首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The incorporation of hydrogen (deuterium) into the coesite structure was investigated at pressures from 3.1 to 7.5 GPa and temperatures of 700, 800, and 1100 °C. Hydrogen could only be incorporated into the coesite structure at pressures greater 5.0 GPa and 1100 °C . No correlation between the concentration of trace elements such as Al and B and the hydrogen content was observed based on ion probe analysis (1335 ± 16 H ppm and 17 ± 1 Al ppm at 7.5 GPa, 1100 °C). The FTIR spectra show three relatively intense bands at 3575, 3516, and 3459 cm−11 to ν3, respectively) and two very weak bands at 3296 and 3210 cm−14 and ν5, respectively). The band at 3516 cm−1 is strongly asymmetric and can be resolved into two bands, 3528 (ν2a) and 3508 (ν2b) cm−1, with nearly identical areas. Polarized infrared absorption spectra of coesite single-crystal slabs, cut parallel to (0 1 0) and (1 0 0), were collected to locate the OH dipoles in the structure and to calibrate the IR spectroscopy for quantitative analysis of OH in coesite (ɛ i ,tot=190 000 ± 30 000 l mol−1 H2O cm−2). The polarized spectra revealed a strong pleochroism of the OH bands. High-pressure FTIR spectra at pressures up to 8 GPa were performed in a diamond-anvil cell to gain further insight into incorporation mechanism of OH in coesite. The peak positions of the ν1, ν2, and ν3 bands decrease linearly with pressure. The mode Grüneisen parameters for ν1, ν2, and ν3 are −0.074, −0.144 and −0.398, respectively. There is a linear increase of the pressure derivatives with band position which follows the trend proposed by Hofmeister et al. (1999). The full widths at half maximum (FWHM) of the ν1, ν2, and ν3 bands increase from 35, 21, and 28 cm−1 in the spectra at ambient conditions to 71, 68, and 105 in the 8 GPa spectra, respectively. On the basis of these results, a model for the incorporation of hydrogen in coesite was developed: the OH defects are introduced into the structure by the substitution Si4+(Si2)+4O2−= [4](Si2) + 4OH, which gives rise to four vibrations, ν1, ν2a, ν2b, and ν3. Because the OH(D)-bearing samples do contain traces of Al and B, the bands ν4 and ν5 may be coupled to Al and/or B substitution. Received: 19 December 2000 / Accepted: 23 April 2001  相似文献   

2.
We report here a single-crystal polarized-light study of stoppaniite, ideally (Fe,Al,Mg)4(Be6Si12O36)(H2O)2(Na,□), from Capranica (Viterbo). Polarized-light FTIR spectra were collected on an oriented (hk0) section, doubly polished to 15 μm. The spectrum shows two main bands at 3,660 and 3,595 cm−1; the former is strongly polarized for E c, while the latter is polarized for E //c. A sharp and very intense band at 1,620 cm−1, plus minor features at 4,000 and 3,228 cm−1 are also polarized for E //c. On the basis of literature data and considering the pleochroic behavior of the absorptions, the 3,660 cm−1 band is assigned to the ν3 stretching mode and the 1,620 cm−1 (associated with an overtone 2*ν2 at 3,230 cm−1) band to the ν2 bending mode of “type II” water molecules within the structural channels of the studied beryl. The sharp band at 3,595 cm−1 is not associated with a corresponding ν2 bending mode; thus it is assigned to the stretching vibration of O–H groups in the sample. The minor 4,000 cm−1 feature can be assigned to the combination of the O–H bond parallel to c with a low-frequency metal-oxygen mode such as the Na–O stretching mode. The present results suggest that the interpretation of the FTIR spectrum of Na-rich beryl needs to be carefully reconsidered.  相似文献   

