老挝万象通芒矿区成盐期元素地球 化学特征研究

唐启亮¹ 张西营¹ 苗卫良¹² 李永寿¹²

(1. 中国科学院青海盐湖研究所,青海 西宁 810008;2. 中国科学院大学,北京 100049)

摘 要: 呵叻高原是世界上最大的钾盐矿床之一,老挝万象盆地是呵叻高原北部沙空那空盆地的一个次级 盆地,通芒矿区则是万象盆地钾盐矿床的重要组成部分。近期,大量钾盐地质勘探工作的实施为该地区钾 盐沉积的研究提供了良好条件和物质基础。研究表明,含盐地层包括上、中、下3个盐段,巨厚钾镁盐主要 富集在塔贡组下盐段。盐类矿物主要包括石盐、光卤石、钾石盐、水氯镁石、溢晶石、硬石膏等,还包括一些 碳酸盐和硼酸盐矿物。矿石类型以光卤石矿为主。含盐层位的 Br含量、Br×10³/Cl 比值在剖面上的变化指 示了成盐期卤水不断蒸发浓缩,最终形成了具有重要经济价值的钾镁盐矿床。与世界其它海相及陆相钾盐 矿床对比表明,通芒矿区钾盐沉积具有明显的海相特征,成盐成钾物质应该来自海水。 关键词: 万象盆地; 通芒矿区; 钾盐沉积; 元素地球化学; 海相成因

中图分类号: P596 文献标识码: A 文章编号: 1008 – 858X(2013) 03 – 0010 – 07

引 言

呵叻高原钾盐资源丰富,是世界上最大的 钾盐沉积矿床之一。呵叻盆地一沙空那空盆地 拗陷位于东印板块,其南、西及北三面,分别为 北柬埔寨、南乌江、湄公河深大断裂控制,构成 一个独特的长期稳定持续下降的拗陷带,其中 沉积了广厚的中新生代红色碎屑岩建造,特别 是早白垩世晚期燕山运动,使拗陷内沿大断裂 方向形成系列的凹陷和水下隆起,严格制约着 本区白垩一早第三纪的盐盆展布。盆地中部为 普潘隆起,将大盆地分割成南北两个次级盆地, 北部为沙空那空盆地,南部为呵叻盆地^[1-6]。 万象平原属于呵叻盆地一沙空那空盆地拗陷一 部分,位于东印板块北部,是沙空那空盆地钾盐 聚集区之一,而关于盆地中盐类物质的物源问 题一直存在较大争议^[7-11]。

据勘探资料^[12] 万象盆地钾盐矿床有3个

矿段钾盐较为富集,分别为通芒、农刀、塔贡矿 段,其中通芒矿段是主矿体。2008年1月至 2008年6月,中国科学院青海盐湖所在通芒地 区开展了钾盐矿床的勘探工作,共施工6个钻 孔,取得大量岩芯样品和第一手地质资料。笔 者通过对研究区含盐地层元素地球化学的研 究,初步探讨了通芒矿区含盐系的成盐作用过 程及其成盐物源。

1 通芒矿段地理概况

万象钾盐矿区位于老挝首都万象市以北, 行政区划属万象市辖区 南以湄公河为界 面积 8 366 km²,地理坐标 N17°48′51″~18°40′00″, E102°12′00″~103°20′00″。

通芒矿段研究区域位于矿区北部赛塔尼县 通芒村,地理坐标 N18°13′25″~18°16′36″, E102°40′37″~102°44′53″,面积41.25 km²。勘 探区距万象直线距离 30 km,公路里程43 km。

基金项目:国家重点基础研究发展计划项目(2011CB403004)和国家自然科学基金项目(40903014)

作者简介: 唐启亮(1981-), 男.助研,主要研究方向为盐湖矿物学和地球化学。Email: 35494194@qq. com。

收稿日期:2012-04-02;修回日期:2013-04-23

距南俄河最短直线距离 8 km,距农灌渠道仅 20 m;南俄河水路至廊开大桥约 129 km(沿南 俄河顺流而下约 70 km,沿湄公河逆流而上约 59 km);距南俄湖水电站直线距离 38 km,矿段 内各钻孔旱季均有公路或便道相通,交通方 便。^[12-13]

