首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Various regional flood frequency analysis procedures are used in hydrology to estimate hydrological variables at ungauged or partially gauged sites. Relatively few studies have been conducted to evaluate the accuracy of these procedures and estimate the error induced in regional flood frequency estimation models. The objective of this paper is to assess the overall error induced in the residual kriging (RK) regional flood frequency estimation model. The two main error sources in specific flood quantile estimation using RK are the error induced in the quantiles local estimation procedure and the error resulting from the regional quantile estimation process. Therefore, for an overall error assessment, the corresponding errors associated with these two steps must be quantified. Results show that the main source of error in RK is the error induced into the regional quantile estimation method. Results also indicate that the accuracy of the regional estimates increases with decreasing return periods. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Non-linear canonical correlation analysis in regional frequency analysis   总被引:2,自引:2,他引:0  
Hydrological processes are complex non-linear phenomena. Canonical correlation analysis (CCA) is frequently used in regional frequency analysis (RFA) to delineate hydrological neighborhoods. Although non-linear CCA (NL-CCA) is widely used in several fields, it has not been used in hydrology, particularly in RFA. This paper presents an overview of techniques used to reproduce non-linear relationships between two sets of variables. The approaches considered in this work are based on NL-CCA using neural networks (CCA-NN), coupled to a log-linear regression model for flood quantile estimation. In order to demonstrate the usefulness of these approaches in RFA, a comparative study between the latter and linear CCA is performed using three different databases from North America. Results show that CCA-NN is more robust and can better reproduce the non-linear relationship structures between physiographical and hydrological variables. This reflects the high flexibility of this approach. Results indicate that for all three databases, it is more advantageous to proceed with the non-linear CCA approach.  相似文献   

3.
4.
Abstract

The present research study investigates the application of nonlinear normalizing data transformations in conjunction with ordinary kriging (OK) for the accurate prediction of groundwater level spatial variability in a sparsely-gauged basin. We investigate three established normalizing methods, Gaussian anamorphosis, trans-Gaussian kriging and the Box-Cox method to improve the estimation accuracy. The first two are applied for the first time to groundwater level data. All three methods improve the mean absolute prediction error compared to the application of OK to the non-transformed data. In addition, a modified Box-Cox transformation is proposed and applied to normalize the hydraulic heads. The modified Box-Cox transformation in conjunction with OK is found to be the optimal spatial model based on leave-one-out cross-validation. The recently established Spartan semivariogram family provides the optimal model fit to the transformed data. Finally, we present maps of the groundwater level and the kriging variance based on the optimal spatial model.

Editor D. Koutsoyiannis; Associate editor A. Montanari

Citation Varouchakis, E.A., Hristopoulos, D.T., and Karatzas, G.P., 2012. Improving kriging of groundwater level data using nonlinear normalizing transformations—a field application. Hydrological Sciences Journal, 57 (7), 1404–1419.  相似文献   

5.
Rainfall data in continuous space provide an essential input for most hydrological and water resources planning studies. Spatial distribution of rainfall is usually estimated using ground‐based point rainfall data from sparsely positioned rain‐gauge stations in a rain‐gauge network. Kriging has become a widely used interpolation method to estimate the spatial distribution of climate variables including rainfall. The objective of this study is to evaluate three geostatistical (ordinary kriging [OK], ordinary cokriging [OCK], kriging with an external drift [KED]), and two deterministic (inverse distance weighting, radial basis function) interpolation methods for enhanced spatial interpolation of monthly rainfall in the Middle Yarra River catchment and the Ovens River catchment in Victoria, Australia. Historical rainfall records from existing rain‐gauge stations of the catchments during 1980–2012 period are used for the analysis. A digital elevation model of each catchment is used as the supplementary information in addition to rainfall for the OCK and kriging with an external drift methods. The prediction performance of the adopted interpolation methods is assessed through cross‐validation. Results indicate that the geostatistical methods outperform the deterministic methods for spatial interpolation of rainfall. Results also indicate that among the geostatistical methods, the OCK method is found to be the best interpolator for estimating spatial rainfall distribution in both the catchments with the lowest prediction error between the observed and estimated monthly rainfall. Thus, this study demonstrates that the use of elevation as an auxiliary variable in addition to rainfall data in the geostatistical framework can significantly enhance the estimation of rainfall over a catchment.  相似文献   