3.
The crystal structure of Bi2Al4−x Fe x O9 compounds (x = 0–4) has striking similarities with the crystal structure of mullite. A complete substitution of Al by Fe3+ in both octahedral and tetrahedral sites is a particular structural feature. The infrared (IR) spectra of the Bi2M4O9 compounds (M = Al, Fe3+) are characterised by three band groups with band maxima in the 900–800, 800–600 and 600–400 cm−1 region. Based on the spectroscopic results obtained from mullite-type phases, the present study focuses on the composition-dependent analysis of the 900–800 cm−1 band group, which is assigned to Al(Fe3+)–O stretching vibrations of the corner-sharing MO4 tetrahedra. The Bi2Al4O9 and Bi2Fe4O9 endmembers display single bands with maxima centred at 922 and 812 cm−1, respectively. Intermediate Bi2Al4−x Fe x O9 compounds exhibit a distinct splitting into three relatively sharp bands, which is interpreted in terms of ordering effects within the tetrahedral pairs. Thereby the high-energy component band of the band triplet relates to Al–O–Al conjunctions and the low-energy component band to Fe–O–Fe conjunctions. The intermediate band is assigned to stretching vibrations of Al–O–Fe or Fe–O–Al configurations of the corner-sharing tetrahedral pairs. Bands in the 800–600 cm−1 range are assigned to low-energy stretching vibrations of the MO4 tetrahedra and to M–O–M bending vibrations of the tetrahedral pairs. Absorptions in the 600–400 cm−1 range are essentially determined by M–O stretching modes of the M cations in octahedral coordination.  相似文献   

4.
A selected set of five different kyanite samples was analysed by electron microprobe and found to contain chromium between <0.001 and 0.055 per formula unit (pfu). Polarized electronic absorption spectroscopy on oriented single crystals, R1, R2-sharp line luminescence and spectra of excitation of λ3- and λ4-components of R1-line of Cr3+-emission had the following results: (1) The Fe2+–Ti4+ charge transfer in c-parallel chains of edge connected M(1) and M(2) octahedra shows up in the electronic absorption spectra as an almost exclusively c(||Z′)-polarized, very strong and broad band at 16000 cm−1 if <, in this case the only band in the spectrum, and at an invariably lower energy of 15400 cm−1 in crystals with  ≥ . The energy difference is explained by an expansion of the Of–Ok, and Ob–Om edges, by which the M(1) and M(2) octahedra are interconnected (Burnham 1963), when Cr3+ substitutes for Al compared to the chromium-free case. (2) The Cr3+ is proven in two greatly differing crystal fields a and b, giving rise to two sets of bands, derived from the well known dd transitions of Cr3+ 4A2g4T2g(F)(I), →4T1g(F)(II), and →4T1g(P)(III). Band energies in the two sets a and b, as obtained by absorption, A, and excitation, E, agree well: I: 17300(a, A), 17200(a, E), 16000(b, A), 16200(b, E); II: 24800(a, A), 24400(a, E); 22300(b, A), 22200(b, E); III: 28800(b,A) cm−1. Evaluation of crystal field parameters from the bands in the electronic spectra yield Dq(a)=1730 cm−1, Dq(b)=1600 cm−1, B(a)=790 cm−1, B(b)=620 cm−1 (errors ca. ±10 cm−1), again in agreement with values extracted from the λ3, λ4 excitation spectra. The CF-values of set a are close to those typical of Cr3+ substituting for Al in octahedra of other silicate minerals without constitutional OH as for sapphirine, mantle garnets or beryl, and are, therefore, interpreted as caused by Cr3+ substituting for Al in some or all of the M(1) to M(4) octaheda of the kyanite structure, which are crystallographically different but close in their mean Al–O distances, ranging from 1.896 to 1.919 A (Burnham 1963), and slight degrees of distortion. Hence, band set a originates from substitutive Cr3+ in the kyanite structural matrix. The CF-data of Cr3+ type b, expecially B, resemble those of Cr3+ in oxides, especially of corundum type solid solutions or eskolaite. This may be interpreted by the assumption that a fraction of the total chromium contents might be allocated in a precursor of a corundum type exsolution. Received: 3 January 1997 / Revised, accepted: 2 May 1997  相似文献   