2 矿区地质特征

通芒矿区所见地层自上而下为第四系、班 塔博组、塔贡组、班塔拉组。塔贡组(E_{11g})是矿 段内唯一的含盐系,是一套较完整的蒸发岩序 列。塔贡组平行不整合上覆于班塔拉组 (K₁₁₄),又被班塔博组(E₁₋₂₁₄)整合覆盖。塔贡 组为乳白、淡红色(少量灰黑色)蒸发岩类(石 膏、石盐、光卤石、钾石盐、水氯镁石、溢晶石) 和砖红、紫红、灰色碎屑(粉砂质泥岩、泥质粉 砂岩)组成岩系。蒸发岩与碎屑岩组成3个明 显的沉积旋回,根据各种因素综合考虑,塔贡组 含盐系分为下、中、上段含盐组,钾盐矿均产于 下段含盐组。每个盐组内部又可分为盐类沉积 单元和碎屑沉积单元(图1)。

中国科学院青海盐湖研究所在云南省地调

院钻孔基础上,分别在2008年1月至6月对该 区进行了6个钻孔的岩芯取样工作,钻孔分别 是T1、T2、T3、T4、T5、FJ,总进尺为2240.04 m (图2)。

图1 矿区塔贡细岩性略图

Fig. 1 Sketch map of lithology Tagong Formation in study area

米미		矿	物
关加	名称	分子式	分布情况
	水氯镁石	$MgCl_2 \cdot 6H_2O$	与光卤石共生
	溢晶石	$CaCl_2 \cdot 2MgCl_2 \cdot 12H_2O$	与光卤石共生
氯化物	光卤石	$KCl \cdot MgCl_2 \cdot 6H_2O$	钾盐主要矿物
	钾石盐	KCl	钾盐重要矿物
	石盐	NaCl	盐岩主要矿物
	石膏	$CaSO_4 \cdot 2H_2O$	分布于裂隙、石盐或光卤石之间
硫酸盐	硬石膏	$CaSO_4$	分布于塔贡组各旋回碎屑层之间
	菱镁矿	MgCO ₃	分布于石膏之间
碳酸盐	白云石	CaCO ₃ • MgCO ₃	分布于硬石膏之间 微量
硼酸盐	α 方硼石	$Mg_3B_7O_{13}Cl$	分布于光卤石粒间 微量
	水氯硼钙石	$Ca_2B_5O_9Cl \cdot H_2O$	包裹在石盐、钾石盐、光卤石中 极少

表1 主要矿物成分、分布特征统计表

Table 1 Chemical composition and distribution characteristics of main minerals

依据云南省地调院及中国科学院青海盐湖 研究所在通芒矿区所做的成盐期矿物成分、特 征的工作,发现通芒矿区在成盐阶段共见到盐 类矿物11种,盐类矿物中有氯化物5种,硫酸 盐2种,碳酸盐2种,硼矿物2种。主要矿物在 钻孔中的分布见表1。

3 通芒矿段元素地球化学特征

3.1 通芒矿段溴及溴氯比值的地球化学特征

海水蒸发浓缩时溴、溴氯比值变化规律
 国内外学者在利用石盐、钾石盐、光卤石中 Br

含量、Br × 10^3 /Cl 比值进行成盐条件、成盐阶 段、成因等方面问题的研究时,一般所选用的对 比标准以正常海水蒸发实验结果为主(表 2)。 正常海水蒸发在石盐沉积阶段,石盐矿物 Br 含 量 66 × 10^{-6} ~ 260×10^{-6} ,溴氯比值 0. $11 \sim$ 0. 43; 钾石盐沉积阶段,钾石盐矿物 Br 含量 $1 370 \times 10^{-6} \sim 1 990 \times 10^{-6}$,溴氯比值 2. 9 ~ 4. 2; 光卤石沉积阶段 析出的钾石盐矿物 Br 含 量达 2 400 × $10^{-6} \sim 2 660 \times 10^{-6}$,溴氯比值 5. 1 ~ 5. 6; 光卤石沉积阶段 析出的光卤石矿物 Br 的含量 3 180 × $10^{-6} \sim 5 440 \times 10^{-6}$,溴氯比 值 8. 3 ~ $14.1^{[15-16]}$ 。

表2	不同成盐阶段盐类矿物中的 Br 含量及 Br×10 ³ /Cl 比值
Table 2	Br contents and ${\rm Br}\times 10^3/{\rm Cl}$ ratios at different salt-forming stages

