不同浓度 $CaCl_2$ 溶液中 H_3 BO₃ 介稳区性质研究

孔凡志¹² 蓮亚萍¹ 孟庆芬¹ 彭姣玉¹² 李 武¹

(1. 中国科学院青海盐湖研究所,青海 西宁 810008;2. 中国科学院研究生院,北京 100039)

摘 要: 测定了 $-20 \sim 25 \,^{\circ}$ C范围内不同浓度 CaCl₂ 溶液中 H₃BO₃ 的溶解度和超溶解度 /得到了 H₃BO₃ 的介 稳区并推算出近似动态溶解度和表观成核级数 ,给出了溶解度方程和成核速率方程。实验结果表明 ,在 CaCl₂-H₃BO₃-H₂O 体系中 ,随 CaCl₂ 浓度增加 ,H₃BO₃ 在水中溶解能力减小 ,介稳区向高温移动。相同 CaCl₂ 浓度下 ,H₃BO₃ 介稳区宽度在高温区较窄 ,在低温区变宽明显; 成核级数计算表明 ,随 H₃BO₃ 浓度的增大 ,表 观成核级数先增大后减小。

关键词: CaCl₂; H₃BO₃; 介稳区

中图分类号: 0645.5 文献标识码: A

文章编号:1008-858X(2011)03-0048-06

1 前 言

我国拥有储量丰富的液体(卤水)硼资源, 柴达木盆地西部南翼山油田水即是潜在的硼钾 资源宝库。该油田水储量丰富,富含硼、锂、钾、 锶、钙等,具有较高开发价值^[1]。南翼山油田 水的合理开发,即可以有效缓解我国固体硼资 源枯竭问题,同时也是满足卤水资源综合开发 利用的要求。在该油田水室内等温蒸发实验过 程中发现硼在漫长的结晶过程中以 H₃BO₃ 形 式分散析出^[2],这不仅难以实现硼的富集也影 响了其他盐类的生产。为实现硼的有效分离, 研究硼的结晶行为和共存离子对硼结晶行为的 影响成为选择。

介稳区性质是结晶动力学研究的有效途径 之一。介稳区^[7] 是指体系的溶解度曲线与超 溶解度(自发成核的极限过饱和点)曲线之间 的距离 研究 H₃BO₃ 在不同体系中的介稳区宽 度性质 ,可以确定 H₃BO₃ 在液相或固相中富集 的浓度范围,得到共存离子对 H₃BO₃ 介稳区影 响的规律。通过对介稳区的调节,达到硼富集 于某一相的目的,待该相中的浓度(品位)达到 一定品位后以便加工。

针对油田水蒸发过程中液相中大量存在的 阳离子(Na⁺、K⁺、Ca²⁺、Sr²⁺、Mg²⁺和NH₄⁺)^[1], 其中一些离子对 H₃BO3</sub> 介稳区性质的影响问题 开展了一些研究^[3-6],由于原始卤水中 Ca²⁺为 体系主要阳离子^[8] 因此,研究 CaCl, 对 H₃BO₃ 介稳区的影响尤为重要,已有文献^[11]对25~60 ℃温度范围内 H₃BO₃ 在 CaCl₂-H₃BO₃-H₂O 体系 中介稳区进行了一些研究。由于柴达木盆地海 拔较高, 气温较低(年均气温均在5℃以下) 卤 水真实蒸发往往在较低温度下进行 研究低温下 H₃BO₃结晶行为更具有指导意义。本文采用激 光法^[9]系统地测定了 H₃BO₃ 在 - 20 ~ 25 ℃ 范围 内 CaCl₂-H₃BO₃-H₂O 体系中的介稳区宽度 研究 了 H₃BO₃ 在该体系的介稳区性质 ,为南翼山油 田水中硼资源的提取工艺和加工方法的建立提 供了基础数据和理论依据。

收稿日期: 2011-04-01; 修回日期: 2011-04-17

基金项目: 国家"十一五"科技支撑计划(2006BAB09B07);中国地质科学院钾盐资源调查评价项目(1212011085523) 作者简介: 孔凡志(1986 –), 周, 硕士研究生,主要研究方向为结晶动力学。