5.
 Single crystals of synthetic vanadium-, chromium- and cobalt-bearing garnets, Pyr:V0.06, Pyr:V0.13, Pyr:Cr0.04, Pyr:Co0.10, and Gt:Co3.00, and a natural vanadium-bearing grossular, Gross:V0.07 (Cr3+ < 0.005), were studied by electronic absorption spectroscopy in the wavenumber range 35 000–5000 cm−1 under ambient conditions and at temperatures up to 600 K and pressures up to 8 GPa. The T and P behavior of the absorption band energies and intensities shows the following for the different transition metal-bearing garnets: Cr: The thermal expansion of chromium octahedra are similar to and the Racah parameter the same in synthetic Cr-doped pyrope, αpoly≅ 1.3 × 10−5 K−1, and in natural pyrope, αpoly≅ 1.5 × 10−5 K−1, and B=655 cm−1, respectively. Ca2+[8]-free garnets have a slightly stronger crystal field at the Y[6] site and, therefore, the energies of the two spin-allowed Cr3+ dd bands are ca. 300 cm−1 higher in Mg-pyrope than in natural Ca-bearing pyrope. Co: Increasing temperature causes only a small thermal expansion of the cobalt dodecahedra. Increasing pressure gives rise to appreciable compression, which is similar to that of the Fe2+-dodecahedra in almandine, where k=125 ± 25 GPa. T and P dependence of the Co band intensities may be caused by strong spin-orbit coupling. V: Occurs in at least two valence states and structural sites: (1) V3+ in octahedral sites gives rise to two spin-allowed bands, at 17 220 cm−1 and 24 600 cm−1, whose temperature dependence is typical for spin-allowed dd transitions in centrosymmetric sites. (2) V4+, which causes a set of dd absorption bands similar to those observed in the spectrum of V4+-doped Zr[SiO4]. The P behavior of the V absorption bands indicates an interaction between V3+ and V4+ species. Received: 27 June 2001 / Accepted: 19 December 2001  相似文献   

6.
 Cordierite precursors were prepared by a sol-gel process using tetraethoxysilane, aluminum sec.-butoxide, and Mg metal flakes as starting materials. The precursors were treated by 15-h heating steps in intervals of 100 °C from 200 to 900 °C; they show a continuous decrease in the analytical water content with increasing preheating temperatures. The presence of H2O and (Si,Al)–OH combination modes in the FTIR powder spectra prove the presence of both H2O molecules and OH groups as structural components, with invariable OH concentrations up to preheating temperatures of 500 °C. The deconvolution of the absorptions in the (H2O,OH)-stretching vibrational region into four bands centred at 3584, 3415, 3216 and 3047 cm−1 reveals non-bridging and bridging H2O molecules and OH groups. The precursor powders remain X-ray amorphous up to preheating temperatures of 800 °C. Above this temperature the precursors crystallize to μ-cordierite; at 1000 °C the structure transforms to α-cordierite. Close similarities exist in the pattern of the 1400–400 cm−1 lattice vibrational region for precursors preheated up to 600 °C. Striking differences are evident at preheating temperatures of 800 °C, where the spectrum of the precursor powder corresponds to that of conventional cordierite glass. Bands centred in the “as-prepared” precursor at 1137 and 1020 cm−1 are assigned to Si–O-stretching vibrations. A weak absorption at 872 cm−1 is assigned to stretching modes of AlO4 tetrahedral units and the same assignment holds for a band at 783 cm−1 which appears in precursors preheated at 600 °C. With increasing temperatures, these bands show a significant shift to higher wavenumbers and the Al–O stretching modes display a strong increase in their intensities. (Si,Al)–O–(Si,Al)-bending modes occur at 710 cm−1 and the band at 572 cm−1 is assigned to stretching vibrations of AlO6 octahedral units. A strong band around 440 cm−1 is essentially attributed to Mg–O-stretching vibrations. The strongly increasing intensity of the 872 and 783 cm−1 bands demonstrates a clear preference of Al for a fourfold-coordinated structural position in the precursors preheated at high temperatures. The observed band shift is a strong indication for increasing tetrahedral network condensation along with changes in the Si–O and Al–O distances to tetrahedra dimensions similar to those occurring in crystalline cordierite. These structural changes are correlated to the dehydration process starting essentially above 500 °C, clearly demonstrating the inhibiting role of H2O molecules and especially of OH groups. Received: 1 March 2002 / Accepted: 26 June 2002  相似文献   