			固		相		Rb ×	10 ⁻⁶
成盐阶段	石	盐	钾	石 盐		光卤石	细云卦	业占工
	Br $\times 10^{-6}$	$Br \times 10^3 / Cl$	$Br \times 10^{-6}$	$Br \times 10^3 / Cl$	$Br \times 10^{-6}$	$Br \times 10^3 / Cl$	邗口曲	九凶勹
石盐阶段	66 ~ 60	0.110~0.429						
钾石盐 阶段	270 ~ 370	0.445 ~0.611	1 370 ~1 990	2.90~4.20			17 20	17 200
光卤石 阶段	370 ~ 630	0.611 ~1.039	2 400 ~2 660	5.10~5.60	1 778 ~ 5440	4.6~14.1	17~20	17~200
共结阶段	379	0.63						

利用 Br 和 Br × 10^3 /Cl 比值研究蒸发岩 时,一般都挑选单矿物进行成盐演化研究,但从 盐岩中挑选单矿物进行分析较困难。根据许建 新等对勐野井钾盐矿床^[17],石盐和钾石盐单矿 物样、混合样的 Br 含量、Br × 10^3 /Cl 之间的比 较分析表明,单矿物与混合样的 Br 含量、 Br × 10^3 /Cl比值在剖面上的变化一致,采用混 合样的 Br 含量和 Br × 10^3 /Cl 比值也可以满足 成盐演化研究和物源问题。本文所用 Br 含量 和 Br × 10^3 /Cl 比值也是混合样测试结果。

2) 通芒矿段石盐中溴和溴氯比值的变化特征 对通芒矿区共施工6个钻孔 样品密度

一般约为 2 m,经中国科学院青海盐湖研究所 通过对钻孔样品测定,发现通芒矿段下、中、上 含盐组石盐层中 Br 含量有明显的变化特征(表 3)。下石盐层 Br 含量最大值 408 × 10⁻⁶,最小 值 20 × 10⁻⁶,平均值 185 × 10⁻⁶; Br × 10³/Cl 值 0.03 ~ 0.71,平均值 0.31。与海水蒸发浓缩过 程中形成的石盐相比,下石盐层除个别样品 Br 含量、Br × 10³/Cl 值不在 68 × 10⁻⁶ ~ 260 × 10⁻⁶、0.11 ~ 0.43 的理论值内,大部分样品都 接近于海相沉积的石盐,从 Br 的地球化学特征 来看,说明通芒矿区系海水浓缩成因,物质来源 以海水为主。

2

	表 3 人象钾盐矿床石盐中的 Br 含量及 Br $ imes$ 10 $^{\circ}$ /Cl 比值
Table 3	Br contents and $Br \times 10^3$ /Cl ratios in halities in Vientiane potash deposits

层位	++ **	Br × 10	$Br \times 10^3 / Cl$			
	作于百百安义	起点值	两极值	平均值	两极值	平均值
下石盐层	171	92(T3)	20 ~ 408	185	0.03 ~ 0.71	0.31
中石盐层	39	149(T1、T2、T4 均值)	59 ~ 352	193	0.19~0.97	0.35
上石盐层	2	128(T1)	111 ~ 128	119	$0.20 \sim 0.31$	0.26

中含盐组石盐层 Br 起点值 149×10⁻⁶、Br 平均含量 193×10⁻⁶,Br×10³/Cl 平均值 0.35, 都比下含盐组相应的数值要高。上含盐组 Br 起点值为 128×10⁻⁶,高于下含盐组,而低于中 含盐组。中、上含盐组 Br 起点值较高,底部都 缺少硬石膏沉积,可以推断卤水在迁移至万象 平原时已有初步浓缩。

表 4 通芒钾盐矿床矿层各类岩(矿)石中的 m Br 含量及 $m Br imes 10^3$ /Cl 比值

咸化	矿石类型	样显数]	$Br \times 10^{-1}$	6	$Br \times 10^3 / Cl$			
阶段		1+11197	两极值	平 均	理论值	两极值	平 均	理论值	
	水氯镁石溢晶 石光卤石	8	2 070 ~4 240	3 098		5.41~4.86	7.41		
	溢晶石光卤石	99	2 480 ~ 5 900	2 733		6.12~7.53	7.02	4.6~14.1	
光卤石	光卤石	970	1 070 ~7 900	2 189	1 778 ~5 440	2.43 ~13.5	5.45		
	钾石盐 光卤石	69	700 ~ 3 800	2 508		1.73 ~ 3.80	2.73		
	平均	1 146	700 ~7 900	2 632		1.73 ~13.50	5.65		
<u>۲</u> −−+۱	含光卤石 钾石盐	5	380 ~4 100	1 275	1 270 1 000	0.64 ~7.8	2.62	2.90~4.20	
评白益	钾石盐	19	490 ~1 800	742	1 3/0 ~ 1 990	0.99 ~ 3.23	1.31		
	平均	24	$380 \sim 4 100$	1 009		0.64~7.8	1.97		
石 찬	含光卤石石盐	21	340 ~2 500	1 256		0.64~4.76	1.47		
ЧĔ	石盐岩(夹层)	59	250 ~ 530	375		$0.42 \sim 0.89$	0.67		

