSO<sub>4</sub> - H<sub>2</sub>SO<sub>4</sub>溶液的电导率 **ble** 1 Conductivity of MnSO<sub>4</sub> - H<sub>2</sub>SO<sub>4</sub>solution at different pH, concentration and temperatu

注:A 为 25 ℃, MnSO<sub>4</sub> 浓度为 1.7 mol/L 时不同酸度下的电导率;B 为 25 ℃, pH = 3.5 时不同 MnSO<sub>4</sub> 浓度电导 率;C 为 pH = -0.2, MnSO<sub>4</sub> 浓度为 1.7 mol/L 时不同温度下的电导率。

由表1可看出电导率随着  $MnSO_4$ 溶液浓度 的增加呈增大趋势,随着温度的增加也呈增大 趋势,而随着 pH 值的增大呈减小趋势。当  $MnSO_4$  浓度达 1.7 mol/L 时,电导率为  $61.94 \text{ mS} \cdot \text{cm}^{-1}$ 达到最大值;当 pH = -0.024 时,电导率168.7 mS·cm<sup>-1</sup>为最大值;温度为 90℃时,电导率达254.7 mS·cm<sup>-1</sup>为最大值。 且由表1可知,温度和 pH 值对电导率的影响 比浓度对电导率的影响大。鉴于电导率越大电 解电流效率越高,可推测 MnSO<sub>4</sub> - H<sub>2</sub>SO<sub>4</sub> 体系 中较理想的电解条件为,  $MnSO_4$  浓度 1.7 mol/L, pH = -0.024 (即  $H_2SO_4$  浓度 0.8 mol/L时配制的 $MnSO_4$ 溶液), 温度 90 °C, 与文献<sup>[12]</sup>报道的温度范围一致。

#### 3.2 Mn<sup>2+</sup>在玻碳电极上的循环伏安行为

图 1 为 0.1 V/s 扫速时,  $H_2 SO_4$ 溶液及 MnSO<sub>4</sub> +  $H_2 SO_4$ 混合溶液中 Mn<sup>2+</sup>在玻碳电极表 面的循环伏安曲线(CV)。由图 1 可看出,单一  $H_2 SO_4$ 溶液,无论是浓酸 8.42 mol/L  $H_2 SO_4$ 还 是稀酸 0.8 mol/L  $H_2 SO_4$ 中,均没有峰出现,且 稀酸中当电势达 1.4 V 时电流逐渐增加,浓酸 中电势达 1.5 V 时电流逐渐增加,这可能是水 发生电解反应产生的微弱电流。当向  $H_2 SO_4$ 溶 液中加入 MnSO<sub>4</sub>时,稀酸中电势为 1.2 V 时电 流迅速增加且有氧化峰出现,浓酸中电势为 1.4 V 时电流迅速增加且有氧化峰出现,说明  $Mn^{2+}$ 在玻碳电极表面发生了不同的氧化还原 反应,证明用玻碳电极研究  $Mn^{2+}$ 的电化学氧化 机理是合适的。



**图**1 H<sub>2</sub>SO<sub>4</sub> 溶液及 MnSO<sub>4</sub> + H<sub>2</sub>SO<sub>4</sub> 混合溶液中 Mn<sup>2+</sup>在玻碳电极表面的循环伏安曲线