6.
Abstract

This paper compares the performance of three geostatistical algorithms, which integrate elevation as an auxiliary variable: kriging with external drift (KED); kriging combined with regression, called regression kriging (RK) or kriging after detrending; and co-kriging (CK). These three methods differ by the way by in which the secondary information is introduced into the prediction procedure. They are applied to improve the prediction of the monthly average rainfall observations measured at 106 climatic stations in Tunisia over an area of 164 150 km2 using the elevation as the auxiliary variable. The experimental sample semivariograms, residual semivariograms and cross-variograms are constructed and fitted to estimate the rainfall levels and the estimation variance at the nodes of a square grid of 20 km?×?20 km resolution and to develop corresponding contour maps. Contour diagrams for KED and RK were similar and exhibited a pattern corresponding more closely to local topographic features when (a) the network is sparse and (b) the rainfall–elevation correlation is poor, while CK showed a smooth zonal pattern. Smaller prediction variances are obtained for the RK algorithm. The cross-validation showed that the RMSE obtained for CK gave better results than for KED or RK.

Editor D. Koutsoyiannis; Associate editor C. Onof

Citation Feki, H., Slimani, M., and Cudennec, C., 2012. Incorporating elevation in rainfall interpolation in Tunisia using geostatistical methods. Hydrological Sciences Journal, 57 (7), 1294–1314.  相似文献   

7.
An increasing impervious area is quickly extending over the Wu‐Tu watershed due to the endless demands of the people. Generally, impervious paving is a major result of urbanization and more recently has had the potential to produce more enormous flood disasters than those of the past. In this study, 40 available rainfall–runoff events were chosen to calibrate the applicable parameters of the models and to determine the relationships between the impervious surfaces and the calibrated parameters. Model inputs came from the outcomes of the block kriging method and the non‐linear programming method. In the optimal process, the shuffled complex evolution method and three criteria were applied to compare the observed and simulated hydrographs. The tendencies of the variations of the parameters with their corresponding imperviousness were established through regression analysis. Ten cases were used to examine the established equations of the parameters and impervious covers. Finally, the design flood routines of various return periods were furnished through use of approaches containing a design storm, block kriging, the SCS model, and a rainfall‐runoff model with established functional relationships. These simulated flood hydrographs were used to compare and understand the past, present, and future hydrological conditions of the watershed studied. In the research results, the time to peak of flood hydrographs for various storms was diminished approximately from 11 h to 6 h in different decrements, whereas peak flow increased respectively from 127 m3 s?1 to 629 m3 s?1 for different storm intensities. In addition, this study provides a design diagram for the peak flow ratio to help engineers and designers to construct hydraulic structures efficiently and prevent possible damage to human life and property. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Using auxiliary information to improve the prediction accuracy of soil properties in a physically meaningful and technically efficient manner has been widely recognized in pedometrics. In this paper, we explored a novel technique to effectively integrate sampling data and auxiliary environmental information, including continuous and categorical variables, within the framework of the Bayesian maximum entropy (BME) theory. Soil samples and observed auxiliary variables were combined to generate probability distributions of the predicted soil variable at unsampled points. These probability distributions served as soft data of the BME theory at the unsampled locations, and, together with the hard data (sample points) were used in spatial BME prediction. To gain practical insight, the proposed approach was implemented in a real-world case study involving a dataset of soil total nitrogen (TN) contents in the Shayang County of the Hubei Province (China). Five terrain indices, soil types, and soil texture were used as auxiliary variables to generate soft data. Spatial distribution of soil total nitrogen was predicted by BME, regression kriging (RK) with auxiliary variables, and ordinary kriging (OK). The results of the prediction techniques were compared in terms of the Pearson correlation coefficient (r), mean error (ME), and root mean squared error (RMSE). These results showed that the BME predictions were less biased and more accurate than those of the kriging techniques. In sum, the present work extended the BME approach to implement certain kinds of auxiliary information in a rigorous and efficient manner. Our findings showed that the BME prediction technique involving the transformation of variables into soft data can improve prediction accuracy considerably, compared to other techniques currently in use, like RK and OK.  相似文献   

