¹³⁷Cs 和²¹⁰Pb 测年的青海湖西北沉积速率研究

付国燕^{1,2,3},沙占江^{1,2,4},张 凯^{1,2},赵石磊^{1,2},郭丽霞^{1,2}

(1. 青海师范大学生命与地理科学学院,青海 西宁 810008;

2. 青藏高原环境与资源教育部重点实验室,青海 西宁 810008;

3. 河南师范大学新联学院土木建筑工程系 河南 郑州 450000;

4. 中国科学院青海盐湖研究所,青海 西宁 810008)

摘 要:对沉积物柱样 1,2的¹³⁷ Cs 和²¹⁰ Pb 定年分析,这两个样品¹³⁷ Cs 最大蓄积峰值出现的年份分别为 1963 年和 1986 年。利用沉积物中¹³⁷ Cs 蓄积峰,计算沉积物的深度沉积速率分别为 0.153 1 cm · a⁻¹、 0.153 8 cm · a⁻¹,计算出的质量堆积速率分别为 0.048 4 g · a⁻¹ · cm⁻²、0.048 2 g · a⁻¹ · cm⁻²。²¹⁰ Pb 计算 出的两个柱样的沉积速率分别为 0.052 0 g · a⁻¹ · cm⁻²,0.051 4 g · a⁻¹ · cm⁻²,¹³⁷ Cs 和²¹⁰ Pb 计算出的沉积 速率,结果较为一致。由此可见,利用¹³⁷ Cs 和²¹⁰ Pb 综合定年,相互印证,可以消除一些偶然因素带来的定年 偏差,进而较准确地计算湖泊沉积速率,这对研究青海湖近现代环境变化具有一定的现实意义。

关键词:青海湖;¹³⁷Cs;²¹⁰Pb;沉积速率

文献标识码:A

中图分类号:P941.78

文章编号:1008-858X(2015)02-0007-08

¹³⁷Cs 是一种人工放射性核素,自然环境 中¹³⁷Cs 主要来源于地上核试验。1963 年全球 ¹³⁷Cs的沉降量达到最大值,此后¹³⁷Cs 沉降量急 剧减少;1986 年前苏联切尔诺贝利核事故将放 射性物质泄漏到大气中,使很多国家可以检测 到¹³⁷Cs。水体中的¹³⁷Cs主要来源于大气中¹³⁷Cs 尘埃的干湿沉降和陆地上随水土流失的土 壤。²¹⁰Pb 属于铀系衰变核素,沉积物中的 ²¹⁰Pb_{total}有两部分组成,一部分来自沉积物中蓄 积²²⁶Ra 自然衰变的²¹⁰Pb,称为补偿的²¹⁰Pb;一 部分来自沉降的²¹⁰Pb,称为过剩的²¹⁰Pb,即 ²¹⁰Pb_{ar}。

近年来,国内外学者对青海湖的研究较 多^[1-4],如张信宝曾用¹³⁷Cs的质量平衡法对青 海湖沉积速率的测算进行过尝试^[5]。徐海利 用¹³⁷Cs 测年和 Ca 质量平衡法对青海湖现代沉 积速率的空间分布进行过初步研究^[6]。一些 学者也结合¹³⁷Cs 和²¹⁰Pb 计算过一些湖泊沉积 物的沉积速率^[7-13]。用放射性同位素²¹⁰Pb 和 ¹³⁷Cs可以使湖泊现代沉积速率的计算定量化, 两者相互印证,使沉积速率的研究更为准确。 不同湖区的入湖径流和生物地球化学活动有很 大差别^[14-15],青海湖的主要径流主要分布在湖 区西北沿岸,如布哈河、泉吉河、沙柳河等,在青 海湖径流补给中占有重要地位。本文选取湖区 西北水域为研究区域,尝试用¹³⁷Cs 和²¹⁰Pb 互相 结合和验证的方法对青海湖西北水域的沉积速 率进行测算,对得到的结果进行探讨,期望为青 海湖西北沿岸自然变化和人类活动与环境变迁 之间的响应关系的研究提供理论基础。

收稿日期:2014-06-18;修回日期:2014-11-17

基金项目:国家自然科学基金项目(40961015);中国科学院"西部之光"项目;中国科学院"百人计划"项目;青海省科技厅应用基础研究项目(2012-Z-717)

