首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study investigated the tidal asymmetry imposed by both the interaction of principal tides and the higher harmonics generated by distortions within a tidal creek network with mixed mainly semidiurnal tide in the Bushehr Port, Persian Gulf. Since velocity and water-level imposed by principal triad tides K1-O1-M2 are in quadrature, duration asymmetries during a tidal period in this short, shallow inverse estuary should be manifest as skewed velocities. The principal tides produce periodic asymmetries including a strong ebb-dominance and a weak flood-dominance condition during spring and neap tides respectively. The higher harmonics induced by nonlinearities engender a flood-dominance condition where the convergence effects are higher than frictional effects, and an ebbdominance condition where intertidal storage are extended. Since the triad K1-O1-M2 driven asymmetry is not overcome by higher harmonics close to the mouth, the periodic asymmetry dominates within the creek in which higher harmonics reinforce the weak flood-dominance (strong ebb-dominance) condition in the convergent channel (divergent area). Also, the maximum flood and the maximum ebb from all harmonic constituents occurred close to high water slack time during both spring and neap tides in this short creek. Since occational wetting of intertidal areas happened close to the high water (HW) time during spring tide, the water level flooded slowly close to the HW time of the spring tide.  相似文献   

2.
Short-term tidal and diel variations of autumn fish assemblage in a Zostera marina bed were investigated using 3 h interval samplings for 24 h in both spring and neap tide using a small beam trawl. A total of 1 346 fishes belonging to 19 species were collected at spring tide, whereas 1 115 fishes belonging to 17 species were at neap tide. The common fish species were Nuchequula nuchalis, Acanthogobius flavimanus, Takifugu niphobles, Acentrogobius pflaumii, and Pholis nebulosa with the former three species dominating at spring tide, while the latter two species being abundant at neap tide. Diel variation in abundance was significant with higher abundance at night than day, but there were no significant differences between spring and neap tides, and between ebb and flood tides (three-way ANOVAs). Diel variation in the abundance of fishes may be influenced by tidal range and cycle, and day-night differences of food availability and behaviors of fishes indirectly. Non-metric multidimensional scaling (nMDS) ordination and analysis of similarity (ANOSIM) results revealed significant differences in species compositions both between day and night, and between spring and neap tide. Eelgrass beds are highly productive marine ecosystem, and thus, our results will contribute to conservation of seagrass ecosystem in the study area.  相似文献   

3.
The offshore tide becomes strongly distorted as it propagates into shallow estuarine systems. Observations of sea surface elevation and horizontal currents over periods ranging from three days to one year, at nine stations within Nauset inlet/estuary, document the non-linear interaction of the off-shore equilibrium tidal constituents. Despite strong frictional attenuation within the estuary, the overtides and compound tides of M2, S2 and N2, in particular, reach significant amplitude, resulting in strong tidal distortion. High frequency forced constituents in sea surface are phase-locked, consistently leading the forcing tides by 60–70°, resulting in a persistent distortion where falling tide is longer than rising tide. Forced constituents in currents are more nearly in phase with equilibrium constituents, producing flood currents which are shorter but more intense than ebb currents. A compound fortnightly tide, MSf, modulates the mean water level such that lowest tides occur during neap phase instead of spring phase. This fortnightly tide can be contaminated by storm surge, changing the phase characteristics of this constituent. Implications of the overtides, compound tides, and lower frequency tides on near-bed, suspended and dissolved material transport are profound.  相似文献   

4.
This study examines the distribution of leachable particulate iron (Fe) in the Columbia River, estuary, and near-field plume. Surface samples were collected during late spring and summer of 2004–2006 as part of four River Influence on Shelf Ecosystems (RISE) cruises. Tidal amplitude and river flow are the primary factors influencing the estuary leachable particulate Fe concentrations, with greater values during high flow and/or spring tides. Near the mouth of the estuary, leachable particulate Fe [defined as the particulate Fe solubilized with a 25% acetic acid (pH 2) leach containing a weak reducing agent to reduce Fe oxyhydroxides and a short heating step to access intracellular Fe] averaged 770 nM during either spring tide or high flow, compared to 320 nM during neap tide, low flow conditions. In the near-field Columbia River plume, elevated leachable particulate Fe concentrations occur during spring tides and/or higher river flow, with resuspended shelf sediment as an additional source to the plume during periods of coastal upwelling and spring tides. Near-field plume concentrations of leachable particulate Fe (at a salinity of 20) averaged 660 nM during either spring tide or high flow, compared to 300 nM during neap tide, low flow conditions. Regardless of tidal amplitude and river flow, leachable particulate Fe concentrations in both the river/estuary and near-field plume are consistently one to two orders of magnitude greater than dissolved Fe concentrations. The Columbia River is an important source of reactive Fe to the productive coastal waters off Oregon and Washington, and leachable particulate Fe is available for solubilization following biological drawdown of the dissolved phase. Elevated leachable Fe concentrations allow coastal waters influenced by the Columbia River plume to remain Fe-replete and support phytoplankton production during the spring and summer seasons.  相似文献   