Table 4 Br contents and $Br \times 10^3$ /Cl ratios of Tongmang potash deposit in various types of rock (ore)

3) 通芒矿段钾盐中溴和溴氯比值的变化

特征 通芒矿段光卤石直接浓缩沉积在石盐岩

之上,钾石盐呈透镜状或薄层状产出于光卤石 中,局部产在石盐顶部。表4反映出2个明显 特点。一是不同矿石类型 Br 含量及 $Br \times 10^3$ / Cl值变化很明显。矿层中石盐夹层 Br 平均含量仅 375 × 10⁻⁶, 钾石盐层 Br 平均含量 742 × 10⁻⁶, 而到光卤石层 Br 平均含量高达 2 189 × 10⁻⁶。二是同一矿石类型中, Br 含量及 Br×10³/Cl值也有很大差异。钾石盐层中,含 光卤石钾石盐矿 Br 含量最大值为 4 100 × 10⁻⁶ 而钾石盐矿最大值仅1800×10⁻⁶。光卤 石矿石是万象钾盐矿床矿石类型主体 样品统 计结果,光卤石矿 Br 平均含量 2 189 × 10⁻⁶, Br×10³/Cl值为 5.45。光卤石层中,晚期沉积 的水氯镁石溢晶石光卤石、溢晶石光卤石的 Br 平均含量分别为 3 098 × 10⁻⁶、2 733 × 10⁻⁶,明 显比早期的光卤石矿、含钾石盐光卤石高。上 述两个特点说明在成盐卤水浓缩过程中,Br含 量、Br×10³/Cl 值明显增高, 越到后期增高幅度 越大。

3.2 通芒矿段铷(Rb)元素的地球化学特征

 海水蒸发浓缩时铷变化规律 铷在大洋 水中为 0.12×10⁻⁶。随着海水的蒸发, Rb 逐 渐富集在母液中, 铷在盐类沉积过程中, 除以 类质同象的方式赋存在钾盐矿物中外, 还可被 泥质物所吸附, 因而可富集在盐湖淤泥中。 Rb 在含盐系粘土矿物中含量可达 0.01%,而 在石盐矿物中几乎没有 Rb。一般认为,钾石盐 中 Rb 含量为 $17 \times 10^{-6} \sim 20 \times 10^{-6}$,而光卤石 中为 $17 \times 10^{-6} \sim 200 \times 10^{-6}$ 。光卤石溶蚀后重 新分配,新生成的钾石盐含有原光卤石中的 Rb 而呈高值,而 Br 分配系数低,所以钾石盐 中 Rb 高 Br 低是由光卤石溶蚀后派生的有力 证据。

2) 通芒矿段铷的变化特征 通芒矿段仅 T1、T2、T4 这3 个钻孔进行了矿层中 Rb 含量分 析。从表 5 可看出, I. Rb 的分布最显著的特 点只在钾盐矿物中检测到 ,而部分石盐样品中 都未检测到 Rb。Rb 以类质同象的方式置换 K 离子,石盐样品中基本不含 K 离子或含量甚 微,所以石盐样品中都未检测到 Rb。Ⅱ.不同 矿石类型 Rb 含量高低明显与 K 含量高低有 关 但不同咸化阶段 Rb 平均含量的变化幅度 明显比 Br 的变化幅度小。钾石盐层、光卤石层 中 K 离子含量高于含光卤石石盐层 , Rb 含量 平均值也明显比含光卤石石盐层高。光卤石层 中的 Rb 含量又比钾石盐层中略高,平均 21.74×10⁻⁶。Ⅲ. 各光卤石矿石类型中 Rb 含 量平均值总体相差不大 样品检测结果是 光卤 石矿石 Rb 平均含量 21.74 × 10⁻⁶,最大值 143.96×10⁻⁶,最小值0.27×10⁻⁶。总之,Rb 是一种很好的找钾指示元素。