#### 3.3 EIS 分析氧化机理

电化学阻抗谱(EIS)是一种很有用的研究 电化学性能的技术。由文献<sup>[13]</sup>可知,浓酸 8.42 mol/L  $H_2SO_4$ 中  $Mn^{2+}$ 的阳极反应机理已 明确,即为  $Mn^{2+} \rightarrow Mn^{3+}$  的反应。为进一步确 定低酸 0.8 mol/L H<sub>2</sub>SO<sub>4</sub> 中 Mn<sup>2+</sup> 电极反应机 理,我们绘制了其阻抗图,如图2所示。由图2 可看出该溶液体系有明显两个时间常数特征, 高频区和低频区各一个,将 Nyquist 图进行拟合 得到等效电路图,相应的描述码(CDC)为  $R(RQ)(RQ)W, 拟合系数\chi^2 = 0.049657$ 。等 效电路图中,高频容抗弧可认为阳极氧化电极 反应 Mn<sup>2+</sup>→Mn<sup>4+</sup>,低频容抗弧则可认为阳极 放 O<sub>2</sub>反应。Rs 代表 MnSO<sub>4</sub> - H<sub>2</sub>SO<sub>4</sub>溶液的总 电阻,包括电荷传递电阻,界面接触电阻等;Rp 和 CPE 并联分别对应阳极的两个反应,其中 Rp 表示极化电阻,CPE 代表电极上所形成的双 电层充电过程,这主要由离子吸附和脱附过程 中产生非法拉第电流引起;W 为韦伯(Warburg)阻抗,表示离子的扩散过程,Nyquist 图证 明了 0.8 mol/L H<sub>2</sub>SO<sub>4</sub> 阳极存在 Mn<sup>2+</sup>→Mn<sup>4+</sup> 的反应。



**图 2** 0.8 mol/L H<sub>2</sub>SO<sub>4</sub>和 0.5 mol/L MnSO<sub>4</sub>混合溶 液的 EIS 图及其等效电路

Fig. 2 The equivalent circuit and EIS diagrams in the mixed solution of 0. 8 mol/L  $H_2 SO_4$  and 0. 5 mol/L  $MnSO_4$ 

#### 3.4 扫描速度的影响

在 0.8 mol/L  $H_2SO_4$  的溶液中,分别测量 了 0.5 mol/L 和 1.7 mol/L MnSO<sub>4</sub> 溶液在玻碳 电极上的线性扫描电势伏安(LSV)特性,其峰 值电位、电流和扫描速度如表 2 所示。 **表**2 0.8 mol/L H<sub>2</sub>SO<sub>4</sub> 中,1.7 mol/L 和 0.5 mol/L Mn<sup>2+</sup>溶液在不同扫描速度下 CV 曲线的峰电位和峰电流

Table 2 The peak current and potential of 1.7 mol/L MnSO4 and 0.5 mol/L MnSO4

| $((\mathbf{V} - \mathbf{C}^{-1}))$ | $E_{ m p}/{ m V}$ | i <sub>p</sub> /mA | $E_{ m p}/{ m V}$ | i <sub>p</sub> ∕mA |  |  |  |  |  |
|------------------------------------|-------------------|--------------------|-------------------|--------------------|--|--|--|--|--|
| $v/(v \cdot s)$                    | 0.5 mol/L         |                    | 1.7 mol/L         |                    |  |  |  |  |  |
| 0.005                              | 1.245             | 0.232              | 1.247             | 0.258              |  |  |  |  |  |
| 0.01                               | 1.262             | 0.231              | 1.276             | 0.302              |  |  |  |  |  |
| 0.05                               | 1.318             | 0.308              | 1.342             | 0.486              |  |  |  |  |  |
| 0.1                                | 1.335             | 0.377              | 1.374             | 0.630              |  |  |  |  |  |
| 0.5                                | 1.349             | 0.586              | 1.525             | 1.260              |  |  |  |  |  |

at different scan rates in  $0.\,8\,$  mol/L  $\rm H_2SO_4$ 

由表 2 可知,当扫速分别为 0.005 V/s、 0.01 V/s、0.05 V/s、0.1 V/s、0.5 V/s 时, 0.5 mol/L的 Mn<sup>2+</sup>在玻碳电极上的氧化电位分 别为 1.245 V、1.262 V、1.318 V、1.335 V、 1.349 V;1.7 mol/L 的 Mn<sup>2+</sup>在玻碳电极上的氧 化电位分别为 1.247 V、1.276 V、1.342 V、 1.374 V、1.525 V,即 Mn<sup>2+</sup>在玻碳电极上的氧 化电位随着扫描速度的增大逐渐增大。

