首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In conjunction with available climate data, surface runoff is investigated at 12 gauges in the Quesnel watershed of British Columbia to develop its long‐term (1926–2004) hydroclimatology. At Quesnel itself, annual mean values of air temperature, precipitation and runoff are 4·6 °C, 517 and 648 mm, respectively. Climate data reveal increases in precipitation, no significant trend in mean annual air temperature, but an increasing trend in mean minimum temperatures that is greatest in winter. There is some evidence of decreases in winter snow depth. On the water year scale (October–September), a strong positive correlation is found between discharge and precipitation (r = 0·70, p < 0·01) and a weak negative correlation is found between precipitation and temperature (r = ? 0·36, p < 0·01). Long‐term trends using the Mann‐Kendall test indicate increasing annual discharge amounts that vary from 8 to 14% (12% for the Quesnel River, p = 0·03), and also a tendency toward an earlier spring freshet. River runoff increases at a rate of 1·26 mm yr?1 m?1 of elevation from west to east along the strong elevation gradient in the basin. Discharge, temperature and precipitation are correlated with the large‐scale climate indices of the Pacific Decadal Oscillation (PDO) and El‐Niño Southern Oscillation (ENSO). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Regimes are useful tools for characterizing the seasonal behaviour of river flow and other hydroclimatological variables over an annual cycle (hydrological year). This paper develops and tests: (i) a regime classification method to identify spatial and temporal patterns in intraannual hydroclimatological response; and (ii) a novel sensitivity index (SI) to assess river flow regimes' climatic sensitivity. The classification of regime shape (form) and magnitude considers the whole annual cycle rather than isolating a single month or season for analysis, which has been the common approach of previous studies. The classification method is particularly useful for identifying large‐scale patterns in regimes and their between‐year stability, thus providing a context for short‐term, small‐scale process‐based research. The SI provides a means of assessing the often‐complex linkages between climatic drivers and river flow, as it identifies the strength and direction of associations between classifications of climate and river flow regimes. The SI has the potential for application to other problems where relationships between nominal classifications require to be found. These techniques are evaluated by application to a test data set of river flow, air temperature and rainfall time‐series (1974–1999) for a sample of 35 UK river basins. The results support current knowledge about the hydroclimatology of the UK. Although this research does not seek to yield new, detailed physical process understanding, it provides perspective at large spatial and temporal scales upon climate and flow regime patterns and quantifies linkages. Having clearly demonstrated the regime classification and SI to be effective in an environment where the hydroclimatology is relatively well known, there appears to be much to gain from applying these techniques in parts of the world where patterns and associations between climate and hydrology are poorly understood. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Rivers display temporal dependence in suspended sediment–water discharge relationships. Although most work has focused on multi‐decadal trends, river sediment behavior often displays sub‐decadal scale fluctuations that have received little attention. The objectives of this study were to identify inter‐annual to decadal scale fluctuations in the suspended sediment–discharge relationship of a dry‐summer subtropical river, infer the mechanisms behind these fluctuations, and examine the role of El Niño Southern Oscillation climate cycles. The Salinas River (California) is a moderate sized (11 000 km2), coastal dry‐summer subtropical catchment with a mean discharge (Qmean) of 11.6 m3 s?1. This watershed is located at the northern most extent of the Pacific coastal North America region that experiences increased storm frequency during El Niño years. Event to inter‐annual scale suspended sediment behavior in this system was known to be influenced by antecedent hydrologic conditions, whereby previous hydrologic activity regulates the suspended sediment concentration–water discharge relationship. Fine and sand suspended sediment in the lower Salinas River exhibited persistent, decadal scale periods of positive and negative discharge corrected concentrations. The decadal scale variability in suspended sediment behavior was influenced by inter‐annual to decadal scale fluctuations in hydrologic characteristics, including: elapsed time since small (~0.1 × Qmean), and moderate (~10 × Qmean) threshold discharge values, the number of preceding days that low/no flow occurred, and annual water yield. El Niño climatic activity was found to have little effect on decadal‐scale fluctuations in the fine suspended sediment–discharge relationship due to low or no effect on the frequency of moderate to low discharge magnitudes, annual precipitation, and water yield. However, sand concentrations generally increased in El Niño years due to the increased frequency of moderate to high magnitude discharge events, which generally increase sand supply. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Climate change is one of the main drivers of river warming worldwide. However, the response of river temperature to climate change differs with the hydrology and landscape properties, making it difficult to generalize the strength and the direction, of river temperature trends across large spatial scales and various river types. Additionally, there is a lack of long‐term and large‐scale trend studies in Europe as well as globally. In this study, we investigated the long‐term (25 years; 132 sites) and the short‐term (10 years; 475 sites) river temperature trends, patterns and underlying drivers within the period 1985–2010 in seven river basins of Germany. The majority of the sites underwent significant river warming during 1985–2010 (mean warming trend: 0.03 °C year?1, SE = 0.003), with a faster warming observed during individual decades (1985–1995 and 2000–2010) within this period. Seasonal analyses showed that, while rivers warmed in all seasons, the fastest warming had occurred during summer. Among all the considered hydro‐climatological variables, air temperature change, which is a response to climate forcing, was the main driver of river temperature change because it had the strongest correlation with river temperature, irrespective of the period. Hydrological variables, such as average flow and baseflow, had a considerable influence on river temperature variability rather than on the overall trend direction. However, decreasing flow probably assisted in a faster river temperature increase in summer and in rivers in NE basins (such as the Elbe basin). The North Atlantic Oscillation Index had a greater significant influence on the winter river temperature variability than on the overall variability. Landscape and basin variables, such as altitude, ecoregion and catchment area, induced spatially variable river temperature trends via affecting the thermal sensitivity of rivers, with the rivers in large catchments and in lowland areas being most sensitive. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Soil and water conservation measures including terracing, afforestation, construction of sediment‐trapping dams, and the ‘Grain for Green Program’ have been extensively implemented in the Yanhe River watershed, of the Loess Plateau, China, over the last six decades, and have resulted in large‐scale land use and land cover changes. This study examined the trends and shifts in streamflow regime over the period of 1953–2010 and relates them to changes in land use and soil and water conservation and to the climatic factors of precipitation and air temperature. The non‐parametric Mann–Kendall test and the Pettitt test were used to identify trends and shifts in streamflow and base flow. A method based on precipitation and potential evaporation was used to evaluate the impacts of climate variability and changes in non‐climate factors changes on annual streamflow. A significant decrease (p = 0.01) in annual streamflow was observed related to a significant change point in 1996, mostly because of significant decreases in streamflow (p = 0.01) in the July to September periods in subsequent years. The annual base flow showed no significant trend from 1953 to 2010 and no change point year, mostly because there were no significant seasonal trends, except for significant decreases (p = 0.05) in the July to September periods. There was no significant trend for precipitation over the studied time period, and no change point was detected. The air temperature showed a significant increasing trend (p < 0.01), and 1986 (p < 0.01) was the change point year. The climate variability, as measured by precipitation and temperature, and non‐climate factors including land use changes and soil and water conservation were estimated to have contributed almost equally to the reduction in annual streamflow. Soil and water conservation practices, including biological measures (e.g. revegetation, planting trees and grass) and engineering measures (such as fish‐scale pits, horizontal trenches, and sediment‐trapping dams) play an important role in reduction of the conversion of rainfall to run‐off. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
This study addresses the spatial variations in water quality along the River Vène (France). The Vène drains a 67 km2 rural basin, with a large karstic area, located in a Mediterranean context. A 1 day sampling campaign was conducted along the river, in winter low‐flow conditions (February 2003). Physico‐chemical parameters and water flow discharge were measured in situ during the sampling campaign. Water quality was evaluated by determining the concentrations of nitrogen and phosphorus in water and bed‐sediment samples. Nitrogen and phosphorus loads were evaluated taking into account the measured concentrations and discharge. The campaign included 18 sampling points and concerned the whole river from the spring to the outlet, plus the main inputs, i.e. sewage treatment works, main tributaries and karstic springs. The spatial evolution of nitrogen and phosphorus loads along the river allowed the significant role of point‐source inputs to be demonstrated. The decrease in nutrient loads along the river occurred mainly in specific reaches where fine sediments had accumulated. In these zones, phosphorus is trapped in the bed sediments in calcium‐bound phosphates due to precipitation processes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Scaling relationships between water turnover or discharge and water system size may help to reveal and understand general patterns and processes in regional and global hydrological systems. In the present study, we derived global as well as climate‐specific scaling relationships between average or maximum river discharge and catchment area, main‐stem length and precipitation, based on data from 663 monitoring stations worldwide. Data were retrieved from a Global Runoff Data Centre (GRDC) database. The scaling relationships were established with ordinary least square (OLS) and standard major axis (SMA) regressions. The focus was on the SMA regressions because this method provides better estimates of the slope. The overall empirical regressions derived