9.
Rainfall data are a fundamental input for effective planning, designing and operating of water resources projects. A well‐designed rain gauge network is capable of providing accurate estimates of necessary areal average and/or point rainfall estimates at any desired ungauged location in a catchment. Increasing network density with additional rain gauge stations has been the main underlying criterion in the past to reduce error and uncertainty in rainfall estimates. However, installing and operation of additional stations in a network involves large cost and manpower. Hence, the objective of this study is to design an optimal rain gauge network in the Middle Yarra River catchment in Victoria, Australia. The optimal positioning of additional stations as well as optimally relocating of existing redundant stations using the kriging‐based geostatistical approach was undertaken in this study. Reduction of kriging error was considered as an indicator for optimal spatial positioning of the stations. Daily rainfall records of 1997 (an El Niño year) and 2010 (a La Niña year) were used for the analysis. Ordinary kriging was applied for rainfall data interpolation to estimate the kriging error for the network. The results indicate that significant reduction in the kriging error can be achieved by the optimal spatial positioning of the additional as well as redundant stations. Thus, the obtained optimal rain gauge network is expected to be appropriate for providing high quality rainfall estimates over the catchment. The concept proposed in this study for optimal rain gauge network design through combined use of additional and redundant stations together is equally applicable to any other catchment. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

10.
It is critical to understand and quantify the temporal and spatial variability in hillslope hydrological data in order to advance hillslope hydrological studies, evaluate distributed parameter hydrological models, analyse variability in hydrological response of slopes and design efficient field data sampling networks. The spatial and temporal variability of field‐measured pore‐water pressures in three residual soil slopes in Singapore was investigated using geostatistical methods. Parameters of the semivariograms, namely the range, sill and nugget effect, revealed interesting insights into the spatial structure of the temporal situation of pore‐water pressures in the slopes. While informative, mean estimates have been shown to be inadequate for modelling purposes, indicator semivariograms together with mean prediction by kriging provide a better form of model input. Results also indicate that significant temporal and spatial variability in pore‐water pressures exists in the slope profile and thereby induces variability in hydrological response of the slope. Spatial and temporal variability in pore‐water pressure decreases with increasing soil depth. The variability decreases during wet conditions as the slope approaches near saturation and the variability increases with high matric suction development following rainfall periods. Variability in pore‐water pressures is greatest at shallow depths and near the slope crest and is strongly influenced by the combined action of microclimate, vegetation and soil properties. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Compared to other estimation techniques, one advantage of geostatistical techniques is that they provide an index of the estimation accuracy of the variable of interest with the kriging estimation standard deviation (ESD). In the context of radar–raingauge quantitative precipitation estimation (QPE), we address in this article the question of how the kriging ESD can be transformed into a local spread of error by using the dependency of radar errors to the rain amount analyzed in previous work. The proposed approach is implemented for the most significant rain events observed in 2008 in the Cévennes-Vivarais region, France, by considering both the kriging with external drift (KED) and the ordinary kriging (OK) methods. A two-step procedure is implemented for estimating the rain estimation accuracy: (i) first kriging normalized ESDs are computed by using normalized variograms (sill equal to 1) to account for the observation system configuration and the spatial structure of the variable of interest (rainfall amount, residuals to the drift); (ii) based on the assumption of a linear relationship between the standard deviation and the mean of the variable of interest, a denormalization of the kriging ESDs is performed globally for a given rain event by using a cross-validation procedure. Despite the fact that the KED normalized ESDs are usually greater than the OK ones (due to an additional constraint in the kriging system and a weaker spatial structure of the residuals to the drift), the KED denormalized ESDs are generally smaller the OK ones, a result consistent with the better performance observed for the KED technique. The evolution of the mean and the standard deviation of the rainfall-scaled ESDs over a range of spatial (5–300 km2) and temporal (1–6 h) scales demonstrates that there is clear added value of the radar with respect to the raingauge network for the shortest scales, which are those of interest for flash-flood prediction in the considered region.  相似文献   