根据 Randles – Sevčik 方程,

1.4

 $i_{\rm p} = 0.446 \ 3nFA(\frac{RT}{nF})^{1/2}D^{1/2}v^{1/2}c_{\text{Griv}},$ 

稀酸 0.8 mol/L H<sub>2</sub>SO<sub>4</sub> 中,峰电流  $i_p$ 与扫描速 度  $\nu^{1/2}$ 成正比,峰电流 ( $i_p$ )的表达式如上式所 示。图 3(a)表明实验电流  $i_p = \nu^{1/2}$ 线性关系比 较好,证实了稀酸中 Mn<sup>2+</sup>在玻碳电极上的氧化 反应为扩散控制。同样我们研究了浓酸 8.42 mol/L H<sub>2</sub>SO<sub>4</sub>和 0.1 mol/L MnSO<sub>4</sub>混合溶 液中反应电流与扫描速度的关系,如图 3(b)所 示,反应电流随着扫描速度的增加而增大,表明 浓酸中 Mn<sup>2+</sup>在玻碳电极上的氧化反应可能为 电子转移控制。



0.070

MnSO<sub>4</sub>); (b)8.42 mol/L H<sub>2</sub>SO<sub>4</sub> 和 0.1 mol/L MnSO<sub>4</sub> 混合溶液中峰电流( $i_p$ )与扫描速度的关系 **Fig.** 3 (a) The relationship between peak current and the scan rate in 0.8 mol/L<sup>-1</sup> H<sub>2</sub>SO<sub>4</sub> (●1.7 mol·L<sup>-1</sup> MnSO<sub>4</sub>; ■0.5 mol·L<sup>-</sup>MnSO<sub>4</sub>); (b) The relationship between peak current and the scan rate in the mixed solution of 8.42 mol/L H<sub>2</sub>SO<sub>4</sub> and 0.1 mol/L MnSO<sub>4</sub>

# 3.5 不同酸度溶液中 Mn<sup>2+</sup>浓度对氧化过程的 影响

1)浓酸条件下峰值电流与  $Mn^{2+}$  初始浓度 的定量线性关系  $MnSO_4$  在高浓度  $H_2SO_4$  中 的溶解度很小,且  $Mn^{3+}$  在高浓度硫酸(4~ 10 mol/L) 中能稳定存在<sup>[14]</sup>,我们对浓酸 8.42 mol/L  $H_2SO_4$ 与  $Mn^{2+}$ 混合溶液进行线性 电势扫描伏安测试和电解实验。图4(a)为 8.42 mol/L  $H_2SO_4$  中不同浓度  $MnSO_4$  溶液的 LSV 曲线,可以看出  $Mn^{2+}$ 在玻碳电极上的氧化 峰电位在 1.5~1.6 V 之间,其氧化峰电位基本 保持不变,查标准电极电势得对应的氧化电极 反应为  $Mn^{3+} + e \rightarrow Mn^{2+}$ ,其标准电极电势为 1.541 5 V,这与滕雅娣<sup>[13]</sup>等研究结果一致。 另外,图中还看出在 8.42 mol/L  $H_2SO_4$  中,  $Mn^{2+}$ 的浓度对  $Mn^{2+}$ 在玻碳电极上的氧化峰电 位几乎无影响,其氧化峰电流随着  $Mn^{2+}$ 浓度的 增加逐渐增大。图4(b)为  $Mn^{2+}$ 在玻碳电极上 的峰值电流与  $Mn^{2+}$ 初始浓度的关系,表明在 0.02~0.1 mol/L  $MnSO_4$  溶液中存在很好的线 性关系。