作者简介:付国燕(1985 –),女,硕士研究生,主要研究方向为环境遥感与地理信息系统。Email:fgy5788746@163.com.cn。 通信作者:沙占江。sazhanjiang@sina.com。

1 数据来源与研究方法

1.1 研究区概况

青海湖位于青藏高原东北部(36°32′~ 37°15′N,99°36′~100°47′E),处于我国东部季 风区、西北部干旱区和西南部高寒区的交汇地 带,是我国最大、世界第二大的内陆咸水湖,平 均水深21.7 m,最大水深28 m,湖面海拔高度 约3196 m,环湖一周约365 km。多年水文观 测资料表明,湖面面积始终保持在4400 km²左 右^[16]。中新世以来青海湖区随着青藏高原的 明显隆升,老断裂复活,新断裂产生,发生显著 的差异隆升,形成若干大小不同的隆起带、断 (拗)陷带、地垒和地堑^[17]。青海湖西北注入的 河流主要有布哈河、泉吉河和沙柳河,其中布哈 河是最主要的径流,占青海湖流域总面积的 48.3% 左右。

图 1 研究区及采样位置图 Fig. 1 Study area and sampling locations

1.2 样品采集

2012年7月,在青海湖西北水域(图1)使 用UWTEC 沉积物取样器(内径6cm)采集无扰 动柱状沉积物,采集柱样1,2两个表层沉积物, 坐标分别为37°8′28.7″N,100°0′33.5″E和 37°8′30.7″N,100°4′33.1″E。取样深度分别为 12 cm、13 cm,水深分别为22 m、20 m。(由于 沉积达到一定深度已经检测不到放射性活度或 放射性活度极小(≤10Bq/kg),由所检测到的 比活度来看,本文采样深度合理)。采集到样 品以后,立即用塑料薄膜紧密包裹,以防止沉积 物含水量损失或运输过程中因颠簸而导致柱样 变形。连同薄壁取芯管妥善运回实验室,立即 冷冻12 h,10 cm 以上间隔0.5 cm,10 cm 以下 间隔1 cm无间隔连续取样,称取每层节的湿重, 然后在烘箱内使其脱水干燥,再分别称取干重, 研磨后装入离心管,取5 mL体积,称取样管重 量,密封20 d,放入γ谱仪进行测样。测样时间 为12 h/24 h,测得相关数据待用。

1.3 方法

样品采用美国 CANBERRA 公司配备高纯 锗探头的γ能谱仪测定,γ能谱仪的测定范围 为3~3×10³ keV,能量分辨率为2.2 keV。相 对探测效率为50.2%(标准源来自国际原子能 机构 IAEA)。使用 DSA – 1000 数字化谱仪解 谱,Genie – 2000 谱分析软件分析谱数据。测量 时间>40 000 s,重复测量相对误差小于5%。

活度计算方法为, 活度=净计数率/(探测效率×分支比), 净计数率=净计数/时间。

其中,净计数(area)由γ射线谱图中相应

元素的能量值卡峰得到;时间单位为秒(s);探 测效率为仪器的探测效率,是标样中本身所含 有的活度和仪器测得活度的比值,是一常数;不 同元素具有不同的分支比,为常数。

根据沉积物中¹³⁷Cs 蓄积峰,分别计算沉积 物的深度沉积速率和质量堆积速率^[18-19]。

深度沉积速率, $S_d = \Delta H / (T_1 - T_2)$ 。 (1)

其中, S_d 为平均深度沉积速率, 单位为 cm·a⁻¹; T_1 、 T_2 分别为取样年份和质量活度峰 值所对应的年份, 后者为 1963 年, 单位为 a; ΔH 为蓄积峰所对应的深度, 单位为 cm。

质量堆积速率, $S_m = D/(N - M)_{\circ}$ (2)

其中 S_m 为平均质量堆积速率,单位为 g·cm⁻¹·a⁻¹,D 为沉积物柱样中¹³⁷ Cs 质量活 度峰值对应的质量深度,单位为g·cm⁻²,N 为 取样年份,M 为质量活度峰值所对应的年代。

