首页 | 官方网站   微博 | 高级检索  
     


Petrographic and geochemical characterization of the granitic rocks of the Araguainha impact crater,Brazil
Authors:Dailto Silva  Cristiano Lana  Carlos Roberto de Souza Filho
Affiliation:1. Department of Geology and Natural Resources, University of Campinas, Sao 2. Paulo, Brazil;3. Department of Geology (DEGEO), Federal University of Ouro Preto (UFOP), Minas Gerais, Brazil
Abstract:Petrographic and geochemical data obtained on the Araguainha impact crater (Goiás/Mato Grosso States, Brazil) indicate the existence of several molten products that originated during impact‐induced congruent melting of an alkali‐granite exposed in the inner part of the central uplift of the structure. Although previous studies have described these melts to some extent, there is no detailed discussion on the petrographic and geochemical variability in the granite and its impactogenic derivatives, and therefore, little is known about the geochemical behavior and mobility of trace elements during its fusion in the central part of the Araguainha crater. This paper demonstrates that the preserved granitoid exposed in the core of the structure is a magnesium‐rich granite, similar to postcollisional, A‐type granites, also found in terrains outside the Araguainha crater, in the Brasília orogenic belt. The molten products are texturally distinct and different from the original rock, but have very similar geochemical composition, making it difficult to separate these lithotypes based on concentrations of major and minor elements. This also applies for trace and rare earth elements (REE), thus indicating a high degree of homogenization during impact‐induced congruent melting under high pressure and postshock temperature conditions. Petrographic observations, along with geochemical data, indicate that melting occurs selectively, where some of the elements are transported with the melt. Simultaneously, there is an effective dissolution of the rock (granite), which leads to entrainment of the most resistant solid phases (intact or partially molten minerals) into the melt. Minerals more resistant to melting, such as quartz and oxides, contribute substantially to a chemical balance between the preserved granite and the fusion products generated during the meteoritic impact.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号