首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The Tully–Fisher relationship (TFR) has been shown to have a relatively small observed scatter of ∼±0.35 mag implying an intrinsic scatter < ±0.30 mag. However, when the TFR is calibrated from distances derived from the Hubble relation for field galaxies scatter is consistently found to be ±0.64 to ±0.84 mag. This significantly larger scatter requires that intrinsic TFR scatter is actually much larger than ±0.30 mag, that field galaxies have an intrinsic TFR scatter much larger than cluster spirals, or that field galaxies have a velocity dispersion relative to the Hubble flow in excess of 1000 km s−1. Each of these potential explanations faces difficulties and contradicted by available data and the results of previous studies. An alternative explanation is that the measured redshifts of galaxies are composed of a cosmological redshift component predicted from the value of the Hubble constant and a superimposed intrinsic redshift component previously identified in other studies. This intrinsic redshift component may exceed 5000 km s−1 in individual galaxies. In this alternative scenario a possible value for the Hubble constant is 55–60 km s−1 Mpc−1.  相似文献   

2.
The most accurate data on galaxy types, corrected apparent magnitudes and redshifts as given in the Sandage-TammanRevised Shapley-Ames catalog are analyzed. It is shown that Sb galaxies of the same luminosity class as M31 and M81 define a narrow Hubble relation withH 0=65 –6 +15 km s–1 Mpc–1.In contrast, Sc galaxies deviate strongly towars higher redshift from a linear, log redshift—apparent magnitude relation. Not all this deviation can be selection effect due to increasing volume sampled at increasing redshift (Malmquist bias). Physical associations of groups of galaxies in theRSA Catalog are used to establish the existence of various amounts of excess (non-velocity) redshifts among Sc and allied types of galaxies.Independent distances fromHi line width — luminosity criterion (Tully-Fisher) are analyzed. It is shown that this criterion gives much smaller distances than redshifts do for galaxies which deviate above the Hubble line. Unless the Tully-Fisher relation gives too small distances for more luminous galaxies, this confirms the excess redshift to be intrinsic to the Galaxy. But it is next demonstrated, that for low redshift galaxies, there is no discrepancy between redshift and Tully-Fisher distance even though there is a wide range of absolute magnitudes.If Tully-Fisher distances are accepted, the onlly alternative to having a Hubble constant which increases strongly with distance is to have a component of the higher redshift Sc's contributed by a non-recessional redshift. Streaming motions would have to be large, increase with distance and be always in the receding sence. It is shown here that the Sc's which deviate most from the Hubble relation and have the largest discrepancies with Tully-Filsher distances lie predominantly in the sky toward very nearby groups of galaxies. If they were at these closer distances the discordant galaxies, mostly ScI's, would have dwarfish physical properties but not so unprecedented as the large sizes which result from redshift distances.Finally the interaction of specific high redshift ScI's with nearby galaxies is presented as an independent proof that ScI's are generally small, low luminosity galaxies. This result furnishes insight into the long standing puzzle of how apparently distant ScI's can interact with nearby galaxies such as in Stephan's Quintet, Seyfert's Sextet and NGC 4151/4156.  相似文献   

3.
In the last few years, galaxies at redshifts up to z ∼ 1 have become accessible for medium-resolved spectroscopy thanks to the new generation of 10 m-class telescopes. With kinematic and photometric information on spiral galaxies in this regime, well-known scaling relations like the Tully-Fisher relation (TFR) can be studied over half a Hubble time. By comparison to local samples, these studies facilitate simultaneous tests of the hierarchical merging scenario and stellar population models. Using the Very Large Telescope, we obtained spatially resolved rotation curves of 78 spiral galaxies in the FORS Deep Field (FDF), covering all Hubble types from Sa to Sm/Irr at redshifts 0.1 < z < 1.0. We find evidence for a B-band luminosity increase of up to 2 mag for low-mass spirals, whereas the most massive galaxies are of the same luminosity as their local counterparts. In effect, the TFR slope decreases significantly. This would explain the discrepant results of previous observational studies. We also present the velocity-size relation and compare it to the predictions of numerical simulations based on the hierarchical merging scenario. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
An analysis of the environments around a sample of 28 3CR radio galaxies with redshifts 0.6< z <1.8 is presented, based primarily upon K -band images down to K ∼20 taken using the UK Infrared Telescope (UKIRT). A net overdensity of K -band galaxies is found in the fields of the radio galaxies, with the mean excess counts being comparable to that expected for clusters of Abell Class 0 richness. A sharp peak is found in the angular cross-correlation amplitude centred on the radio galaxies that, for reasonable assumptions about the luminosity function of the galaxies, corresponds to a spatial cross-correlation amplitude between those determined for low-redshift Abell Class 0 and 1 clusters.
These data are complemented by J -band images also from UKIRT, and by optical images from the Hubble Space Telescope . The fields of the lower redshift ( z ≲0.9) radio galaxies in the sample generally show well-defined near-infrared colour–magnitude relations with little scatter, indicating a significant number of galaxies at the redshift of the radio galaxy; the relations involving colours at shorter wavelengths than the 4000 Å break show considerably greater scatter, suggesting that many of the cluster galaxies have low levels of recent or on-going star formation. At higher redshifts the colour–magnitude sequences are less prominent owing to the increased field galaxy contribution at faint magnitudes, but there is a statistical excess of galaxies with the very red infrared colours ( J − K ≳1.75) expected of old cluster galaxies at these redshifts.
Although these results are appropriate for the mean of all of the radio galaxy fields, there exist large field-to-field variations in the richness of the environments. Many, but certainly not all, powerful z ∼1 radio galaxies lie in (proto)cluster environments.  相似文献   