²¹⁰ Pb_{ex}活度由检测到的²¹⁰ Pb 总活度减去
 ²²⁶ Ra的活度得到,其中²²⁶ Ra 的活度是²¹⁴ Pb 和
 ²¹⁴ Bi活度和的一半。

²¹⁰Pb_{ex}测年有两种模型, CRS 模型和 CIC 模型^[20-22],两个模型都是基于沉积速率变化的 模型。

CRS 模型假定²¹⁰ Pb_{ex}沉积通量不变,这样 沉积速率的变化就会严重影响沉积物中²¹⁰ Pb_{ex} 的质量活度,但沉积物柱样中²¹⁰ Pb_{ex}的总量始 终是一常数,

$$t = \frac{1}{\lambda} \ln \frac{A_0}{A_h}, \qquad (3)$$
$$r = h/t_{\circ}$$

其中, A_h 为剖面中质量深度h以下的 ²¹⁰Pb_{ex}总量(Bq·m⁻²); A_0 为²¹⁰Pb_{ex}全剖面总量 (Bq·m⁻²); λ 为衰变系数(0.031 14·a⁻¹),t为时间(a);r为沉积速率(g·a⁻¹·cm⁻²)。

CIC 模型是基于²¹⁰ Pb_{ex}沉积起始浓度不变的模型,沉积物中²¹⁰ Pb_{ex}的含量完全依赖于自身的衰变,随深度呈单调下降的趋势,

$$t = \frac{1}{\lambda} \ln \frac{C_0}{C_h}, \qquad (4)$$
$$r = h/t_o$$

其中, C_h 为剖面中质量深度 h 处的²¹⁰ Pb_{ex} 的质量活度(Bq·kg⁻¹); C_0 为质量深度 h 为 0 处的²¹⁰Pb_{ex}质量活度(Bq·kg⁻¹)。

2 结果与分析

2.1 测试结果

由计算得到的活度(Bq)和质量(kg)的比 值得到质量活度(Bq·kg⁻¹),相关数据见表1 和表2。

结合计算出的质量活度和每层节样品深度 分别绘制¹³⁷Cs和²¹⁰Pb_{ex}活度分布图,见图2和 图3。

2.2 ¹³⁷Cs 测年与沉积速率

由¹³⁷ Cs 活度分布图可以看出两个柱样 的¹³⁷ Cs 峰值均只有一处,这里将两个峰值对应 深度的年份都假定为 1963 年。对比两个柱样, 柱样 1 峰值出现于 7.5 cm 处,根据假设年份计 算出的深度沉积速率为 0.153 1 cm · a⁻¹,质量 堆积速率为 0.048 4 g · a⁻¹ · cm⁻²;柱样 2 峰 值出现于 4 cm 处,根据假设年份计算出的深度 沉积速率为 0.081 6 cm · a⁻¹,质量堆积速率为 0.025 6 cm · a⁻¹。柱样 2 和柱样 1 峰值出现 深度相差 3.5 cm,同时不论是深度沉积速率还 是质量堆积速率,都存在很大的差异,单纯地把 所有¹³⁷ Cs 峰值对应的年份都定为 1963 年,未 必合理。因此,需要结合由²¹⁰ Pb_{ex}所测得的年 份进行印证。

2.3 ²¹⁰ Pb 测年与沉积速率

柱样 1 ¹³⁷Cs 峰值出现于深度 7.5cm 的位 置,假定该沉积峰出现的年份为 1963 年。根据 CRS 模型,由²¹⁰Pb_{ex}测得 7.5cm 处年数 *t* 为 51 年,²¹⁰Pb_{ex}所定年份为 1961 年,接近 1963,假设 成立。即柱样 2 ¹³⁷Cs峰值对应年份定为 1963 年合理。

柱样2 根据 CRS 模型4cm 处所测得的年数 *t* 为 23 年, CIC 模型测得的年数 *t* 为 21 年, 接近于 1986 年;结合¹³⁷ Cs 深度分布曲线,可知 ¹³⁷ Cs峰值出现的年份可能为 1986 年。