7.
Near-infrared (NIR) absorption bands related to total water (4000 and 7050 cm−1), OH groups (4500 cm−1) and molecular H2O (5200 cm−1) were studied in two polymerised glasses, a synthetic albitic composition and a natural obsidian. The water contents of the glasses were determined using Karl Fischer titration. Molar absorption coefficients were calculated for each of the bands using albitic glasses containing between 0.54 and 9.16 wt.% H2O and rhyolitic glasses containing between 0.97 and 9.20 wt.% H2O. Different combinations of baseline type and intensity measure (peak height/area) for the combination bands at 4500 and 5200 cm−1 were used to investigate the effect of evaluation procedure on calculated hydrous species concentrations. Total water contents calculated using each of the baseline/molar absorption coefficient combinations agree to within 5.8% relative for rhyolitic and 6.5% relative for albitic glasses (maximum absolute differences of 0.08 and 0.15 wt.% H2O, respectively). In glasses with water contents >1 wt.%, calculated hydrous species concentrations vary by up to 17% relative for OH and 11% relative for H2O (maximum absolute differences of 0.33 and 0.43 wt.% H2O, respectively). This variation in calculated species concentrations is typically greater in rhyolitic glasses than albitic. In situ, micro-FTIR analysis at 300 and 100 K was used to investigate the effect of varying temperature on the NIR spectra of the glasses. The linear and integral molar absorption coefficients for each of the bands were recalculated from the 100 K spectra, and were found to vary systematically from the 300 K values. Linear molar absorption coefficients for the 4000 and 7050 cm−1 bands decrease by 16–20% and integral molar absorption coefficients by up to 30%. Depending on glass composition and baseline type, the integral molar absorption coefficients for the absorption bands related to OH groups and molecular H2O change by up to −5.8 and +7.4%, respectively, while linear molar absorption coefficients show less variation, with a maximum change of ∼4%. Using the new molar absorption coefficients for the combination bands to calculate species concentrations at 100 K, the maximum change in species concentration is 0.08 wt.% H2O, compared with 0.39 wt.% which would be calculated if constant values were assumed for the combination band molar absorption coefficients. Almost all the changes in the spectra can therefore be interpreted in terms of changing molar absorption coefficient, rather than interconversion between hydrous species. Received: 17 December 1998 / Revised, accepted 8 July 1999  相似文献   

8.
Chalcedony is a spatial arrangement of hydroxylated nanometre-sized α-quartz (SiO2) crystallites that are often found in association with the silica mineral moganite (SiO2). A supplementary Raman band at 501 cm−1 in the chalcedony spectrum, attributed to moganite, has been used for the evaluation of the quartz/moganite ratio in silica rocks. Its frequency lies at 503 cm−1 in sedimentary chalcedony, representing a 2 cm−1 difference with its position in pure moganite. We present a study of the 503 cm−1 band’s behaviour upon heat treatment, showing its gradual disappearance upon heating to temperatures above 300 °C. Infrared spectroscopic measurements of the silanole (SiOH) content in the samples as a function of annealing temperature show a good correlation between the disappearance of the 503 cm−1 Raman band and the decrease of structural hydroxyl. Thermogravimetric analyses reveal a significant weight loss that can be correlated with the decreasing of this Raman band. X-ray powder diffraction data suggest the moganite content in the samples to remain stable. We propose therefore the existence of a hitherto unknown Raman band at 503 cm−1 in chalcedony, assigned to ‘free’ Si–O vibrations of non-bridging Si–OH that oscillate with a higher natural frequency than bridging Si–O–Si (at 464 cm−1). A similar phenomenon was recently observed in the infrared spectra of chalcedony. The position of this Si–OH-related band is nearly the same as the Raman moganite band and the two bands may interfere. The actually observed Raman band in silica rocks might therefore be a convolution of a silanole and a moganite vibration. These findings have broad implications for future Raman spectroscopic studies of moganite, for the assessment of the quartz/moganite ratio, using this band, must take into account the contribution from silanole that are present in chalcedony and moganite.  相似文献   

9.
A Raman spectroscopic study of Fe-rich sphalerite (Zn1 − x Fe x S) has been carried out for six samples with 0.10 ≤ x ≤ 0.24. Both the intensities and frequencies of the TO and LO modes of sphalerite are approximately independent of Fe concentration. However, the substitution of Zn by Fe results in five additional bands with frequencies between the TO (271 cm−1) and LO (350 cm−1) modes. Three of these bands are attributed to resonance modes (i.e. Y 1, Y 2 and Y 3 modes). The fourth band (B mode) is assigned to a breathing mode of the nearest-neighbor sulfur atoms around the Fe atoms. The band at 337 cm−1 is attributed to the presence of Fe3+. The excellent correlations between the normalized intensities of these five different modes and x Fe show that these modes depend on Fe-content. Another extra mode at 287 cm−1 is assigned to the presence of Cd in sphalerite.  相似文献   