**图**4 (a)为8.42 mol/L  $H_2SO_4$ 中不同浓度  $Mn^{2+}$ 溶液 LSV 曲线;(b)为(a)图中的峰值电流与  $Mn^{2+}$ 初始浓度的关系

Fig. 4 (a) The LSV curves at different  $Mn^{2+}$  concentrations on the glassy carbon electrode in 8.42 mol/L  $H_2SO_4$ , (b) The relationship between peak current and the initial concentration of  $Mn^{2+}$  in figure 4 (a)

2)稀酸条件下峰值电流与  $Mn^{2+}$  初始浓度 的非线性关系 图 5(a)为0.8 mol/L H<sub>2</sub>SO<sub>4</sub> 中 不同浓度  $MnSO_4$  溶液的 LSV 曲线,可看出低酸 0.8 mol/L H<sub>2</sub>SO<sub>4</sub> 中  $Mn^{2+}$ 在玻碳电极上的氧化 峰电位在 1.3 V 左右,其氧化峰电位基本保持 不变,查标准电极电势得对应的氧化电极反应 为  $MnO_2 + 4H^+ + 2e \rightarrow Mn^{2+} + 2H_2O$ ,标准电极 电势为 1.224 V。图 5(b)为峰值电流与  $Mn^{2+}$  初始浓度的非线性关系曲线,表明峰值电流随着 Mn<sup>2+</sup>初始浓度的增大逐渐增大,且增大速率 逐渐趋向平缓。这是由于随着 Mn<sup>2+</sup>浓度的增 大,在 MnSO<sub>4</sub>-H<sub>2</sub>SO<sub>4</sub> 溶液中阳极析出的 O<sub>2</sub>增 多,在电极和电解液的界面上形成气泡帘,使电 极的活性面积逐渐减少,电化学极化发生变 化<sup>[15]</sup>,从而使反应电流逐渐趋向平缓。



**图**5 (a) 0.8 mol/L H<sub>2</sub>SO<sub>4</sub>中不同浓度  $Mn^{2+}$ 溶液在玻碳电极上的 LSV 曲线;(b)峰值电流与  $Mn^{2+}$ 初始浓度 的关系曲线

Fig. 5 (a) The LSV curves of different  $Mn^{2+}$  concentrations on glassy carbon in 0.8 mol/L  $H_2SO_4$ , (b) The relationship between peak current and the initial concentration of  $Mn^{2+}$  in Figure. 5(a)



**图**6 0.8 mol/L H<sub>2</sub>SO<sub>4</sub>和 8.42 mol/L H<sub>2</sub>SO<sub>4</sub>与 0.1 mol/L MnSO<sub>4</sub> 混合溶液中 Mn<sup>2+</sup>在玻碳电极上的 LSV 曲线

Fig. 6 The LSV curves of  $Mn^{2+}$  at glassy carbon under different temperatures in 0.8mol/L  $H_2SO_4$  and 0.1 mol/L  $MnSO_4$ , 8.42 mol/L  $H_2SO_4$  and 0.1 mol/L  $MnSO_4$ , respectively