通信作者: 董亚萍。E - mail: dyp811@126.com。

2 实验部分

2.1 试剂与仪器

EDTA、Hg(NO₃)₂、NaOH、甘露醇均为分析 纯试剂; H₃BO₃、CaCl₂•6H₂O为分析纯试剂且 经二次重结晶。

SF -01 - T 低温恒温槽,宁波海曙赛福实 验仪器厂; GZ - 2A 型氦氖激光器,北京拓达激 光器械有限公司; 微量加液器,John Poulten Ltd.;分析天平,Sartorius,万分之一; MFS 溶剂 过滤器;精密温度计,精度0.1 ℃; CJJ78 - 1 磁 力搅拌器;结晶器,自制,为三层夹套式腔体结 构,外层为真空隔热层,内层为恒温水层,内径 50 mm × 100 mm,外径 80 mm × 120 mm。

2.2 介稳区宽度的测定

介稳区宽度是指物系的超溶解度曲线与溶 解度曲线之间的距离,对介稳区宽度的测定即 是对物系溶解度和超溶解度的测定。

将准确称重的 H₃BO₃ 溶于一定质量的 CaCl₂ 溶液中,以微量加液器加入一定质量的水 以保证 H₃BO₃ 和水质量之和与 CaCl₂ 溶液质量 的比值恒定。配置好的溶液置于带夹套的玻璃 结晶器内,恒定电磁搅拌速率为 200 r/min,开启 激光监视系统以监测固体溶解状况,设定控温装 置程序在高于平衡温度 5 ℃ 的温度点恒温 10 min 然后按一定的速率(b) 降温。在降温过程 中,由激光功率接收器接收穿过溶液的激光强 度,当激光强度发生突变时,即表示检测出首批 晶粒,记下该点结晶温度(T_1),以 5 组不同的速 率降温,得到 5 组结晶温度,将降温速率的倒数 (1/b)—结晶温度(T_1)作图,将图中曲线外推至 1/b=0,可得此体系中 H₃BO₃ 的超溶解温度点。 当以 5 组不同的速率(v)升温进行上述实验,可 得到 5 组溶解温度(T_2)将升温速率(v)—溶解 温度(T_2)作图,然后将图中曲线外推至v=0,可 得此浓度下的 H₃BO₃ 溶解温度点。测定后的溶 液以 EDTA 法测定 Ca²⁺,以甘露醇法测定硼,体 系组成以此化学分析为准。

改变体系组成,测定不同浓度 CaCl₂ 溶液 中 H₃BO₃ 的溶解度和超溶解度,绘制溶解度超 溶解度曲线得到介稳区图。

3 结果与讨论

3.1 结晶固体的分析

以 XRD 分析降温过程析出的固相 ,证实试验 中析 出 固 相 均 为 H₃BO₃ (PDF No. 00 - 030 -0199)。图 1 为 32.42% CaCl₂-0.73% H₃BO₃-H₂O 降温过程析出晶体的 XRD 分析图谱 ,其它体系图 谱结果相同 不再予以列出。

图 1 32.42% CaCl₂-0.73% H₃BO₃-H₂O 体系析出固相 XRD 图 Fig. 1 XRD patterns of solid crystallized from 32.42% CaCl₂-0.73% H₃BO₃-H₂O

3.2 CaCl₂-H₃BO₃-H₂O 体系 H₃BO₃ 介稳区宽

系中介稳区宽度数据见表 1。由表 1 数据作图 可得 H₃BO₃ 在 4 种不同浓度的 CaCl₂ 溶液中的 介稳区宽度图 ,见图 2。

测得 H₃BO₃ 在不同 CaCl₂-H₃BO₃-H₂O 体

表 1 CaCl₂-H₃BO₃-H₂O 体系 H₃BO₃ 介稳区宽度数据

Table 1	Measured metastable zone data of H. RO. in system of CaClH. ROH.	0
I able 1	measured inclastable zone data of $\Pi_1 DO_2$ in system of GaO ₁₂ $\Pi_2 DO_2$ Π_2	0