10.
The spin Hamiltonian (SH) parameters (g factors g x , g y and g z and the hyperfine structure constants A x , A y and A z ) and local structure for the rhombic Rh4+ and Ir4+ centers in TiO2 (rutile) are theoretically studied from the perturbation formulas of these parameters for a low spin (S = 1/2) d 5 ion under rhombically distorted octahedra. In the calculations, the ligand orbital and spin–orbit coupling contributions as well as the influence of the local lattice distortions are taken into account using the cluster approach. The local axial elongation ratios are found to be about 1.7 and 3 times, respectively, larger for the Rh4+ and Ir4+ centers than that (≈0.0075) for the host Ti4+ site in rutile, while the perpendicular distortion angles (≈−0.28° and −0.42°, respectively) are more than one order in magnitude smaller than the host value (≈−9.12°). This means that the impurity centers exhibit further elongations of the oxygen octahedra and much smaller perpendicular rhombic distortions as compared with those of the host Ti4+ site in TiO2. The above local lattice distortions can be mainly ascribed to the substitution of the host Ti4+ by the nd 5 impurities, which may induce different physical and chemical properties for the metal–ligand clusters. In addition, the influence of the Jahn–Teller effect on the local structure may not be completely excluded. The calculated SH parameters show reasonable agreement with the observed values.  相似文献   

11.
The IR spectrum of an alpine, hydrothermally formed diopside containing 17 wt ppm H2O consists of three main OH absorption bands centred at 3647, 3464 and 3359 cm−1. Jadeite from a Californian vein occurrence is characterised by bands at 3616 and 3557 cm−1 and contains about 197 wt ppm H2O. Based on the pleochroic scheme of the OH absorption bands in diopside, OH defect incorporation models are derived on the basis of fully occupied cation sites and under the assumption of M1 and M2 site vacancies; OH defects replacing O2 oxygen atoms are most common. The less pronounced OH pleochroism and the broad band absorption pattern of jadeite indicate a high degree of OH defect disordering. The pleochroic scheme of the main absorption bands at 3616 and 3557 cm−1 implies partial replacement of O2 oxygen atoms by OH dipoles pointing to vacant Si sites. Under the assumption of M1 and M2 site vacancies, O1–H and O2–H defects are also derivable. OH incorporation modes assuming Si-vacancies should be considered for jadeite-rich clinopyroxenes formed in deep crust and upper mantle regions.  相似文献   

12.
A suite of more than 200 garnet single crystals, extracted from 150 xenoliths, covering the whole range of types of garnet parageneses in mantle xenoliths so far known from kimberlites of the Siberian platform and collected from nearly all the kimberlite pipes known in that tectonic unit, as well as some garnets found as inclusions in diamonds and olivine megacrysts from such kimberlites, were studied by means of electron microprobe analysis and single-crystal IR absorption spectroscopy in the v OH vibrational range in search of the occurrence, energy and intensity of the v OH bands of hydroxyl defects in such garnets and its potential use in an elucidation of the nature of the fluid phase in the mantle beneath the Siberian platform. The v OH single-crystal spectra show either one or a combination of two or more of the following major v OH bands, I 3645–3662 cm−1, II 3561–3583 cm−1, III 3515–3527 cm−1, and minor bands, Ia 3623–3631 cm−1, IIa 3593–3607 cm−1. The type of combination of such bands in the spectrum of a specific garnet depends on the type of the rock series of the host xenolith, Mg, Mg-Ca, Ca, Mg-Fe, or alkremite, on the xenolith type as well as on the chemical composition of the respective garnet. Nearly all garnets contain band systems I and II. Band system III occurs in Ti-rich garnets, with wt% TiO2 > ca. 0.4, from xenoliths of the Mg-Ca and Mg-Fe series, only. The v OH spectra do not correspond to those of OH defects in synthetic pyropes or natural ultra-high pressure garnets from diamondiferous metamorphics. There were no indications of v OH from inclusions of other minerals within the selected 60 × 60 μm measuring areas in the garnets. The v OH spectra of pyrope-knorringite- and pyrope-knorringite-uvarovite-rich garnets included in diamonds do not show band systems I to III. Instead, they exhibit one weak, broad band (Δv OH 200–460 cm−1) near 3570 cm−1, a result that was also obtained on pyrope-knorringite-rich garnets extracted from two olivine megacrysts. The quantitative evaluation, on the basis of relevant existing calibrational data (Bell et al. 1995), of the sum of integral intensities of all v OH bonds of the garnets studied yielded a wide range of “water” concentrations within the set of the different garnets, between values below the detection limit of our single-crystal IR method, near 2 × 10−4 wt%, up to 163 × 10−4 wt%. The “water” contents vary in a complex manner in garnets from different xenolith types, obviously depending on a large number of constraints, inherent in the crystal chemistry as well as the formation conditions of the garnets during the crystallization of their mantle host rocks. Secondary alteration effects during uplift of the kimberlite, play, if any, only a minor role. Despite the very complex pattern of the “water” contents of the garnets, preventing an evaluation of a straightforward correlation between “water” contents of the garnets and the composition of the mantle's fluid phase during garnet formation, at least two general conclusions could be drawn: (1) the wide variation of “water” contents in garnets is not indicative of regional or local differences in the composition of the mantle's fluid phase; (2) garnets formed in the high-pressure/high-temperature diamond-pyrope facies invariably contain significantly lower amounts of “water” than garnets formed under the conditions of the graphite-pyrope facies. This latter result (2) may point to significantly lower f H2O and f O2 in the former as compared to the latter facies. Received: 25 November 1997 / Accepted: 9 March 1998  相似文献   