5.
The frequency of barred spiral galaxies as a function of redshift contains important information on the gravitational influence of stellar discs in their dark matter haloes and may also distinguish between contemporary theories for the origin of galactic bulges. In this paper we present a new quantitative method for determining the strength of barred spiral structure, and verify its robustness to redshift-dependent effects. By combining galaxy samples from the Hubble Deep Field North with newly available data from the Hubble Deep Field South, we are able to define a statistical sample of 46 low-inclination spiral systems with I 814 W<23.2 mag. Analysing the proportion of barred spiral galaxies seen as a function of redshift, we find a significant decline in the fraction of barred spirals with redshift. The redshift distribution of 22 barred and 24 non-barred spirals with suitable inclinations is inconsistent with their being drawn from the same distribution at the 99 per cent confidence level. The physical significance of this effect remains unclear, but several possibilities include dynamically hotter (or increasingly dark-matter-dominated) high-redshift discs, or an enhanced efficiency in bar destruction at high redshifts. By investigating the formation of the 'orthogonal' axis of Hubble's classification tuning fork, our result complements studies of evolution in the early–late sequence, and pushes to later epochs the redshift at which the Hubble classification sequence is observed to be in place.  相似文献   

6.
By stacking an ensemble of strong lensing clusters, we demonstrate the feasibility of placing constraints on the dark energy equation of state. This is achieved by using multiple images of sources at two or more distinct redshift planes. The sample of smooth clusters in our simulations is based on observations of massive clusters and the distribution of background galaxies is constructed using the Hubble Deep Field . Our source distribution reproduces the observed redshift distribution of multiply imaged sources in Abell 1689. The cosmology recovery depends on the number of image families with known spectroscopic redshifts and the number of stacked clusters. Our simulations suggest that constraints comparable to those derived from other competing established techniques on a constant dark energy equation of state can be obtained using 10–40 clusters with five or more families of multiple images. We have also studied the observational errors in the image redshifts and positions. We find that spectroscopic redshifts and high-resolution Hubble Space Telescope ( HST ) images are required to eliminate confidence contour relaxation relative to the ideal case in our simulations. This suggests that the dark energy equation of state, and other cosmological parameters, can be constrained with existing HST images of lensing clusters coupled with dedicated ground-based arc spectroscopy.  相似文献   

7.
Galaxies of redshiftz ≲ 1000 km s−1 are investigated. In the South Galactic Hemisphere there are two large concentrations of these galaxies. One is in the direction of the centre of the Local Group, roughly aligned with M 31 and M 33. The other concentration is centred almost 80 degrees away on the sky and involves the next nearest galaxies to the Local Group, NGC 55, NGC 300 and NGC 253. The large scale and isolation of these concentrations, and the continuity of their redshifts require that they are all galaxies at the same, relatively close distance of the brightest group members. The fainter members of the group have higher redshifts, mimicking to some extent a Hubble relation. But if they are all at the same average distance the higher redshifts must be due to a cause other than velocity. The redshifts of the galaxies in the central areas of these groups all obey a quantization interval of δcz0 = 72.4 kms−1. This is the same quantization found by William Tifft, and later by others, in all physical groups and pairs which have been tested. The quantization discovered here, however, extends over a larger interval in redshift than heretofore encountered. The majority of redshifts used in the present analysis are accurate to ± 8 km s−1. The deviation of those redshifts from multiples of 72.4 km s-1 averages ±8.2 km s−1. The astonishing result, however, is that for those redshifts which are known more accurately, the deviation from modulo 72.4 drops to a value between 3 and 4 km s−1! The amount of relative velocity allowed these galaxies is therefore implied to be less than this extremely small value.  相似文献   