w / %		超溶解度温度/	溶解温度/	介稳区宽度/	
CaCl ₂	H ₃ BO ₃	\mathfrak{C}	$^{\circ}$ C	°C	
	2.02	13. 15	20.78	7. 63	
	1.58	1.39	10.84	9.45	
21.07	1.30	- 6. 60	4.89	11.49	
	1.14	- 12. 92	0. 28	13.2	
	0. 91	-21.41	-7.1	14. 31	
	2.03	18.95	25.96	7.01	
	1.57	9.1	17.08	7.98	
25.17	1.31	0. 89	9.65	8.76	
	0.99	- 12. 04	0.35	12.39	
	0.80	- 20. 29	-7.37	12.92	
	1.92	20. 83	28.44	7.61	
	1.69	14. 59	22. 83	8. 24	
29.14	1.48	8.48	17.76	9. 28	
	1.14	-2.13	8.39	10. 52	
	0.81	- 17. 32	-3.22	14. 1	
	1.78	22. 74	30.06	7.32	
	1.53	15.34	23.77	8.43	
32.42	1.20	3.07	12.98	9.91	
	0.92	- 8.16	3.65	11.81	
	0. 73	- 17. 45	-3.11	14. 34	

由表 1 和图 2 可以看出,同一 CaCl₂ 浓度 下,H₃BO₃ 介稳区宽度在高温区狭窄而在低温区 较宽,且随温度变低介稳区变宽幅度较为明显。 在 CaCl₂-H₃BO₃-H₂O 体系中,随 CaCl₂ 浓度的增 加 H₃BO₃ 溶解度曲线和超溶解度曲线向高温移 动,CaCl₂ 浓度越高,H₃BO₃ 介稳区向高温移动幅 度越大。体系中 H₃BO₃ 介稳区宽度高温区较 窄,低温区较宽,这主要是因为溶液温度升高,分 子热运动加快,使分子间碰撞能量和碰撞几率增 大 增加成核机会;另外温度升高使形成晶核的 能垒减小,临界粒径变小,成核也更易进行,因此 介稳区较窄;温度较低时,溶液粘度增大也不利 于成核,且在低温时 H₃BO₃ 浓度较低碰撞几率 较小,使低温时介稳区较宽。CaCl₂ 浓度的增加 使溶解度曲线和超溶解度曲线向高温移动,说明 CaCl₂ 浓度增加促进了 H₃BO₃ 的析出,抑制了 H₃BO₃ 在体系中的溶解。

3.3 近似动态溶解度

由图 3 中 H_3BO_3 近似动态溶解度曲线可 以看出 CaCl₂ 的存在减小了 H_3BO_3 在水中溶解 能力 ,CaCl₂ 浓度越高 H_3BO_3 溶解度越小。由 表 2 中溶解度方程($S = Ae^{BT}$) 可看出 , H_3BO_3 溶解度与温度呈指数关系 ,在 CaCl₂- H_3BO_3 - H_2O 体系中随 CaCl₂ 浓度的增加与体系相关的 常数 A₅B 均有减小趋势。

度

图 2 CaCl₂-H₃BO₃-H₂O 体系 H₃BO₃ 介稳区宽度 Fig. 2 Sketch width of metastable zone of H₃BO₃ in system of CaCl₂-H₃BO₃-H₂O

图 3 不同浓度 CaCl₂ 溶液中 H₃BO₃ 溶解度曲线 Fig. 3 Solubility curve of H₃BO₃ in system CaCl₂-H₃BO₃-H₂O

实验中采用高浓度 $CaCl_2$ 体系 , $CaCl_2$ 的大 量存在改变了 H_3BO_3 的溶解度 , H_3BO_3 的溶解 度的减小使 H₃BO₃ 介稳区向高温移动。通过

表 2 不同浓度 CaCl₂ 溶液中 H₃BO₃ 溶解度方程 **Table** 2 Solubility equations of H₃BO₃ in system CaCl₂-H₃BO₃-H₂O

w(CaCl ₂) /%	溶解度方程	R^2
21.07	$S = 1.458 \ 6e^{0.02874T}$	0.9959
25.17	$S = 1.335 \ 7 e^{0.02825T}$	0.9991
29.14	$S = 1.297 \ 6e^{0.02725T}$	0.9972
32.42	$S = 1.246 \ 8e^{0.02608T}$	0.9936