13.
Neutron irradiation and post-irradiation annealing under oxidising and reducing conditions have been used to investigate H incorporation in, and the optical properties of, reduced (TiO2−x ) rutile. Optical absorption in rutile is mainly due to a Ti3+ Ti4+ intervalence charge transfer effect. The main mechanism for H incorporation in rutile involves interstitial H not coupled to other defects, which has important implications for the rate of H diffusion, and possibly also on the electrical properties of rutile. Additional minor OH absorption bands in IR spectra indicate that a small amount of interstitial H is coupled to defects such as Ti3+ on the main octahedral site, and indicates that more than one H incorporation mechanism may operate. Concentration of oxygen vacancies has a controlling influence on the H affinity of rutile.  相似文献   

14.
The solubility and incorporation mechanisms of hydrogen in synthetic stishovite as a function of Al2O3 content have been investigated. Mechanisms for H incorporation in stishovite are more complex than previously thought. Most H in stishovite is incorporated via the Smyth et al. (Am Mineral 80:454–456, 1995) model, where H docks close to one of the shared O–O edges, giving rise to an OH stretching band in infrared (IR) spectra at 3,111–3,117 cm−1. However, careful examination of IR spectra from Al-stishovite reveals the presence of an additional OH band at 3,157–3,170 cm−1. All H is present on one site, with interstitial H both coupled to Al3+ substitutional defects on adjacent octahedral (Si4+) sites, and decoupled from other defects, giving rise to two distinct absorption bands. Trends in IR data as a function of composition are consistent with a change in Al incorporation mechanism in stishovite, with Al3+ substitution for Si4+ charge-balanced by oxygen vacancies at low bulk Al2O3 contents, and coupled substitution of Al3+ onto octahedral (Si4+) and interstitial sites at high bulk Al2O3 contents. Trends in OH stretching frequencies as a function of Al2O3 content suggest that any such change in Al incorporation mechanism could alter the effect that Al incorporation has on the compressibility of stishovite, as noted by Ono et al. (Am Mineral 87:1486–1489, 2002).  相似文献   

15.
The thermal behaviour of ripidolite, an iron-rich chlorite, has been studied in situ by infrared emission spectroscopy up to 800 °C. The more di,trioctahedral nature due to significant amounts of Fe3+ is reflected, in addition to the two bands around 3420 and 3560 cm−1, by an extra band around 3345 cm−1. This extra band is absent in pure dioctahedral chlorites without Fe3+. These bands have been assigned to (AlAl)O-OH, (SiAl)O-OH and (SiSi)O-OH stretching modes with increasing frequencies. The bands disappear upon dehydroxylation around 650 °C. A similar behaviour is observed for the corresponding libration modes around 716, 759 and 802 cm−1. The stretching and bending modes of the inner-OH of the octahedral sheet in the 2:1 clay-like layer are observed around 3645, 943 and 904 cm−1. Although the bands decrease in intensity, they remain present up to 800 °C as dehydroxylation of the octahedral sheet is not yet complete at this temperature. The presence of two bending modes is explained as being due to a differentiation between Mg-OH and Fe-OH modes. At 650 °C a new sharp band is observed around 502 cm−1 assigned to a (Fe,Mg)-O-Al bending mode caused by the formation of a spinel-like interlayer phase after dehydroxylation. Received: 4 June 1999 / Accepted: 6 August 1999  相似文献   