					-	
咸化阶段	느		Rb			
	石注		两极值	平均值	理论值	留注
光卤石	溢晶石光卤石	6	10.74 ~32.65	19.70		
	光卤石	343	0.27~143.96	26.71	17 200	
	钾石盐光卤石	2	8.48~29.13	18.80	17~200	
	平均	351	0.27~143.96	21.74		
钾石盐	光卤石钾石盐	1	19.38	19.38	17~20	1 个样品未检出 Rb
石盐	含光卤石石盐	11	0.34 ~ 8.25	3.45		12 个样品未检出 Rb
	石盐(夹层)	38	未	检出		

表 5 通芒矿区矿层各类岩(矿)石 Rb 含量 **Table** 5 Rb contents in different salt in Tongmang mining area

通芒钾盐矿床各矿物类型 Br、Br×10³/Cl、 Rb 平均含量与正常海水蒸发浓缩过程中形成 的各矿物相比,除钾石盐矿石低 Br,石盐和光 卤石 Br、Br×10³/Cl、Rb 都达到理论值。光卤 石为矿区主要含钾矿物,其大多数样品 Br 含量 介于1778×10⁻⁶~5440×10⁻⁶、Rb 含量介于 17×10⁻⁶~200×10⁻⁶理论值范围内,也说明矿 区物质来源以海水补给为主。这一点也可通过 与世界其它地区钾盐矿床比较得到证实 (表6)。据有关资料 巴西溢晶石矿床、加拿大 萨斯喀彻温光卤石、钾石盐矿床 除钾石盐为溶 蚀重结晶生成 ,Br 含量较低 ,其它盐矿物的 Br、 Rb 都达到或超过理论值; 察尔汗盐湖钾盐矿床 是内陆盐湖钾盐矿床典型代表,矿床的形成完 全不受海水影响^[19]。显然,万象钾盐矿床蒸发 岩中 Br、Rb 含量和通常认为属海相成因的加 拿大萨斯喀彻温、巴西塞尔希培盐矿床数值比 较接近,而柴达木盆地察尔汗盐湖石盐岩 Br 含

表6 通芒钾盐矿床与其它盐矿床盐类矿物的溴、铷含量的对比

Table 6 Comparison of bromine and rubidium contents in salt minerals between

			<u> </u>	~ .	-		-				
		$Br \times 10^{-6}$						$Rb \times 10^{-6}$			
矿床	石盐	ì	钾石盐		光卤石		钾石	钾石盐		 石	
	两极值	平均	两极值	平均	两极值	平均	两极值	平均	两极值	平均	
加拿大萨 斯喀彻温	10 ~ 360	101	100 ~ 3 030	850	420 ~ 2 140	1 696	10 ~ 200	48	40 ~ 450	181	
巴西塞 尔希培	93 ~643	360	830 ~1 340	1 140	1960 ~ 8 150	4 728	18 ~ 55	38	55 ~ 126	74	
通芒	20~530	408	380 ~4 100	1 009	700 ~7 900	2 632		19	0.3 ~144	22	
柴达木 盆地	11 ~16										

Tongmang potash deposits and other salt deposits

量明显要低得多^[20]。所以溴、铷资料表明 ,通 芒矿段钾盐物质来源以海水补给为主。

4 结 论

 1) 通芒矿区主要盐类矿物包括光卤石、石盐、钾石盐、水氯镁石、溢晶石、硬石膏等,除此 之外还有少量碳酸盐矿物和硼酸盐矿物;主要 的矿石类型为光卤石矿,钾石盐矿次之。

2) Br 含量、Br × 10³/Cl 比值地球化学特征 研究表明 通芒矿区成盐卤水在结晶过程中 随 着卤水不断蒸发和浓缩 ,Br 含量、Br × 10³/Cl 比值明显增高 ,越到后期增幅越大。

3) 与世界其它海相及陆相钾盐矿床对比 结果显示,通芒矿区钾盐物质来源应该以海水 为主。

致谢: 冉广芬副研究员、王波老师、薛园老师在 样品测试分析方面给予很大帮助 特此感谢。

参考文献:

 Hite R J. Potash Deposits of the Korat Plateau , Thailand and Laos [J]. Economic Geology , 1979 74(2):48 - 458.