8.
Images of the Hubble Ultra Deep Field are analyzed to obtain a catalog of galaxies for which the angular sizes, surface brightness, photometric redshifts, and absolute magnitudes are found. The catalog contains a total of about 4000 galaxies identified at a high signal-to-noise ratio, which allows the cosmological relations angular size—redshift and surface brightness-redshift to be analyzed. The parameters of the evolution of linear sizes and surface brightness of distant galaxies in the redshift interval 0.5–6.5 are estimated in terms of a grid of cosmological models with different density parameters (Ω V ; Ω m ). The distribution of photometric redshifts of galaxies is analyzed and possible superlarge inhomogeneities in the radial distribution of galaxies are found with scale lengths as large as 2000 Mpc.  相似文献   

9.
Hubble Space Telescope observations of distant clusters have suggested a steep increase in the proportion of S0 galaxies between clusters at high redshifts and similar systems at the present day. It has been proposed that this increase results from the transformation of the morphologies of accreted field galaxies from spirals to S0s. We have simulated the evolution of the morphological mix in clusters based on a simple phenomenological model where the clusters accrete a mix of galaxies from the surrounding field, the spiral galaxies are transformed to S0s (through an unspecified process) and are added to the existing cluster population. We find that in order to reproduce the apparently rapid increase in the ratio of S0 galaxies to ellipticals in the clusters, our model requires that: (1) the galaxy accretion rate has to be high (typically, more than half of the present-day cluster population must have been accreted since z ∼0.5) , and (2) most of the accreted spirals, with morphological types as late as Scdm, must have transformed to S0s. Although the latter requirement may be difficult to meet, it is possible that such bulge-weak spirals have already been 'pre-processed' into the bulge-strong galaxies prior to entering the cluster core and are eventually transformed into S0s in the cluster environment. On the basis of the evolution of the general morphological mix in clusters our model suggests that the process responsible for the morphological transformation takes a relatively long time (∼ 1–3 Gyr) after the galaxy has entered the cluster environment.  相似文献   

10.
42 hours of A-array VLA data and 18 days MERLIN data at 1.4 GHz have been combined to image a 10 arcminute field centred on the Hubble Deep Field (HDF). This area encloses both the Hubble Deep and Flanking Fields. A complete sample of 87 sources have been detected with flux densities above 40 μJy. All these have been imaged with the MERLIN+VLA combination to produce images with 0.2, 0.3 and 0.5 arcsecond resolution. These are the most sensitive 1.4 GHz images yet made with rms noise levels of 3.3 μJy/beam in the 0.2 arcsecond images. About 70% of the microJy sources are found to be starburst type systems associated with major disk galaxies in the redshift range 0.4–1. Some 20% are found to be low-luminosity AGN systems identified with field ellipticals at redshifts close to 1. The remaining 10% are associated with optically faint systems close to or beyond the HDF limit; many of these may be dust-shrouded starbursts at high redshift. We propose to extend this study to include VLBI data of comparable sensitivity to investigate the compact radio structures found in the microJy source population.  相似文献   

11.
We investigate the properties of optically passive spirals and dusty red galaxies in the A901/2 cluster complex at redshift ∼0.17 using rest-frame near-ultraviolet–optical spectral energy distributions, 24-μm infrared data and Hubble Space Telescope morphologies from the STAGES data set. The cluster sample is based on COMBO-17 redshifts with an rms precision of  σ cz ≈ 2000 km s−1  . We find that 'dusty red galaxies' and 'optically passive spirals' in A901/2 are largely the same phenomenon, and that they form stars at a substantial rate, which is only four times lower than that in blue spirals at fixed mass. This star formation is more obscured than in blue galaxies and its optical signatures are weak. They appear predominantly in the stellar mass range of  log  M */M=[10, 11]  where they constitute over half of the star-forming galaxies in the cluster; they are thus a vital ingredient for understanding the overall picture of star formation quenching in clusters. We find that the mean specific star formation rate (SFR) of star-forming galaxies in the cluster is clearly lower than in the field, in contrast to the specific SFR properties of blue galaxies alone, which appear similar in cluster and field. Such a rich red spiral population is best explained if quenching is a slow process and morphological transformation is delayed even more. At  log  M */M < 10  , such galaxies are rare, suggesting that their quenching is fast and accompanied by morphological change. We note that edge-on spirals play a minor role; despite being dust reddened they form only a small fraction of spirals independent of environment.  相似文献   