16.
 The UV edge in the electronic absorption spectra of minerals, in many cases influencing their colour, is generally interpreted as the low-energy wing of very strong UV bands caused by ligand–metal charge transfer (CT) transitions (e.g. Burns 1993). However, Mie scattering theory shows that the presence of randomly distributed submicroscopic inclusions with narrow size distribution and a refractive index n i in a matrix with different refractive index n m may give rise to a λ-dependent, band-like scattering (e.g. Kortüm 1969). Such scattering bands have so far not been considered as contributing to the UV edge. Single-crystal electronic absorption spectra of eight natural almandine-rich garnets (Alm60–Alm88), two synthetic almandine samples (Alm100), all of different colours, and synthetic spessartine were studied by means of a Zeiss microscope-spectrometer in the range 40 000–20 000 cm−1. Special techniques of spectral measurements with crossed analyzer and polarizer, which enable the registration of the scattering effect directly, were used as well. Four of the above garnets were also investigated using transmission electron microscopy. Different types of inclusions, from 10 to several 100 nm in size, were observed in the garnet matrices. They are abundant in cores of synthetic garnets, but very rare in most natural almandines studied. Electronic absorption spectra of the natural almandine garnets show largely varying UV edge position and, hence, intensity at a given wavenumber which correlates with the intensities of spin-forbidden dd bands of Fe3+ ions at 27 000 and 28 000 cm−1, superimposed on the long energy slope of the UV absorption. There are also positive correlations between Ti4+ and Fe3+ content, the latter recalculated on the basis of garnet stoichiometry, and UV edge intensity. Thus, the presence of Ti4+ and Fe3+ ions in octahedra, even in very low concentrations (0.0n at. pfu), leads to CT phenomena, that probably involve Fe2+ ions in edge-shared dodecahedral position and intensifies ligand- to-metal CT. The different colours of natural almandine garnets with similar Fe2+ contents studied here are caused by this effect. Consistent with the absence of inclusions in most natural garnets studied, λ-dependent scattering plays no role in their UV absorption. In contrast, in synthetic almandine and spessartine crystals, a different intensity of UV absorption was observed in inclusion-free rims and inclusion-enriched cores. Some of the latter demonstrate typical scattering patterns when measured at crossed polarizers. Received: 10 April 2001 / Accepted: 27 September 2001  相似文献   

17.
Synthetic Co-doped quartz was grown hydrothermally in steel autoclaves at the Technological Center of Minas Gerais (CETEC), Brazil. The quartz samples, originally yellow in the as-grown state acquired blue coloration after prolonged heat treatment times at 500°C near the alpha–beta transition temperature. UV–VIS–NIR absorption spectroscopy shows the characteristic spectra of Co3+ before heat treatment. After heat treatment, the optical absorption spectrum is dominated by two split-triplet bands the first in the near infrared region centered at about 6,700 cm−1 (1,490 nm) and the second in the visible spectral range at about 16,900 cm−1 (590 nm). Both split-triplet bands are typical for Co2+ ions in tetrahedral coordination environments. From the absence of electron paramagnetic resonance (EPR) spectra, we conclude that the Co2+ found in the optical absorption spectra of the blue quartz is not due to an isolated structural site in the quartz lattice. Instead, the blue color is associated with electronic transitions of Co2+ in small inclusions in which the Co site has tetrahedral symmetry. The non-observation of polarization-depend optical absorption spectra is also in agreement with this model. The results for Co2+ in quartz are different from Co-bearing spinel and staurolite and other silicates like orthopyroxene, olivine, and beryls. The formation process of the color center is discussed.  相似文献   