- [2] 曲懿华,袁品泉,帅开业,等.兰坪-思茅盆地钾盐成矿 规律及预测[M].北京:地质出版社,1998:1-5.
- [3] 严城民 朱延浙 ,吴军 ,等. 老挝万象地区基础地质调研的主要进展[J]. 地球学报 2006 27(1):81-84.
- [4] 王连第 徐宝政. 利用泰国及老挝的钾矿解决我国钾资 源短缺之可行性探讨[J]. 化工矿产地质,1997,19(3): 197-201.
- [5] 中国科学院青海盐湖研究所.老挝万象钾石盐矿床勘查 设计[R].西宁:中国科学院青海盐湖研究所,2007: 10-11.
- [6] 张建林.中国-老挝古近纪钾盐矿对比[J].云南地质, 2006 25(3):309-316.
- [7] Sundharovat S. Potash in E-Sarn [J]. Min. Resour. Gazette. ,1976 21(11):1-8 (in Thai).
- [8] Thiramongkol N. Some suggestions of potash and rock salt geneses in NE region [J]. Min. Resour. Gazette. ,1978 , (21) 8:25 - 40(in Thai) .
- [9] Sattayarak N. Northeast Geology [C] //Proceedings of conference on Geology and Minerals Resources Development of the Northeast ,Thailand. Khon Kaen: Khon Kaen University ,1985: 3 - 30 (in Thai).
- [10] Donald E G. Potash Deposits, Processing, Properties and Uses [M]. Great Britain: Chapman and Hall ,1996.
- [11] 曲懿华. 兰坪 思茅盆地与泰国呵叻盆地含钾卤水同源 性研究[J]. 化工矿产地质 ,1997 ,199(2):82 - 98.
- [12] 郭远生,徐世光,吴军,等.老挝万象平原钾盐资源.无 机化工信息 2004(3):5-9.

- [13] 郭远生,吴军,朱延湘,等.老挝万象钾盐地质[M].昆明:云南科技出版社 2005.
- [14] 瓦里亚什科 M Γ. 钾盐矿床形成的地球化学规律 [M].
 北京: 中国工业出版社, 1965: 104 196.
- [15] 钱自强,曲懿华,刘群.钾盐矿床[M].北京:地质出版 社,1994:19-50.
- [16] 张西营,马海州,谭红兵,等.沙空那空盆地东缘钾盐 矿床盐构造和地球化学特征[C]//第九届全国矿床学 会议论文集,北京:地质出版社 2008.
- [17] 许建新. 云南勐野井钾盐矿床地球化学与成因研究[D]. 西宁: 中国科学院青海盐湖研究所 2007: 12.
- [18] 中国地质科学院情报研究所. 国外钾盐矿床普查资料 (专辑[R]. 北京: 中国地质科学院,1972.
- [19] 张彭熹. 柴达木盆地盐湖[M]. 北京: 科学出版社, 1987: 164-167.
- [20] 袁见齐. 钾肥与钾盐矿床[M]. 北京: 石油化学工业出版 社,1977: 25-49.

Study of Geochemical Characteristics of Salt Deposits during Halogeneses in Tongmang Mining Area ,Vientiane , Laos

TANG Qi-liang1 ZHANG Xi-ying1 ,MIAO Wei-liang12 , LI Yong-shou12

(1. Qinghai Institute of Salt Lakes, Chinese Academy of Sciences Xining, 810008, China;
2. University of Chinese Academy of Sciences Beijing, 100049, China)

Abstract: The potash deposit on Khorat Plateau is among the largest ones in the world. The Vientiane Basin is one of subbasins of Sakon Nakhon Basin which is in the north of Khorat Plateau. Whereas the Tongmang mining area is an important part of Vientiane potash deposits. A large of geological explorations conducted in study area recently provided good conditions and substantial bases to study potash deposit in study area. Study results show that the salt-containing stratum comprises of three sections of upper middle and lower unit. The voluminous K-Mg salts mainly are enriched in the lower unit. The main salt minerals include halite ,carnallite ,sylvite ,bischofite ,tachyhydrite ,anhydrite ,etc. Additionally minor carbonates and borates were found in these salts. The dominant ore type is the carnallitie type. The variations of bromine contents and Br $\times 10^3$ /Cl ratios in profile indicate that the brines have continuously been evaporated and concentrated during halogeneses and eventually formed K-Mg salt deposits with significantly economic values. Comparing with other marine or nonmarine potash deposits ,the Tongmang potash deposit has an obvious marine signature. Therefore ,it is concluded that these salts in study area should be derived from seawater.

Key words: Vientiane Basin; Tongmang mining area; Potash deposits; Element geochemistry; Marine origin