12.
We present results of an investigation of clustering evolution of field galaxies between a redshift of z ∼ 1 and the present epoch. The current analysis relies on a sample of ∼ 14000 galaxies in two fields of the COMBO 17 survey. The redshift distribution extends to z ∼ 1. The amplitude of the three-dimensional correlation function can be estimated by means of the projected correlation function w(r p ). The validity of the deprojection was tested on the Las Campanas Redshift Survey (LCRS). In a flat cosmology with non-zero cosmological constant for bright galaxies (M B ≤-18) the clustering growth is proportional to (1+z) -2. However, the measured clustering evolution clearly depends on Hubble type. While locally the clustering strength of early type galaxies is equal to that of the bright galaxies, at high redshifts they are much stronger clustered, and thus the clustering has to evolve much more slowly. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The distributionsf(z) of the redshifts for active galaxies (Seyfert galaxies, radio galaxies, and quasars) have been studied. Some statistically-significant maxima and minima are observed in the distributionsf(z) for these objects. The significance of peaks and gaps increases for the brighter objects, for which the samples are more complete. The clustering of the Seyfert galaxies is significantly different from that of the nearby normal galaxies. The distributionf(z) for the radio galaxies is similar to the analogous distribution for the galaxy clusters. Three of the five peaks in the distributionf(z) for the radio quasars may be caused by the selection effects. Two peaks within the intervalsz (0.5, 0.7) and (1.0, 1.1) are probably real. The corresponding scales of the QSO clustering along the line-of-sight are about 100h –1 Mpc (h is the Hubble constant in the units of 75 km s–1 Mpc–1). The possibility of some global quasi-periodical cycles for the processes of activity is discussed. The period of a cycle for the Seyfert and radio galaxies is about 1×108 years that corresponds to the distances of about 30h –1 Mpc between the shells.  相似文献   

14.
We are carrying out a programme to measure the evolution of the stellar and dynamical masses and M/L ratios for a sizeable sample of morphologically-classified disk galaxies in rich galaxy clusters at 0.2 < z < 0.9. Using FORS2 at the VLT we are obtaining rotation curves for the cluster spirals so that their Tully-Fisher relation can be studied as a function of redshift and compared with that of field spirals. We already have rotation curves for ∼ 10 cluster spirals at z = 0.83, and 25 field spirals at lower redshifts and we plan to increase this sample by one order of magnitude. We present here the first results of our study, and discuss the implications of our data in the context of current ideas and models of galaxy formation and evolution. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

15.
We present the results of a continuing survey to detect Lyα emitting galaxies at redshifts   z ∼ 9  : the ' z equals nine' (ZEN) survey. We have obtained deep VLT Infrared Spectrometer and Array Camera observations in the narrow J -band filter NB119 directed towards three massive lensing clusters: Abell clusters 1689, 1835 and 114. The foreground clusters provide a magnified view of the distant Universe and permit a sensitive test for the presence of very high redshift galaxies. We search for   z ∼ 9 Lyα  emitting galaxies displaying a significant narrow-band excess relative to accompanying J -band observations that remain undetected in Hubble Space Telescope ( HST )/Advanced Camera for Surveys (ACS) optical images of each field. No sources consistent with this criterion are detected above the unlensed 90 per cent point-source flux limit of the narrow-band image,   F NB= 3.7 × 10−18 erg s−1 cm−2  . To date, the total coverage of the ZEN survey has sampled a volume at   z ∼ 9  of approximately 1700 comoving Mpc3 to a Lyα emission luminosity of  1043 erg s−1  . We conclude by considering the prospects for detecting   z ∼ 9 Lyα  emitting galaxies in light of both observed galaxy properties at   z < 7  and simulated populations at   z > 7  .  相似文献   

16.
We present precise measurements of the X-ray gas mass fraction for a sample of luminous, relatively relaxed clusters of galaxies observed with the Chandra observatory, for which independent confirmation of the mass results is available from gravitational lensing studies. Parametrizing the total (luminous plus dark matter) mass profiles using the model of Navarro, Frenk & White, we show that the X-ray gas mass fractions in the clusters asymptote towards an approximately constant value at a radius r 2500, where the mean interior density is 2500 times the critical density of the Universe at the redshifts of the clusters. Combining the Chandra results on the X-ray gas mass fraction and its apparent redshift dependence with recent measurements of the mean baryonic matter density in the Universe and the Hubble constant determined from the Hubble Key Project, we obtain a tight constraint on the mean total matter density of the Universe,     , and measure a positive cosmological constant,     . Our results are in good agreement with recent, independent findings based on analyses of anisotropies in the cosmic microwave background radiation, the properties of distant supernovae, and the large-scale distribution of galaxies.  相似文献   