#### 3.6 温度对 Mn<sup>2+</sup>氧化机理的影响

图 6 为不同温度下, 0.8 mol/L H<sub>2</sub>SO<sub>4</sub>和 8.42 mol/L H<sub>2</sub>SO<sub>4</sub> 与 0.1 mol/L MnSO<sub>4</sub>混合溶 液中 Mn<sup>2+</sup>在玻碳电极上的 LSV 曲线。此图表 明 Mn<sup>2+</sup>在玻碳电极上的氧化峰电流随着温度 的升高逐渐增大,高温对电解有利。稀酸 0.8 mol/L H<sub>2</sub>SO<sub>4</sub>中,随着温度的升高,氧化电 位在1.3 V 左右一直有峰存在,此峰对应 Mn<sup>2+</sup> →Mn<sup>4+</sup>的变化,说明温度对 Mn<sup>4+</sup>的稳定性影 响不大:当温度升高到 50 ℃和 60 ℃时,在 1.6 V时有峰出现, 对应于  $Mn^{2+}$ → $Mn^{3+}$ 的变 化:温度升高至70℃和70℃以上时,此峰消 失,说明稀酸中 Mn<sup>3+</sup>在高温时不稳定。但是, 在浓酸 8.42 mol/L H, SO4 中, Mn2+ 的氧化峰电 位一直都稳定在 1.6 V 左右, 说明浓酸 8.42 mol/L H<sub>2</sub>SO<sub>4</sub>中温度对 Mn<sup>3+</sup>的稳定性无 影响。当在此条件下常温电解时,溶液呈紫红 色,无沉淀析出。将电解后的溶液置于90℃的 高温水浴中,溶液基本无变化;但当将电解后的 溶液置于90℃的高温水浴中继续电解时,在阳 极电极上有黑色沉淀析出,说明浓酸 8.42 mol/L H<sub>2</sub>SO<sub>4</sub>中只有在高温电解时才可能 有  $MnO_2$ 析出。这是由于在高温电解过程中阳极大量释放  $O_2$ ,使得阳极区周围部分  $Mn^{3+}$ 被氧化成  $Mn^{4+}$ 后与  $O_2$ 反应生成  $MnO_2$ 。

## 4 结 论

本文通过考察反应电流  $i_p$  与扫描速度  $\nu$  的关系,确定了稀酸 0.8 mol/L H<sub>2</sub>SO<sub>4</sub> 中 Mn<sup>2+</sup> 在玻碳电极上的氧化反应为扩散控制,阳极反 应为,

 $Mn^{2+} + 2H_2O - 2e \rightarrow MnO_2 + 4H^+_{\circ}$ 

浓酸 8.42 mol/L  $H_2SO_4$ 中  $Mn^{2+}$ 在玻碳电 极上的氧化反应为电子转移控制,阳极反应为,  $Mn^{2+} - e \rightarrow Mn^{3+}$ 。

#### 参考文献:

- [1] Takashima T, Hashimoto K, Nakamura R. Mechanisms of pH – dependent activity for water oxidation to molecular oxygen by MnO<sub>2</sub> electrocatalysts[J]. Journal of the American Chemical Society, 2012, 134(3):1519 – 1527.
- Lisha K P, Maliyekkal S M, Pradeep T. Manganese dioxide nanowhiskers: A potential adsorbent for the removal of Hg (II) from water [J]. Chemical Engineering Journal, 2010, 160(2):432-439.
- [3] Wang Y, Cao G. Developments in nanostructured cathode materials for high – performance lithium – ion batteries[J]. Advanced Materials, 2008, 20(12):2251 – 2269.
- [4] Martinez M T, Lima A S, Bocchi N, et al. Voltammetric performance and application of a sensor for sodium ions constructed with layered birnessitetype manganese oxide [J]. Talanta,2009,80(2):519-525.
- [5] Ge J, Zhuo L, Yang F, et al. One-dimensional hierarchical layered KxMnO<sub>2</sub> (x < 0.3) nanoarchitectures: Synthesis, characterization, and their magnetic properties[J]. Journal of Physical Chemistry B, 2006, 110(36): 17854 – 17859.
- [6] Zhou M, Zhang X, Wei J, et al. Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO<sub>2</sub> nanostructures[J]. Journal of Physical Chemistry C, 2011, 115(5):1398-1402.
- [7] 陈野,张春霞,舒畅,等. 低温熔盐法制备 MnO<sub>2</sub>及其电容
   性能研究[J]. 硅酸盐通报,2007,26(2):261-263.
- [8] 张成金. 电解二氧化锰制备技术的研究现状及展望[J]. 四川化工,2011,14(2):12-14.
- [9] Cartwright A, Paul R L, Schumm B, et al. Manganses Dioxide Symp[C]//Proceedings of the MnO<sub>2</sub> Symposium, Tokyo I C, MnO<sub>2</sub> Sample office, 1980.