18.
Differently colored natural Brazilian andalusite crystals heat-treated under reducing and oxidizing conditions were analyzed by optical spectroscopy. The intensity of a broad intense band at around 20,500 cm−1 in the optical absorption spectra of all color zones of the sample is proportional to the product of Ti- and Fe-concentrations and herewith proves its attribution to electronic Fe2+/Ti4+ IVCT transition. The band is strictly E||c-polarized, causing an intense red coloration of the samples in this polarization. The polarization of the Fe2+/Ti4+ IVCT band in andalusite, E||c, shows that the electronic charge-transfer process takes place in Al–O octahedral groups that share edges with neighbors on either side, forming chains parallel to the c-axis of the andalusite structure. Under thermal treatments in air, the first noticeable change is some intensification of the band at 800°C. However, at higher temperatures its intensity decreases until it vanishes at 1,000°C in lightly colored zones and 1,100°C in darkly colored ones. Under annealing in reducing conditions at 700 and 800°C, the band also slightly increases and maintains its intensity at treatments at higher temperatures up to 1,000°C. These results demonstrate that weakening and disappearance of the Fe2+/Ti4+ IVCT band in spectra of andalusite under annealing in air is caused by oxidization of Fe2+ to Fe3+ in IVCT Fe2+/Ti4+-pairs. Some intensification of the band at 800°C is, most probably, due to thermally induced diffusion of Fe2+ and Ti4+ in the structure that leads to aggregation of “isolated” Ti4+ and Fe2+ ions into Fe2+–Ti4+-pairs. At higher temperatures, the competing process of Fe2+ → Fe3+ oxidation overcomes such “coupling” and the band continues to decrease. The different thermal stability of the band in lightly and darkly colored zones of the samples evidence some self-stabilization over an interaction of Fe2+/Ti4+-pairs involved in IVCT process.  相似文献   

19.
We have studied the polarized optical absorption and the EPR spectra of Ni-doped beryls grown by hydrothermal, flux and gas-transport methods, and chrysoberyl grown by the Czochralski and flux methods. In beryls, three groups of bands belonging to three various Ni centres were distinguished by analysis of the absorption band intensities. The first group, bands with maximums at 21740 (Ec), 17240 (E || c) and 9260 (E ⊥ + || c), 7140 (E || + ⊥ c) cm−1, are due to Ni3+ in octahedral Al3+ site. The second group is bands at 25640 (Ec), 22220 (E || c) and 13520 (E || + ⊥ c), 13160 (E ⊥+ || c) cm−1 and 8930 (E ⊥ + || c), 7460 (E || c) cm−1, which are caused by Ni2+ in octahedral Al3+ site. Weak wide bands at 17540 (E c), 15500 (E || c) cm−1 and 6580 (E || + ⊥ c), 5950 (E || c) cm−1 are related to Ni2+ in tetrahedral Be2+ site. The occurrence of Ni ions in Be2+ site is proved by the EPR spectra of 1VNi+ in γ-irradiated samples. According to the spectra of optical absorption of Ni-doped chrysoberyl, two types of Ni centres have been established: Ni3+ and Ni2+ ions in octahedral Al3+ sites. From the EPR spectra of the X-ray irradiated crystals BeAl2O4: Ni, it follows that 68% of Ni+ ions occupy octahedral Al3+ sites with mirror symmetry and 32% are in Al3+ sites with inversion symmetry. In the approximation of trigonal field with regard to Trees correction, the energy levels of Ni3+ and Ni2+ have been calculated in octahedral and tetrahedral coordination. There is good agreement between the obtained experimental and calculated data. The polarization dependence of the optical absorption bands is well explained in terms of the spin–orbit interaction.  相似文献   

20.
 Synthetic aegirine LiFeSi2O6 and NaFeSi2O6 were characterized using infrared spectroscopy in the frequency range 50–2000 cm−1, and at temperatures between 20 and 300 K. For the C2/c phase of LiFeSi2O6, 25 of the 27 predicted infrared bands and 26 of 30 predicted Raman bands are recorded at room temperature. NaFeSi2O6 (with symmetry C2/c) shows 25 infrared and 26 Raman bands. On cooling, the C2/cP21/c structural phase transition of LiFeSi2O6 is characterized by the appearance of 13 additional recorded peaks. This observation indicates the enlargement of the unit cell at the transition point. The appearance of an extra band near 688 cm−1 in the monoclinic P21/c phase, which is due to the Si–O–Si vibration in the Si2O6 chains, indicates that there are two non-equivalent Si sites with different Si–O bond lengths. Most significant spectral changes appear in the far-infrared region, where Li–O and Fe–O vibrations are mainly located. Infrared bands between 300 and 330 cm−1 show unusually dramatic changes at temperatures far below the transition. Compared with the infrared data of NaFeSi2O6 measured at low temperatures, the change in LiFeSi2O6 is interpreted as the consequence of mode crossing in the frequency region. A generalized Landau theory was used to analyze the order parameter of the C2/cP21/c phase transition, and the results suggest that the transition is close to tricritical. Received: 21 January 2002 / Accepted: 22 July 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号