were highly significant (p < 0.01). Average discharge (Q) and maximum discharge (Qmax) scaled to catchment area (A) with SMA slopes of 1.23 (r2 = 0.40) and 0.99 (r2 = 0.41), respectively. Average discharge (Q) scaled to length (L) with a slope of 2.16 (r2 = 0.40), while catchment area (A) scaled to main‐stem length (L) with a slope of 1.76 (r2 = 0.91). The addition of precipitation (P), yielding a multiple regression of discharge versus catchment area and precipitation, improved the explained variability to r2 = 0.56 and r2 = 0.52 for average and maximum discharge, respectively. Slopes of climate zone‐specific regressions tended to be similar to the slopes of the overall relationships. The uncertainties of the regressions were discussed and, where possible, compared to regressions derived in other studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The higher mid‐latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter‐catchment comparison program, North‐Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North‐Watch program, which focuses on how these catchments collect, store and release water and identify ‘types’ of hydro‐climatic catchment response. At most sites, a 10‐year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter‐annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual‐scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall–runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii) the seasonality of precipitation and storage. By advancing the ecological concepts of resistance and resilience for catchment functioning, results provided a conceptual framework for understanding susceptibility to hydrological change across northern catchments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Projecting changes in the frequency and intensity of future precipitation and flooding is critical for the development of social infrastructure under climate change. The Mekong River is among the world's large-scale rivers severely affected by climate change. This study aims to define the duration of precipitation contributing to peak floods based on its correlation with peak discharge and inundation volume in the Lower Mekong Basin (LMB). We assessed the changes in precipitation and flood frequency using a large ensemble Database for Policy Decision-Making for Future Climate Change (d4PDF). River discharge in the Mekong River Basin (MRB) and flood inundation in the LMB were simulated by a coupled rainfall-runoff and inundation (RRI) model. Results indicated that 90-day precipitation counting backward from the day of peak flooding had the highest correlation with peak discharge (R2 = .81) and inundation volume (R2 = .81). The ensemble mean of present simulation of d4PDF (1951–2010) showed good agreement with observed extreme flood events in the LMB. The probability density of 90-day precipitation shifted from the present to future climate experiments with a large variation of mean (from 777 to 900 mm) and SD (from 57 to 96 mm). Different patterns of sea surface temperature significantly influence the variation of precipitation and flood inundation in the LMB in the future (2051–2110). Extreme flood events (50-year, 100-year, and 1,000-year return periods) showed increases in discharge, inundation area, and inundation volume by 25%–40%, 19%–36%, and 23%–37%, respectively.  相似文献   

10.
D. Raje  P. Priya  R. Krishnan 《水文研究》2014,28(4):1874-1889
In climate‐change studies, a macroscale hydrologic model (MHM) operating over large scales can be an important tool in developing consistent hydrological variability estimates over large basins. MHMs, which can operate at coarse grid resolutions of about 1° latitude by longitude, have been used previously to study climate change impacts on the hydrology of continental scale or global river basins. They can provide a connection between global atmospheric models and water resource systems on large spatial scales and long timescales. In this study, the variable infiltration capacity (VIC) MHM is used to study large scale hydrologic impacts of climate change for Indian river basins. Large‐scale changes in runoff, evapotranspiration and soil moisture for India, as well as station‐scale changes in discharges for three major river basins with distinct climatic and geographic characteristics are examined in this study. Climate model projections for meteorological variables (precipitation, temperature and wind speed) from three general circulation models (GCMs) and three emissions scenarios are used to drive the VIC MHM. GCM projections are first interpolated to a 1° by 1° hydrologic model grid and then bias‐corrected using a quantile–quantile mapping. The VIC model is able to reproduce observed statistics for discharges in the Ganga, Narmada and Krishna basins reasonably well, even at the coarse grid resolution employed using a calibration period for years 1965–1970 and testing period from 1971–1973/1974. An increasing trend is projected for summer monsoon surface runoff, evapotranspiration and soil moisture in most central Indian river basins, whereas a decrease in runoff and soil moisture is projected for some regions in southern India, with important differences arising from GCM and scenario variability. Discharge statistics show increases in mid‐flow and low flow at Farakka station on Ganga River, increased high flows at Jamtara station upstream of Narmada, and increased high, mid‐flow and low flow for Vijayawada station on Krishna River in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Artemisia ordosica is considered as an excellent sand‐fixing plant in revegetated desert areas, which plays a pertinent role in stabilizing the mobile dunes and sustaining the desert ecosystems. Stem sap flows of about 10‐year‐old Artemisia ordosica plants were monitored continuously with heat balance method for the entire