- [10] Paul R L, Cartwright A. The mechanism of the deposition of manganese dioxide Part II Electrode impedance studies
   [J]. Electroanalytical Chemistry, 1986, 201 (1): 113 122.
- [11] 龚本筠. Mn H<sub>2</sub>O 系统电势 pH 图及应用[J]. 西安矿 业学院学报,1990,4:88 - 96.
- [12] Abbas H, Nasser S A. Hydroxyl as a defect of the manganese dioxide lattice and its applications to the dry cell bat-

tery[J]. Journal of Power Sources, 1996, 58:15-21.

- [13] 滕雅娣,孔祥文,燕利兴. 硫酸锰均相电解氧化反应的研究[J]. 沈阳化工学院学报,1998,12(2):127-131.
- [14] 杨雁泽,王荔,河涌.电极材料中锰的分析方法[J].电源 技术,2002,26:256-257.
- [15] 陈海燕,向庆,吴进芳,等. 温度对电解二氧化锰工艺影响的研究[J]. 中国锰矿,2010,28(2):32-35.

# Electrochemical Oxidation Mechanism of Mn<sup>2+</sup> on Glassy Carbon

TANG Yu-ling<sup>1,2</sup>, FANG Yan<sup>1</sup>, FANG Chun-hui<sup>1</sup>, ZHOU Yong-quan<sup>1</sup>, GE Hai-wen, LIU Hong-yan<sup>1,2</sup>, YANG Zi-yang<sup>1,2</sup>

(1. Qinghai Institute of Salt Lakes, Chinese Academy of Science, Xining, 810008, China;
2. University of Chinese Academy of Sciences, Beijing, 100049, China)

Abstract: In acid solution, the electrochemical impedance spectroscopy (EIS) and the voltammetry with a three-electrode system with Ag/AgCl as the reference electrode, glassy carbon as the working electrode and titanium as the auxiliary electrode were used to study the electrochemical oxidation mechanism of  $Mn^{2+}$  on glassy carbon, elucidating scanning rate, temperature and acidity how to effect the peak current and oxidation potential of  $Mn^{2+}$ . The results indicated that controlling the concentration of  $Mn^{2+}$  and  $H_2$  SO<sub>4</sub> at ambient temperature can generate a anode reaction:  $Mn^{2+} \rightarrow MnOOH$ . Amounts of O<sub>2</sub> were released around anode by rising the reaction temperature and further a reaction was taken place, 4MnOOH +  $O_2 \rightarrow 4MnO_2 + 2H_2O$ . Therefore, when  $Mn^{2+} \rightarrow Mn(OH)_4$ .  $Mn^{3+}$  is generated when the temperature above 70 °C , but  $Mn^{3+}$  had unstability and transformed  $Mn^{2+}$  and  $MnO_2$  by disproportionation reaction. **Key words**: Voltammetry; EIS; Glassy carbon; Oxidation mechanism

## 《盐湖研究》征集合作办刊单位的启事

《盐湖研究》在各界朋友精心呵护下,如今已成长为颇具影响力的专业学术宣传交流平台,依据这一期刊平台为各类专业人员和机构赢得了应有的声誉,同时本刊也受到各级主管单位的认可。为进一步拓展《盐湖研究》期刊学术宣传交流平台的作用,发挥期刊多年形成的品牌优势,创新办刊模式,根据《期刊出版管理规定》及其他法律、法规的规定,在平等互利、协商一致的基础上,现面向盐湖资源领域相关机构征集合作办刊单位,共同将这一期刊平台做大做强。

合作可采取三种模式:一般协办、理事协办和常务理事协办。《盐湖研究》编辑部根据不同模 式提供相应价值的服务,以协议方式确定双方权利责任,有意向的单位可以依据各自的需求灵活选 择相应的合作模式;同时本刊也诚邀相关企业、高校、科研院所在本刊刊登广告,本刊广告经营许可 证号为:6300004000195,联系电话:0971-6301683。

《盐湖研究》编辑部