Table 1 Test results of sediments ¹³⁷ Cs in northwestern Qinghai lake									
涩 宦	工 番			一	氏县次亩				
休)支 /cm	⊤ 里 ∕g	质量活度 /(Bq・kg ⁻¹)	体 积 /cm ³	$/(g \cdot cm^{-3})$	灰里休皮 /(g・cm ⁻²)				
0 ~ 0.5	4.925	33.905 8	14.13	0.348 5					
0.5~1	5.044	30.909	14.13	0.357					
1~1.5	4.259	34.268 4	14.13	0.301 4					
1.5~2	5.4	41.516 1	14.13	0.382 2					
2~2.5	4.81	44.6343	14.13	0.3404					
2.5~3	4.15	62.921 1	14.13	0.2937					
3 ~ 3.5	3.68	86.744 3	14.13	0.2604					
3.5~4	4.25	97.3603	14.13	0.300 8					
4~4.5	5.01	97.1609	14.13	0.354 6					
4.5~5	5.38	108.478 5	14.13	0.380 8					
5~5.5	4.27	113.1599	14.13	0.302 2					
5.5~6	3.21	118.594 4	14.13	0.227 2					
6~6.5	3.72	126.6537	14.13	0.263 3					
6.5~7	3.66	127.1679	14.13	0.259					
7~7.5	5.2	108.234	14.13	0.368	2.3697				
7.5~8	5.98	71.835 8	14.13	0.423 2					
8 ~ 8.5	3.8	37.6799	14.13	0.268 9					
8.5~9	4.34	28.4727	14.13	0.307 1					
9~9.5	4.25	19.282 8	14.13	0.300 8					
9.5~10	3.48	12.565 3	14.13	0.246 3					
10. ~11	8.67	13.166 6	28.26	0.306 8					
11. ~12	11.25	10.104 6	28.26	0.398 1					
涩	干重	柱样2		-	质昙迩庐				
徐 度		质量活度	体 积	谷 里 $/(q \cdot cm^{-3})$					
, сш	ď '	$/(Bq \cdot kg^{-1})$	/cm ³	/(g ciii)	/(g cm)				
0~0.5	3.542	31.451 4	14.13	0.2507					
0.5~1	5.079 5	43.5966	14.13	0.359 5					
1~1.5	4.478 5	48.782 8	14.13	0.316 9					
1.5~2	5.4	59.574 6	14.13	0.382 2					
2~2.5	4.81	68.422 2	14.13	0.3404					
2.5~3	4.15	75.337 2	14.13	0.293 7					
3 ~ 3.5	3.68	77.6776	14.13	0.2604					
3.5~4	4.25	81.454 2	14.13	0.300 8	1.252 3				
4~4.5	5.01	68.3804	14.13	0.354 6					
4.5~5	5.475	58.7798	14.13	0.387 5					
5~5.5	4.543 6	49.3207	14.13	0.321 6					
5.5~6	4.249 3	51.373 3	14.13	0.3007					
6~6.5	4.175	37.444 9	14.13	0.295 5					
6.5~7	5.105	31.541 8	14.13	0.361 3					
7~7.5	1.933 8	39.388 2	14.13	0.136 9					
7.5~8	5.600 3	31.764 6	14.13	0.3963					
8~8.5	4.5199	23.4267	14.13	0.3199					
8.5~9	4.797 2	25.393 3	14.13	0.339 5					
9~9.5	4.8417	22.550 9	14.13	0.3427					
9.5~10	4.175 2	17.444	14.13	0.295 5					
10.0~11	7.285 6	14.929 6	28.26	0.257 8					
11 ~ 12	8.058 2	9.464 9	28.26	0.285 1					
12 ~ 13	10.067	8.4197	28.26	0.356 2					

表 1	青海湖西北沉积物 ¹³⁷ Cs 测试结果
-----	---------------------------------

深度 /cm

 $0 \sim 0.5$ 0.5~1 1~1.5 1.5~2 $2 \sim 2.5$ $2.5\sim\!3$ 3~3.5 $3.5 \sim 4$ 4~4.5 4.5~5 5~5.5 $5.5 \sim 6$ $6 \sim 6.5$ $6.5\sim 7$ $7 \sim 7.5$ $7.5 \sim 8$ $8 \sim 8.5$ 8.5~9 9~9.5 9.5~10 $10 \sim 11$ 11 ~12

深度 /cm

 $0 \sim 0.5$ $0.5 \sim 1$ $1 \sim 1.5$ $1.5 \sim 2$ $2 \sim 2.5$ $2.5 \sim 3$ $3 \sim 3.5$ $3.5 \sim 4$ $4 \sim 4.5$ $4 \sim 4.5$ $5 \sim 5.5$ $5.5 \sim 6$