改变溶解度影响介稳区是一种热力学平衡现 象,此外,在 H_3BO_3 溶解过程中 Ca^{2+} 不断在 H_3BO_3 晶体表面吸附,当 Ca^{2+} 得吸附量达到某 个临界值后, H_3BO_3 溶解过程完全停止,后者同 样表现为 H_3BO_3 介稳区向高温移动,这是一种 动力学现象。体系中 H_3BO_3 介稳区向高温移 动极有可能是二者共同作用的结果。

3.4 成核级数的计算

根据冷却速率 b (℃/h) 与临界过冷度 ΔT_{max} 的关系 $lgb = lgk + mlg\Delta T_{max}^{[10]}$,将实验所 用的 b 的对数与计算得到的 ΔT_{max} 的对数作图, 可得上述各体系中 H₃BO₃ 的成核方程式及表 观成核级数 m,见表 3。

表观成核级数反映了成核的难易程度,m

越大则单位时间内产生的晶核数目越多;反之, 则单位时间内产生的晶核数目较少。在实际的 结晶过程中,若表观成核级数很大,晶核会爆发 式产生,这样会生成大量细小的晶粒,不利于晶 体的生长。从表3中可以看出,随 H₃BO₃ 浓度 的增大,H₃BO₃ 的表观成核级数先增大后减小, H₃BO₃ 浓度在 1.30% 附近存在最大值,在该区 域成核容易,不利于晶体的生长,得不到较大粒 度的晶粒。

w/%		<u>~~ 나~ ~~ 10</u>	52		
CaCl ₂	H ₃ BO ₃	风修力程	K^2	m	
	2.02	$\lg b = 6.148 \lg \Delta T_{max} - 3.204$	0.985 3	6. 148	
	1.58	$\mathrm{lg}b=6.\;514\mathrm{lg}\Delta T_{max}-4.\;241$	0.994 2	6.514	
21.07	1.30	$lgb = 12.54 lg\Delta T_{max} - 10.86$	0.981 0	12.54	
	1.14	$lgb = 6.\ 123 lg\Delta T_{max} - 4.\ 292$	0.973 2	6. 123	
	0. 91	$\mathrm{lg}b=5.\;912\mathrm{lg}\Delta T_{max}-4.\;588$	0.990 2	5.912	
	2.03	$lgb = 5.980 lg\Delta T_{max} - 2.734$	0.984 5	5.980	
	1.57	$lgb = 7.065 lg\Delta T_{max} - 4.190$	0.9994	7.065	
25.17	1.31	lgb = 18. 66 lg ΔT_{max} – 15. 22	0.983 9	18.66	
	0. 99	$\mathrm{lg}b = 8.\ 106 \mathrm{lg}\Delta T_{max} - 6.\ 456$	0.978 5	8.106	
	0.80	lgb = 8. 716lg∆ T_{max} – 7. 445	0.987 3	8.716	
	1.92	$lgb = 8.060 lg\Delta T_{max} - 4.850$	0.988 4	8.060	
	1.69	$\mathrm{lg}b=9.\;588\mathrm{lg}\Delta T_{max}-6.\;526$	0.994 5	9. 588	
29.14	1.48	$lgb = 10.16 lg\Delta T_{max} - 7.461$	0.987 0	10.16	
	1.14	$\mathrm{lg}b=6.\;634\mathrm{lg}\Delta T_{max}-4.\;527$	0.995 6	6. 634	
	0.81	lgb = 8. 569lg $∆T_{max}$ – 7. 542	0.985 3	8. 569	
	1.78	$lgb = 8.625 lg\Delta T_{max} - 5.365$	0.982 2	8. 625	
	1.53	$\mathrm{lg}b=9.\;497\mathrm{lg}\Delta T_{max}-6.\;398$	0.9779	9. 497	
32.42	1.20	$lgb = 9.799 lg\Delta T_{max} - 7.233$	0.9769	9. 799	
	0. 92	$\lg b = 9.351 \lg \Delta T_{max} - 7.923$	0.9991	9.351	
	0. 73	$\lg b = 8.223 \lg \Delta T_{max} - 7.209$	0.988 6	8. 223	