12.
Top‐kriging is a method for estimating stream flow‐related variables on a river network. Top‐kriging treats these variables as emerging from a two‐dimensional spatially continuous process in the landscape. The top‐kriging weights are estimated by regularising the point variogram over the catchment area (kriging support), which accounts for the nested nature of the catchments. We test the top‐kriging method for a comprehensive Austrian data set of low stream flows. We compare it with the regional regression approach where linear regression models between low stream flow and catchment characteristics are fitted independently for sub‐regions of the study area that are deemed to be homogeneous in terms of flow processes. Leave‐one‐out cross‐validation results indicate that top‐kriging outperforms the regional regression on average over the entire study domain. The coefficients of determination (cross‐validation) of specific low stream flows are 0.75 and 0.68 for the top‐kriging and regional regression methods, respectively. For locations without upstream data points, the performances of the two methods are similar. For locations with upstream data points, top‐kriging performs much better than regional regression as it exploits the low flow information of the neighbouring locations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
This work evaluated the spatial variability and distribution of heterogeneous hydraulic conductivity (K) in the Choushui River alluvial fan in Taiwan, using ordinary kriging (OK) and mean and individual sequential Gaussian simulations (SGS). A baseline flow model constructed by upscaling parameters was inversely calibrated to determine the pumping and recharge rates. Simulated heads using different K realizations were then compared with historically measured heads. A global/local simulated error between simulated and measured heads was analysed to assess the different spatial variabilities of various estimated K distributions. The results of a MODFLOW simulation indicate that the OK realization had the smallest sum of absolute mean simulation errors (SAMSE) and the SGS realizations preserved the spatial variability of the measured K fields. Moreover, the SAMSE increases as the spatial variability of the K field increases. The OK realization yields small local simulation errors in the measured K field of moderate magnitude, whereas the SGS realizations have small local simulation errors in the measured K fields, with high and low values. The OK realization of K can be applied to perform a deterministic inverse calibration. The mean SGS method is suggested for constructing a K field when the application focuses on extreme values of estimated parameters and small calibration errors, such as in a simulation of contaminant transport in heterogeneous aquifers. The individual SGS realization is useful in stochastically assessing the spatial uncertainty of highly heterogeneous aquifers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The magnitude of kriging errors varies in accordance with the surface properties. The purpose of this paper is to determine the association of ordinary kriging (OK) estimated errors with the local variability of surface roughness, and to analyse the suitability of probabilistic models for predicting the magnitude of OK errors from surface parameters. This task includes determining the terrain parameters in order to explain the variation in the magnitude of OK errors. The results of this research indicate that the higher order regression models, with complex interaction terms, were able to explain 95 per cent of the variation in the OK error magnitude using the least number of predictors. In addition, the results underscore the importance of the role of the local diversity of relief properties in increasing or decreasing the magnitude of interpolation errors. The newly developed dissectivity parameters provide useful information for terrain analysis. Our study also provides constructive guides to understanding the local variation of interpolation errors and their dependence on surface dissectivity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
High spatial and temporal resolution of precipitation data is critical input for hydrological budget estimation and flash flood modelling. This study evaluated four methods [Bias Adjustment (BA), Simple Kriging with varying Local Means (SKlm), Kriging with External Drift (KED), and Regression Kriging (RK)] for their performances in incorporating gauge rainfall measurements into Next Generation Weather Radar (NEXRAD) multi‐sensor precipitation estimator (MPE; hourly and 4 × 4 km2). Measurements from a network of 50 gauges at the Upper Guadalupe River Basin, central Texas and MPE data for the year 2004 were used in the study. We used three evaluation coefficients percentage bias (PB), coefficient of determination (R2), and Nash–Sutcliffe efficiency (NSE) to examine the performance of the four methods for preserving regional‐ and local‐scale characteristics of observed precipitation data. The results show that the two Kriging‐based methods (SKlm and RK) are in general better than BA and KED and that the PB and NSE criteria are better than the R2 criterion in assessing the performance of the four methods. It is also worth noting that the performance of one method at regional scale may be different from its performance at local scale. Critical evaluation of the performance of different methods at local or regional scale should be conducted according to the different purposes. The results obtained in this study are expected to contribute to the development of more accurate spatial rainfall products for hydrologic budget and flash flood modelling. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Spatially distributed hydrologic models can be effectively utilized for flood event simulation over basins where a complex system of reservoirs affecting the natural flow regime is present. Flood peak attenuation through mountain reservoirs can, in fact, mitigate the impact of major floods in flood‐prone areas of the lower river valley. Assessment of this effect for a complex reservoir system is performed with a spatially distributed hydrologic model where the surface runoff formation and the hydraulic routing through each reservoir and the river system are performed at a fine spatial and time resolution. The Toce River basin is presented as a case study, because of the presence of 14 active hydroelectric dams that affect the natural flow regime. A recent extreme flood event is simulated using a multi‐realization kriging method for modelling the spatial distribution of rainfall. A sensitivity analysis of the key elements of the distributed hydrologic model is also performed. The flood hydrograph attenuation is assessed. Several possible reservoir storage conditions are used to characterize the initial condition of each reservoir. The results demonstrate how a distributed hydrologic model can contribute to defining strategies for reservoir management in flood mitigation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
The method of Empirical Orthogonal Functions (EOF method) is combined with an objective interpolation technique, kriging, to generate runoff series at ungauged locations. In a case study the results are compared to series interpolated by a combination of EOF analysis and regression using catchment characteristics as independent variables. The results are also compared to linear weighting of an existing runoff series, a commonly used method for spatial interpolation. The influence of altitude on the runoff is studied comparing kriging based on 2 and 3 coordinates. The study showed that the capacity of EOF analysis combined with kriging is as good as the traditionally used linear weighting. The results, when altitude is included in the kriging, are improved.  相似文献   