 $6 \sim 6.5$

 $6.5 \sim 7$

7~7.5

 $7.5 \sim 8$

8~8.5

 $8.5\sim\!9$

9~9.5

9.5~10

 $10 \sim 11$

 $11 \sim 12$

 $12\sim\!13$

4.175

5.105

1.933 8

5.600 3

4.5199

4.797 2

4.8417

4.175 1

7.285 6

8.058 1

10.067

228.932 4

181.8664

307.9479

159.323 4

139.228 2

148.6074

224.5461

160.211 2

159.7094

122.73

182.0232

33.893 5

35.294 5

65.413 2

40.192 2

35.314

33.325 5

34.173 3

37.9706

36.481 3

36.2963

40.1403

Table 2 Test results of sediments ²¹⁰ Pb in northwestern Qinghai lake									
工币	²¹⁰ DL 氏县浜亩	柱样1		休和	∽ 舌	舌昙涩亩			
里 / g	$\Gamma D 贝里伯及$ /(Ba·ka ⁻¹)	²²⁶ Ra 质量活度	²¹⁰ Pb _{ex} 质量活度	$\frac{14^{2}}{2}$ $\frac{12^{3}}{2}$					
18	/(Dq·kg)	$/(Bq \cdot kg^{-1})$	$/(Bq \cdot kg^{-1})$	7 CIII	/(g·cm	(g · cm)			
4.925	522.431 6	47.6992	474.732 4	14.13	0.348 5	0.174 3			
5.044	512.254 5	45.377 2	466.877 3	14.13	0.357	0.352 8			
4.259	443.421 1	39.3926	404.028 4	14.13	0.301 4	0.503 5			
5.4	508.0397	40.947 8	467.091 9	14.13	0.382 2	0.6946			
4.81	576.246 2	23.6964	552.549 8	14.13	0.3404	0.864 8			
4.15	473.64	37.5906	436.049 3	14.13	0.2937	1.011 6			
3.68	503.777 3	37.194 4	466.582 8	14.13	0.2604	1.141 8			
4.25	368.523 3	38.8837	329.639 5	14.13	0.300 8	1.292 2			
5.01	389.8746	40.780 3	349.094 2	14.13	0.354 6	1.469 5			
5.38	365.5057	38.9297	326.575 9	14.13	0.3808	1.6599			
4.27	305.675 5	41.005 0	264.6705	14.13	0.302 2	1.811			
3.21	377.5667	40.3514	337.215 3	14.13	0.227 2	1.924 6			
3.72	333.971 3	36.572 5	297.398 8	14.13	0.263 3	2.056 2			
3.66	361.9194	40.274 8	321.644 5	14.13	0.259	2.1857			
5.2	265.6365	42.062 3	223.574 2	14.13	0.368	2.3697			
5.98	246.155 8	38.1108	208.044 9	14.13	0.423 2	2.581 3			
3.8	254.473 5	33.171 1	221.302 4	14.13	0.268 9	2.715 8			
4.34	183.097	46.5183	136.578 6	14.13	0.307 1	2.8694			
4.25	230.174 4	40.459 2	189.715 1	14.13	0.300 8	3.0197			
3.48	164.5784	40.796 8	123.781 6	14.13	0.246 3	3.142 9			
8.67	201.444	35.694 9	165.749	28.26	0.306 8	3.4497			
11.25	134.6599	45.784 8	88.875	28.26	0.398 1	3.8478			
	210	柱样 2							
干重	²¹⁰ Pb 质量活度	²²⁶ Ba 质量活度	²¹⁰ Pb质量活度	一体机	容 重	质量深度			
/g	$/(Bq \cdot kg^{-1})$	$/(Bq \cdot kg^{-1})$	$/(\text{Bq} \cdot \text{kg}^{-1})$	/cm ³	$/(g \cdot cm^{-3})$	$/(g \cdot cm^{-2})$			
3.542	530.192 5	35.3624	494.830 1	14.13	0.2507	0.125 3			
5.079 5	476.078 3	35.5768	440.5016	14.13	0.3595	0.305 1			
4.478 5	446.3754	34.5543	411.821 1	14.13	0.3169	0.463 6			
5.4	435.918 8	36.916 2	399.002 5	14.13	0.382 2	0.6546			
4.81	367.8119	34.6362	333.1757	14.13	0.3404	0.824 8			
4.15	345.9999	33.256 1	312.743 8	14.13	0.2937	0.9717			
3.68	307.035 9	41.231 1	265.804 9	14.13	0.2604	1.1019			
4.25	321.637 9	35.6305	286.007 4	14.13	0.300 8	1.252 3			
5.01	294, 145 1	43.652 8	250, 492 3	14.13	0.354 6	1.429 6			
5.475	249.772 8	36, 533	213, 239 8	14.13	0.387 5	1.623 3			
4,543.6	178, 710 9	37. 328 6	141.382.2	14.13	0.321.6	1.784 1			
4.249 3	178.183 9	31.458 6	146.725 3	14.13	0.300 7	1.934 5			