	表3	各体系的	的成核	§方程:	式及表观成	杠核级	汉 m	
Table 3	Nuclear	equations	and	crystal	nucleation	orders	of system	apiece

4 结 论

CaCl₂的存在减小了 H₃BO₃在水中溶解能 力 随 CaCl₂ 浓度增大介稳区向高温移动幅度 越大 油田水蒸发过程 CaCl₂ 浓度的增加是推 动 H₃BO₃ 析出而不能在液相富集的动力之一; 相同 CaCl₂ 浓度下 ,H₃BO₃ 介稳区宽度在高温 区较窄 在低温区变宽明显; 成核级数计算表明 随 H₃BO₃ 浓度的增大 表观成核级数先增大后 减小 ,H₃BO₃ 浓度在 1.30% 左右存在最大成核 级数不利于成核。

参考文献:

[1] 付建龙,于升松,李世金,等.柴达木盆地西部第三系油
 田卤水资源可利用性分析[J].盐湖研究 2005,13(3):
 17-21.

- [2] 崔香梅,董亚萍,乃学瑛,等.硼在油田卤水蒸发过程中的特殊结晶行为研究[J].无机化学学报 2009 25(8): 1434-1438.
- [3] 孟庆芬,董亚萍,李武.硼酸水溶液介稳区性质的研究
 [J].无机盐工业 2007 39(1):25-27.
- [4] 常林,董亚萍,孟庆芬,等. SrCl₂ H₃BO₃ H₂O体系中 H₃BO₃介稳区性质的研究[J].北京化工大学学报, 2008,35(1):29-32.
- [5] 孟庆芬,董亚萍,孔凡志,等.不同浓度 MgCl₂和 NaCl 溶 液对 H₃BO₃ 介稳区宽度的影响[J].化学学报 2010 60 (17):1699-1706.
- [6] Sayan P ,Ulrich J. Effect of various impudfies on the metastable zone width of boric acid [J]. Cryst. Res. Technol.

 $2001 \ \ 36(4-5): 411-417.$

- [7] Miers H A Jssac F. The refractive indices of crystallising solutions ,with especial reference to the passage from the metastable to the labile condition [J]. J. Chem. Soc. ,1906 ,89: 413 - 454.
- [8] 崔香梅. 南翼山油田卤水模拟蒸发研究及析出物的鉴定[D]. 西宁: 中国科学院青海盐湖研究所 2009.
- [9] 沈国良,孙长贵,徐维勤,等.激光法测定溶液介稳区宽度[J].辽阳石油化专学报,1990 6(4):20-23.
- [10] Nyvlt J. Kinetics of nucleation in solution [J]. J. Crystal Growth 1968(3 A): 377 - 383.
- [11] 孟庆芬. 盐卤体系中硼酸(盐) 介稳区性质的研究[D].西宁: 中国科学院青海盐湖研究所 2007.

Study of the Metastable Zone Property of H_3BO_3 in CaCl₂-H₃BO₃-H₂O System

KONG Fan-zhi¹², DONG Ya-ping¹, MENG Qing-fen¹, PENG Jiao-yu, LI Wu¹

(1. Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining \$10008, China;

2. Graduate University of Chinese Academy of Sciences, Beijng ,100039, China)

Abstract: The solubility and ultra solubility of H_3BO_3 in system $CaCl_2-H_3BO_3-H_2O$ were measured over the temperature range from -20 °C to 25 °C. Nucleation order and solubility was calculated, solubility equation and nucleation equation were also obtained. Experimental results show that the stable area of H_3BO_3 is narrow at high temperature, and wide at low temperature. With the increase of $CaCl_2$ the solubility of H_3BO_3 has a decrease and metastable zone shifts to lower temperature. Nucleation order reaches a maximum at H_3BO_3 concentration around 1. 30%.

Key words: CaCl₂; H₃BO₃; Metastable zone width