17.
It is more appropriate to study the dynamics and evolution of compact groups using a sample of isolated compact groups in the nearby vicinity of which there are no accordant redshift galaxies. To look for isolated compact groups we inspected the environment of 78 Shakhbazian compact groups, with known redshifts. We found that 26 of nearby groups with V < 40000 km s−1 are isolated compact groups in the vicinity of which up to a projected distance of 1 Mpc there are no accordant redshift galaxies. For four of them, the redshift of only two members are known, so their being groups is not certain. In the vicinities of eleven distant groups (V > 40000 km s−1) no accordant redshift galaxies are detected as well. The reason for this may be the faintness of galaxies there. These groups may possibly be isolated.  相似文献   

18.
We present a study of pixel colour–magnitude diagrams (pCMDs) for a sample of 69 nearby galaxies chosen to span a wide range of Hubble types. Our goal is to determine how useful a pixel approach is for studying galaxies according to their stellar light distributions and content. The galaxy images were analysed on a pixel-by-pixel basis to reveal the structure of the individual pCMDs. We find that the average surface brightness (or projected mass density) in each pixel varies according to galaxy type. Early-type galaxies exhibit a clear 'prime sequence' and some pCMDs of face-on spirals reveal 'inverse-L' structures. We find that the colour dispersion at a given magnitude is found to be approximately constant in early-type galaxies but this quantity varies in the mid and late types. We investigate individual galaxies and find that the pCMDs can be used to pick out morphological features. We discuss the discovery of 'Red Hooks' in the pCMDs of six early-type galaxies and two spirals and postulate their origins. We develop quantitative methods to characterize the pCMDs, including measures of the blue-to-red light ratio and colour distributions of each galaxy and we organize these by morphological type. We compare the colours of the pixels in each galaxy with the stellar population models of Bruzual & Charlot to calculate star formation histories for each galaxy type and compare these to the stellar mass within each pixel. Maps of pixel stellar mass and mass-to-light ratio are compared to galaxy images. We apply the pCMD technique to three galaxies in the Hubble Ultra Deep Field to test the usefulness of the analysis at high redshift. We propose that these results can be used as part of a new system of automated classification of galaxies that can be applied at high redshift.  相似文献   

19.
The evolution of the Star Formation Rate (SFR) density of the Universe as a function of look-back time is a fundamental parameter in order to understand the formation and evolution of galaxies. The current picture, only outlined in the last years, is that the global SFR density has dropped by about an order of magnitude from a redshift of z∼1.5 to the current value at z=0. Because these SFR density studies are now extended to the whole range in redshift, it becomes mandatory to combine data from different SFR tracers. At low redshifts, optical emission lines are the most widely used. Using Hα as current-SFR tracer, the Universidad Complutense de Madrid (UCM) Survey provided the first estimation of the global SFR density in the Local Universe. The Hα flux in emission is directly related to the number of ionizing photons and, modulo IMF, to the total mass of stars formed. Metallic lines like [OII]λ3727 and [OIII]λ5007 are affected by metallicity and excitation. Beyond redshifts z∼0.4, Hα is not observable in the optical and [OII]λ3727 or UV luminosities have to be used. The UCM galaxy sample has been used to obtain a calibration between [OII]λ3727 luminosity and SFR specially suitable for the different types of star-forming galaxies found by deep spectroscopic surveys in redshifts up to z∼1.5. These calibrations, when applied to recent deep redshift surveys confirm the drop of the SFR density of the Universe since z∼1 previously infered in the UV. However, the fundamental parameter that determines galactic evolution is mass, not luminosity. The mass function for local star-forming galaxies is critical for any future comparison with other galaxy populations of different evolutionary status. Hα velocity-widths for UCM galaxies indicate that besides a small fraction of 1010-1011 M starburst nuclei spirals, the majority have dynamical masses in the ∼109 M range. A comparison with published data for faint blue galaxies suggests that star-forming galaxies at z∼1 would have SFR per unit mass and burst strengths similar to those at z=0, but being intrinsically more massive. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
We discuss a new method for inferring the stellar mass of a distant galaxy of known redshift based on the combination of a near-IR luminosity and multiband optical photometry. The typical uncertainty for field galaxies with I<22 in the redshift range 0相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号