14.13

14.13

14.13

14.13

14.13

14.13

14.13

14.13

28.26

28.26

28.26

0.295 5

0.3613

0.1369

0.3963

0.3199

0.339 5

0.3427

0.295 5

0.257 8

0.285 1

0.356 2

195.038 9

146.571 9

242.5347

119.131 2

103.914 2

115.281 8

190.372 8

122.240 6

123.228 1

86.4337

141.882 9

2.082 2

2.262 8

2.331 3

2.5294

2.689 4

2.859 1

3.030 5

3.178 2

3.436

3.721 2

4.0774

表2 青海湖西北沉积物²¹⁰Pb 测试结果

图 2 ¹³⁷Cs 活度分布图

图 3 ²¹⁰ Pb_{ex}活度分布图

Fig. 3 Activity distribution of 210 Pb_{ex}

3 讨 论

关于湖泊沉积物中¹³⁷Cs是否发生垂向迁移 可能影响到¹³⁷Cs时标的准确性的问题^[23],Robbins 等人认为¹³⁷Cs虽然存在一定的扩散能力, 但其分子扩散不足以改变蓄积峰的位置^[24]。 徐海等也认为沉积物—孔隙水¹³⁷Cs交换并扩散 导致的 Cs 元素垂向迁移效应可以忽略,且不会 改变蓄积峰位置。

曾理等认为切尔诺贝利事故对青藏高原湖 区¹³⁷Cs分布剖面的影响甚微,并解释其原因是 青藏高原的海拔较高所致^[25]。严平等认为在 达连海的¹³⁷Cs 深度分布的蓄积谷和最大蓄积 峰间似有一个对应 1986 年切尔诺贝利事件的 次一级¹³⁷Cs 蓄积峰,但证据不充分^[26]。本项研 究中两个柱样之一,就有一个蓄积峰判定为 1986 年,这是通过²¹⁰Pb 法测年推算出的沉积速 率而判定的。¹³⁷Cs 时标法不能给出各层间具体 的沉积速率,只能给出一个阶段的平均沉积速 率,因而²¹⁰Pb 法的结果与¹³⁷Cs 法的结果比较, 有些偏差是可以理解的^[27]。

青海湖相关断代研究中,张信宝用质量平 衡法 算出的 湖 泊 中 部 的 平 均 沉 积 速 率 为 0.020 cm · a⁻¹, 湖 泊 东 南 部 的 沉 积 速 率 为 0.229 cm · a^{-1[5]},可见不同湖区的沉积速率还 是存在较大的差别。徐海用²¹⁰Pb 计算出来的 青海湖质量堆积速率的范围为 0.015 3~ 0.1266g·a⁻¹·cm^{-2[6]},从计算结果来看,本 文与前人的研究都是吻合的。叶崇开认为²¹⁰Pb 法对沉积物要求严格,沉积物中²¹⁰ Pb 活性较 弱,而目²¹⁰Pb从大气到湖底的沉积过程和实验 分离提纯过程中的干扰因素较多,样品只有在 尽量未受扰动的情况下才可能真实反映沉积速 率^[27]:两个柱样取自同一湖泊,且位置较为接 近,但两个峰值对应年代却不一致。不过,1963 年¹³⁷Cs 蓄积峰明显, 是国内外公认的湖泊沉 积¹³⁷Cs断代标志。1986年前苏联切尔诺贝利 地面核事故产生的¹³⁷Cs核尘埃对欧洲的影响 较大,对东亚影响不大^[2]。柱样2峰值出现的 位置为4 cm 处,相比1号柱样(峰值出现位置 为7.5 cm)出现的位置较浅,可能是由于出现 了扰动后形成的。