18.
19.
The index flood method is widely used in regional flood frequency analysis (RFFA) but explicitly relies on the identification of ‘acceptable homogeneous regions’. This paper presents an alternative RFFA method, which is particularly useful when ‘acceptably homogeneous regions’ cannot be identified. The new RFFA method is based on the region of influence (ROI) approach where a ‘local region’ can be formed to estimate statistics at the site of interest. The new method is applied here to regionalize the parameters of the log‐Pearson 3 (LP3) flood probability model using Bayesian generalized least squares (GLS) regression. The ROI approach is used to reduce model error arising from the heterogeneity unaccounted for by the predictor variables in the traditional fixed‐region GLS analysis. A case study was undertaken for 55 catchments located in eastern New South Wales, Australia. The selection of predictor variables was guided by minimizing model error. Using an approach similar to stepwise regression, the best model for the LP3 mean was found to use catchment area and 50‐year, 12‐h rainfall intensity as explanatory variables, whereas the models for the LP3 standard deviation and skewness only had a constant term for the derived ROIs. Diagnostics based on leave‐one‐out cross validation show that the regression model assumptions were not inconsistent with the data and, importantly, no genuine outlier sites were identified. Significantly, the ROI GLS approach produced more accurate and consistent results than a fixed‐region GLS model, highlighting the superior ability of the ROI approach to deal with heterogeneity. This method is particularly applicable to regions that show a high degree of regional heterogeneity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Snow availability in Alpine catchments plays an important role in water resources management. In this paper, we propose a method for an optimal estimation of snow depth (areal extension and thickness) in Alpine systems from point data and satellite observations by using significant explanatory variables deduced from a digital terrain model. It is intended to be a parsimonious approach that may complement physical‐based methodologies. Different techniques (multiple regression, multicriteria analysis, and kriging) are integrated to address the following issues: We identify the explanatory variables that could be helpful on the basis of a critical review of the scientific literature. We study the relationship between ground observations and explanatory variables using a systematic procedure for a complete multiple regression analysis. Multiple regression models are calibrated combining all suggested model structures and explanatory variables. We also propose an evaluation of the models (using indices to analyze the goodness of fit) and select the best approaches (models and variables) on the basis of multicriteria analysis. Estimation of the snow depth is performed with the selected regression models. The residual estimation is improved by applying kriging in cases with spatial correlation. The final estimate is obtained by combining regression and kriging results, and constraining the snow domain in accordance with satellite data. The method is illustrated using the case study of the Sierra Nevada mountain range (Southern Spain). A cross‐validation experiment has confirmed the efficiency of the proposed procedure. Finally, although it is not the scope of this work, the snow depth is used to asses a first estimation of snow water equivalent resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号