growing season in order to understand the water requirement and the effects of environmental factors on its transpiration and growth. Environment factors such as solar radiation, air temperatures, relative humidity, wind speed and precipitation were measured by the eddy covariance. Diurnal and seasonal variations of sap flow rate with different stem diameters and their correlation with meteorological factors and reference evapotranspiration were analysed. At the daily time scale, there was a significantly linear relationship between sap flow rate and reference evapotranspiration with a correlation coefficient of R2 = 0·6368. But at the hourly time scale, the relationship of measured sap flow rate and calculated reference evapotranspiration (ET0) was affected by the precipitation. A small precipitation would increase the sap flow and the ET0; however, when the precipitation is large, the sap flow and ET0 decrease. Leaf area index had a coincident variation with soil water content; both were determined by the precipitation, and meteorological factors were the most significant factors that affected the sap flow of Artemisia ordosica in the following order: solar radiation > vapour pressure deficit > relative humidity > air temperature > wind speed. The close correlation between daily sap flow rate and meteorological factors in the whole growing season would provide us an accurate estimation of the transpiration of Artemisia ordosica and rational water‐carrying capacity of sand dunes in the revegetated desert areas. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
It has been proposed that linear regression curves can be used to estimate monthly climate variables from observed precipitation. This approach was explored by applying the MGB hydrological model to the Paraná Basin (Brazil). Linear regressions were obtained for 54 climate gauges, and most of them showed at least six months of significant correlation between monthly climate variables (sunlight hours and relative humidity) and precipitation. The regression equations were applied to 5201 raingauges to estimate monthly climate variables and evapotranspiration, and the results were compared with a scenario using long-term climate averages only. The main differences occurred in wetter periods, where negative correlations between monthly precipitation and evapotranspiration were obtained when using precipitation as a proxy. Long-term changes in the hydrological regime were assessed and showed that the effect of precipitation on relative humidity and sunlight hours seems to have a minor effect on the alterations observed in river discharge in the Paraná Basin.  相似文献   

13.
Transpiration is an important component of soil water storage and stream‐flow and is linked with ecosystem productivity, species distribution, and ecosystem health. In mountain environments, complex topography creates heterogeneity in key controls on transpiration as well as logistical challenges for collecting representative measurements. In these settings, ecosystem models can be used to account for variation in space and time of the dominant controls on transpiration and provide estimates of transpiration patterns and their sensitivity to climate variability and change. The Regional Hydro‐Ecological Simulation System (RHESSys) model was used to assess elevational differences in sensitivity of transpiration rates to the spatiotemporal variability of climate variables across the Upper Merced River watershed, Yosemite Valley, California, USA. At the basin scale, predicted annual transpiration was lowest in driest and wettest years, and greatest in moderate precipitation years (R2 = 0·32 and 0·29, based on polynomial regression of maximum snow depth and annual precipitation, respectively). At finer spatial scales, responsiveness of transpiration rates to climate differed along an elevational gradient. Low elevations (1200–1800 m) showed little interannual variation in transpiration due to topographically controlled high soil moistures along the river corridor. Annual conifer stand transpiration at intermediate elevations (1800–2150 m) responded more strongly to precipitation, resulting in a unimodal relationship between transpiration and precipitation where highest transpiration occurred during moderate precipitation levels, regardless of annual air temperatures. Higher elevations (2150–2600 m) maintained this trend, but air temperature sensitivities were greater. At these elevations, snowfall provides enough moisture for growth, and increased temperatures influenced transpiration. Transpiration at the highest elevations (2600–4000 m) showed strong sensitivity to air temperature, little sensitivity to precipitation. Model results suggest elevational differences in vegetation water use and sensitivity to climate were significant and will likely play a key role in controlling responses and vulnerability of Sierra Nevada ecosystems to climate change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
D. Markovic  M. Koch 《水文研究》2014,28(4):2202-2211
Long‐term variations and temporal scaling of mean monthly time series of river flow, precipitation, temperature, relative humidity, air pressure, duration of bright sunshine, degree of cloud cover, short wave radiation, wind speed and potential evaporation within or in vicinity of the German part of the Elbe River Basin are analyzed. Statistically significant correlations between the 2–15 year scale‐averaged wavelet spectra of the hydroclimatic variables and the North Atlantic Oscillation‐ and Arctic Oscillation index are found which suggests that such long‐term patterns in hydroclimatic time series are externally forced. The Hurst parameter estimates (H) based on the Detrended Fluctuation Analysis (DFA) indicate persistence for discharge, precipitation, wind speed, air pressure and the degree of cloud cover, all having an annual cycle and a broad low‐frequency distribution. Also, DFA H parameter estimates are higher for discharge than for precipitation. The major long‐term quasi‐periodic variability modes of precipitation detected using Singular Spectrum Analysis coincide with those detected in the discharge time series. Upon subtraction of these low‐frequency quasi‐periodic modes, the DFA H parameter estimates suggest absence of the persistence for both precipitation and discharge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