4 结 论

由¹³⁷Cs 测年计算出的深度沉积速率两个柱样 分别为0.1531 cm · a⁻¹ (0.1538 cm · a⁻¹。计算出 的质量堆积速率分别为0.0484 g · a⁻¹ · cm⁻²、 0.0482 g · a⁻¹ · cm⁻²。

 $h^{210}Pb_{ex}$ 计算出的两个柱样的沉积速率分 别为 0.052 0 g · a⁻¹ · cm⁻²(由 CRS 模型计 算)、0.0514 g · a⁻¹ · cm⁻²(由 CRS 模型计 算)。

对比由¹³⁷Cs 和²¹⁰Pb_{ex}计算出的沉积速率, 结果较为一致。

参考文献:

- [1] 张恩楼,沈吉,王苏明,等. 青海湖近900年来气候环境 演化的湖泊沉积记录[J]. 湖泊科学,2002,14(1):32 -38.
- [2] 曾奕,张信宝,周卫建,等.青海湖表层底泥中放射性核 素¹³⁷Cs的来源[J].湖泊科学,2007,19(5):516-521.
- [3] 陈永福,赵志中. 干旱区湖泊沉积物中过剩²¹⁰ Pb 的沉积 特征与风沙活动初探[J]. 湖泊科学,2009,21(6):813-818.
- [4] 李岳坦,李小雁,崔步礼,等.青海湖流域 50 年来 (1996-2007)河川径流变化趋势—以布哈河和沙柳河 为例[J].湖泊科学,2010,22(5):757-766.
- [5] 张信宝,等.¹³⁷Cs质量平衡法测算青海湖现代沉积速率的尝试[J].湖泊科学,2009,21(6):827-833.
- [6] 徐海,刘晓燕,安芷生,等.青海湖现代沉积速率空间分布及沉积通量初步研究[J].科学通报,2010,55(4-5): 384-390.
- [7] 任天山,徐翠华,钟志洮,等.²¹⁰Pb和¹³⁷Cs计年在湖泊沉 降物年代学研究中的应用[J].原子能技术科学,1993, 27(6):504-511.
- [8] 李建芬,王宏,夏威岚,等. 渤海湾西岸²¹⁰ Pb_{ex}和¹³⁷ Cs 测 年与现代沉积速率[J]. 地质调查与研究,2003,26(2): 114-128.
- [9] 齐君,李凤业,宋金明,等.北黄海沉积速率及其沉积通量[J].海洋地质与第四纪地质,2004,24(2):9-14.
- [10] 乌云,朝伦巴根,李畅游,等. 乌梁素海表层沉积物营养 元素及重金属空间分布特征[J]. 干旱区资源与环境
 [J].2011,25(4):143-148.
- [11] 张燕,潘少明,彭补拙.用¹³⁷ Cs 计年法确定湖泊沉积物 沉积速率研究进展[J].地球科学进展,2005,20(6): 671-678.
- [12] 张信宝,龙翼,文安邦,等. 中国湖泊沉积物¹³⁷ Cs 和 ²¹⁰ Pb_{ex}断代的一些问题[J]. 第四纪研究,2012,32(5): 430-440.
- [13] 史兴民,李有利,钱蟒. 新疆玛纳斯河兴农湖沉积物特征
 反应的古环境探讨[J]. 干旱区资源与环境[J]. 2007,21
 (9):62-67.
- [14] 张雷,席贻龙,董丽丽,等.镜湖不同湖区沉积物中轮虫 休眠卵萌发的比较研究[J].水生生物学报,2008,32 (1):6-12.
- [15] 余新晓.景观生态学[M].北京:高等教育出版社,2006.
- [16] 张忠孝.青海地理[M].青海:青海人民出版社,2004.
- [17] 边千韬,刘嘉麒,罗小全,等.青海湖的地质构造背景及 形成演化[J].2000,22(1):20-26.
- [18] Ritchie J C, McHenry J R, Gill A C. Dating recent reservoir sediments[J]. Limnology and Oceanography, 1973, 18(2): 254 – 263.
- $\left[\,19\,\right]~$ Walling D E, He Q. Use of fallout ^{137}Cs in investigations of

overbank sediment deposition on river flood plains [J]. Catena, 1997, 29 (3 – 4) :263 – 282.