Abstract The utility of simulations of Global Climate Models (GCMs) for regional water resources prediction and management on the Korean Peninsula was assessed by a probabilistic measure. Global Climate Model simulations of an indicator variable (e.g. surface precipitation or temperature) were used for discriminating high vs low regional observations of a target variable (e.g. watershed precipitation or reservoir inflow). The formulation uses the significance probability of the Kolmogorov-Smirnov test for detecting differences between two distributions. High resolution Atmospheric Model Intercomparison Project-II (AMIP-II) type GCM simulations performed by the European Centre for Medium-Range Weather Forecasts (ECMWF) and AMIP-I type GCM simulations performed by the Korean Meteorological Research Institute (METRI) were used to obtain information for the indicator variables. Observed mean areal precipitation and temperature, and watershed-outlet discharge values for seven major river basins in Korea were used as the target variables. The results suggest that the use of the climate model nodal output from both climate models in the vicinity of the target basin with monthly resolution will be beneficial for water resources planning and management analysis that depends on watershed mean areal precipitation and temperature, and outlet discharge.  相似文献   

16.
Tritium concentrations in river and stream waters from different locations can be compared by normalizing them using the ratio of tritium concentrations in precipitation and surface water (Cp/Cs) in the study area. This study uses these ratios in a hydrological residence time context to make regional‐ and global‐scale comparisons about river basin dynamics. Prior to the advent of nuclear weapons testing, the Cp/Cs ratio was greater than or equal to 1 everywhere because of the decay of tritium in the watershed after it was deposited by precipitation. After an initial increase in the ratios during the bomb peak, the ratio dropped to less than 1 for most surface waters in the following years. This post‐bomb change in the ratio is due to the retention of the bomb‐pulse water in watersheds on timescales that are long relative to the residence time of tritium in the atmosphere. Ratios were calculated for over 6500 measurements of tritium in river and stream waters compiled by the International Atomic Energy Agency. These measurements span the post‐nuclear era (1940s to present) and include many long‐term datasets, which make it possible to examine residence times of waters in watersheds on a global basis. Plotting Cp/Cs versus time shows that ratios tended to reach a minimum in approximately one to two decades after the bomb peak for most locations. This result suggests that changes affecting quantity and quality of river flows need to be assessed on a multi‐decadal timescale. These long lag times have significant implications for assessing climate or land‐use change impacts on a large number of river systems around the world. The continuing value of tritium in studying surface water systems for both the Southern and Northern Hemisphere is also demonstrated. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

17.
Tropical river basins are experiencing major hydrological alterations as a result of climate variability and deforestation. These drivers of flow changes are often difficult to isolate in large basins based on either observations or experiments; however, combining these methods with numerical models can help identify the contribution of climate and deforestation to hydrological alterations. This paper presents a study carried out in the Tapaj?s River (Brazil), a 477,000 km2 basin in South‐eastern Amazonia, in which we analysed the role of annual land cover change on daily river flows. Analysis of observed spatial and temporal trends in rainfall, forest cover, and river flow metrics for 1976 to 2008 indicates a significant shortening of the wet season and reduction in river flows through most of the basin despite no significant trend in annual precipitation. Coincident with seasonal trends over the past 4 decades, over 35% of the original forest (140,000 out of 400,000 km2) was cleared. In order to determine the effects of land clearing and rainfall variability to trends in river flows, we conducted hindcast simulations with ED2 + R, a terrestrial biosphere model incorporating fine scale ecosystem heterogeneity arising from annual land‐use change and linked to a flow routing scheme. The simulations indicated basin‐wide increases in dry season flows caused by land cover transitions beginning in the early 1990s when forest cover dropped to 80% of its original extent. Simulations of historical potential vegetation in the absence of land cover transitions indicate that reduction in rainfall during the dry season (mean of ?9 mm per month) would have had an opposite and larger magnitude effect than deforestation (maximum of +4 mm/month), leading to the overall net negative trend in river flows. In light of the expected increase in future climate variability and water infrastructure development in the Amazon and other tropical basins, this study presents an approach for analysing how multiple drivers of change are altering regional hydrology and water resources management.  相似文献   

18.