- [20] Appleby P G, Oldfield F. The calculation of ²¹⁰Pb dating assuming a constant rate of supply of unsupported²¹⁰Pb to the sediment[J]. *Catena*, 1978, 5(1); 1-8.
- [21] Appleby P G, Oldfield F, Thompson R, et al. ²¹⁰ Pb dating of annually laminated lake deposits from Finland [J]. Nature, 1979,280:53-55.
- [22] Appleby P G, Oldfield F. Application of ²¹⁰Pb to sedimentation studies[C]//Ivanovich M, Harmon R S, Uranium R S, eds. Uranium Series Disequilibrium; Applications to Earth, Marine, and Environmental Sciences. Oxford; Clarendon Press, 1992, 731 – 778.
- [23] 赵锁志,孔凡吉,王喜宽,等.内蒙古乌梁素海²¹⁰Pb和
 ¹³⁷Cs测年与现代沉积速率[J].现代地质,2008,22(6):
 909-914.
- [24] Robbins J A, Edgington D N. Determination of recent sedimentation rates in Lake Michigan using²¹⁰ Pb and¹³⁷ Cs [J]. Geochimica et Cosmochimica Acta, 1975, 39 (3): 285 304.
- [25] 曾理,吴丰昌,万国江,等.中国地区湖泊沉积物中¹³⁷Cs 分布特征和环境意义[J].湖泊科学.2009,21(1):1-9.
- [26] 严平,张信宝.¹³⁷Cs法在风沙过程研究中的应用前景 [J].中国沙漠,1998,18(2):182-187.
- [27] 叶崇开.¹³⁷Cs和²¹⁰Pb对比研究都阳湖近代沉积速率 [J]. 沉积学报,1991,9(1):106-114.

Research of Deposition Rate in Northwestern Qinghai Lake Based on the¹³⁷Cs and ²¹⁰ Pb Dating

FU Guo-yan^{1,2,3}, SHA Zhan-jiang^{1,2,4}, ZHANG Kai^{1,2}, ZHAO Shi-lei^{1,2}, GUO Li-xia^{1,2}

(1. Life and Geographical Science College, Qinghai Normal University, Xining, 810008, China;

2. MOE Key Laboratory of Qinghai-Tibet Plateau Environment and

Resources, Xining, 810008, China; 3. Civil Engineering Department of Xinlian College,

Henan Normal University, Zhengzhou, 450000, China; 4. Qinghai Institute of

Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China)

Abstract: ¹³⁷Cs and ²¹⁰Pb dating methods were combinedly used to reveal the depth and mass deposition rates of the sediment column sample 1 and 2, both the ¹³⁷Cs and ²¹⁰Pb dating show that 1963 and 1986 were the acumulative peak years. The calculated depth sediment deposition were 0. 153 1 cm \cdot a⁻¹ and 0. 153 8 cm \cdot a⁻¹, and the mass accumulative rate were 0. 0484 g \cdot a⁻¹ \cdot cm⁻² and 0. 0482 g \cdot a⁻¹ \cdot cm⁻² from the ¹³⁷Cs dating. Likewise, the calculated mass accumulative rate were 0. 0520g \cdot a⁻¹ \cdot cm⁻² and 0. 0514 g \cdot a⁻¹ \cdot cm⁻² by ²¹⁰Pb_{ex} dating. To combinedly use ¹³⁷Cs and ²¹⁰Pb dating methods can get more accurate accumulative rate.

Key words: Qinghai lake; ¹³⁷Cs; ²¹⁰Pb; Sedimentation rate

封面图片:小柴旦盐湖

小柴旦盐湖位于柴达木盆地东北边缘,湖水位3173m,湖水面积约36km²,平均深度0.69m。 卤水水化学类型属硫酸型硫酸镁亚型,固液相并存,主要盐类沉积为石盐、芒硝和硼酸盐。高品位 硼酸盐矿开采已近枯竭,卤水资源尚未开发利用。1984年6月在湖滨阶地砾石层中发现旧石器 100多件,据¹⁴C年代测定和地层对比,这批石器的年代距今约3万年左右,属旧石器时代晚期,是 青海省境内最早的人类活动遗址。

(中国科学院青海盐湖研究所 杨 波)