The run‐off volume altered by the construction of hydropower plants affects ecohydrological processes in catchments. Although the impacts of large hydropower plants have been well documented in the literature, few studies have been conducted on the impacts of small cascaded hydropower plants (SCHPs). To evaluate the impacts of SCHPs on river flow, we chose a representative basin affected by hydropower projects and, to a lesser degree, by other human activities, that is, the Qiuxiang River basin in Southern China. The observed river discharge and climate data during the period of 1958–2016 were investigated. The datasets were divided into a low‐impact period and a high‐impact period based on the number of SCHPs and the capacities of the reservoirs. The daily river discharge alteration was assessed by applying the Indicators of Hydrologic Alteration. To separate the impact of the SCHPs on the local river discharge from that of climate‐related precipitation, the back‐propagation neural network was used to simulate the monthly average river discharge process. An abnormal result was found: Unlike large reservoirs in large watersheds, the SCHPs regulated the flows during the flood season but were not able to mitigate the droughts during the dry season due to their limited storage and the commonly occurring inappropriate interregulations of the SCHPs. The SCHPs also reduced the annual average river discharge in the research basin. The contribution of the SCHPs to the river discharge changes was 85.37%, much higher than the contributions of climate change (13.43%) and other human activities (1.20%). The results demonstrated that the impacts of the SCHPs were different from those of large dams and reservoirs that regulate floods and relieve droughts. It is necessary to raise the awareness of the impacts of these river barriers.  相似文献   

19.
Hydrologic variability during 2005–2011 was observed and analyzed at an upland oak/pine forest in the New Jersey Pinelands. The forest experienced defoliation by Gypsy moth (Lymantria dispar L.) in 2007, drought conditions in 2006 and a more severe drought in 2010. By using sap flux and eddy covariance measurements, stream discharge data from USGS, soil water changes, precipitation (P) and precipitation throughfall, a local water balance was derived. Average annual canopy transpiration (EC) during 2005–2011 was 201 mm a?1 ± 47 mm a?1. A defoliation event reduced EC by 20% in 2007 compared with the 2005–2011 mean. During drought years in 2006 and 2010, stand transpiration was reduced by 8% in July 2006 and by 18% in 2010, respectively, compared with the overall July average. During July 2007, after the defoliation and subsequent reflushing of half of the leaves, EC was reduced by 25%. This stand may experience higher sensitivity to drought when recovering from a defoliation event as evidenced by the higher reduction of EC in 2010 (post‐defoliation) compared with 2006 (pre‐defoliation). Stream water discharge was normalized to the watershed area by dividing outflow with the watershed area. It showed the greatest correlation with transpiration for time lags of 24 days and 219 days, suggesting hydrological connectivity on the watershed scale; stream water discharge increases when transpiration decreases, coinciding with leaf‐on and leaf‐off conditions. Thus, any changes in transpiration or precipitation will also alter stream water discharge and therefore water availability. Under future climate change, frequency and intensity of precipitation and episodic defoliation events may alter local water balance components in this upland oak/pine forest. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The observed retreat of several Himalayan glaciers and snow packs is a cause of concern for the huge population in southern Asia that is dependent on the glacial‐fed rivers emanating from Himalayas. There is considerable uncertainty about how cryospheric recession in the Himalayan region will respond to climate change, and how the water resource availability will be affected. As a first step towards quantifying the contribution of glacier‐melt water, hydrograph separation of River Ganga at Rishikesh into its constituent components, namely (i) surface runoff, (ii) glacial ice‐melt and (iii) groundwater discharge has been done in this paper. A three‐component mixing model has been employed using the values of δ18O and electrical conductivity (EC) of the river water, and its constituents, to estimate the time‐varying relative fraction of each component. The relative fraction of the surface runoff peaks (70–90%) during winter, due to the near‐zero contribution of glacial ice‐melt, essentially represents the melting of surface snow from the catchment. The contribution of glacial ice‐melt to the stream discharge peaks during summer and monsoon reaches a maximum value of ~40% with an average of 32%. The fraction of groundwater discharge varies within a narrow range (15 ± 5%) throughout the year. On the basis of the variation in the d‐excess values of river water, it is also suggested that the snow‐melt and ice‐melt component has a significant fraction derived from winter precipitation with moisture source from mid‐latitude westerlies (also known as western disturbances). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号