5.
Flow-through flumes were used to quantify net areal fluxes of nutrients in the fringe mangrove zone of lower Taylor River in the southern Everglades National Park. We also quantified net areal fluxes along the open water portion of the channel to determine the relative importance of either zone (vegetated vs. unvegetated) in the regulation of nutrient exchange in this system. Taylor River's hydrology is driven mainly by precipitation and wind, as there is little influence of tide. Therefore, quarterly samplings of the vegetated and unvegetated flumes were slated to include typical wet season and dry season periods, as well as between seasons, over a duration of two years. Concentrations of dissolved and total organic carbon (DOC and TOC) were highest during the wet season and similar to one another throughout the study, reflecting the low particulate loads in this creek. Dissolved inorganic nitrogen (nitrate+nitrite+ammonium) was 10–15% of the total nitrogen (TN) content, with NO−x and NH+4 showing similar concentration ranges over the 2-year study. Soluble reactive phosphorus (SRP) was usually <0·05μM, while total phosphorus (TP) was typically an order of magnitude higher. Net areal fluxes were calculated from nutrient concentration change over the length of the flumes. Most flux occurred in the vegetated zone. Dissolved inorganic nitrogen and DOC were usually taken up from the water column; however, we saw no seasonal pattern for any constituent over the course of this study. Total nutrients (TOC, TN, and TP) showed little net exchange and, like SRP, had fluxes that shifted irregularly throughout the study. Despite the lack of a clear seasonal pattern, there was a great deal of consistency between vegetated flumes, especially for NO−x and NH+4, and fluxes in the vegetated flumes were generally in the same direction (import, export, or no net flux) during a given sampling. These findings suggest that the fringe mangrove zone is of considerable importance in regulating nutrient dynamics in lower Taylor River. Furthermore, the influence of this zone may at times extend into northeast Florida Bay, as the bay is the primary recipient of water and nutrients during the wet season.  相似文献   

6.
长江口徐六泾洪季水沙特性观测研究   总被引:3,自引:0,他引:3  
程江  何青  王元叶  车越  张经 《海洋通报》2003,22(5):86-91
2001年7月,在长江口徐六泾对流速、流向和悬浮泥沙浓度进行了大小潮定点观测。观测数据分析表明徐六泾处大潮流速及其变化远大于小潮流速。大潮悬沙浓度大于小潮悬沙浓度。由于径流的影响,落潮期间垂向速度梯度比涨潮期间大,落潮垂向切变增强,使落潮期间悬沙浓度的变化幅度大于涨潮期间的泥沙变化幅度,同时存在泥沙浓度峰值滞后于流速峰值的现象。  相似文献   

7.
The Konkouré Estuary in the Republic of Guinea is a poorly understood atypical mangrove system. Sediment dynamics in tropical estuaries are controlled by a combination of processes including river discharge, morphology, salinity, erosion and deposition processes, the settling of mud, physico-chemical processes and mangrove swamps. Here we present a consistent set of data aimed at characterising the estuary and thus, increasing our understanding of tropical systems, as well as studying the impact of human intervention in the region. Water elevations, current measurements, salinity, suspended sediment concentrations, bathymetry and sediment cover are presented following a 3 year survey of the Konkouré Estuary. Here we provide conclusive evidence that the Lower Konkouré is a shallow, funnel shaped, mesotidal, mangrove-fringed, tide dominated estuary, well mixed during low river discharge. The estuary becomes stratified during high river flows and spring tides whereas a salt wedge appears during neap tides. The Konkouré Estuary has been described as hypersynchronous, and has three terminal outlets, two of which are landward-directed, attesting to a tidal pumping effect, while the third one is seaward-directed, and is controlled by the mangrove. The suspended matter is transported by the tidal effect within the middle estuary and is therefore trapped in the Turbidity Maximum zone (TMZ). The location of the TMZ is river-controlled and is correlated with residual currents but not with salinity front. A dam, constructed 130 km upstream, impacts on the hydrodynamics, and reduces the salinity intrusion by about 25%. It causes an increased low river discharge whereas its efficiency over high river flows is unclear.  相似文献   

8.
Primary productivity was measured byin situ method using13C in the offshore Oyashio region in the spring (May) and summer (September) of 1990. Most of the values were within the range of 0.1 to 4 gC 1–1 h–1 although a very large value, 7.96 gC l–1 h–1, was observed in summer. Most daily primary production fell within the range of 372 to 633 mgC m–2 d–1 although a very large value, 2,109 mgC m–2 d–1, was observed around the frontal area in summer. Chlorophylla (Chl.a) exceeded 1 g l–1 in many cases, and the maximum was 4.61 g l–1 in spring and 7.53 g l–1 in summer. Most primary productivity per unit Chl.a (photosynthetic assimilation ratio) was within the range of 0.1 to 3 gC gChl.a –1 h–1 although higher values, 3–6 gC gChl.a –1 h–1, were observed where small-size phytoplanktons (<2 m) were dominant. These results were compared with results obtained until now in the Oyashio region. The values beyond the range obtained so far in the offshore region were also observed in this study. Furthermore, it was pointed out that the size composition of phytoplankton community has significant influence on the results of Chl.a and photosynthetic assimilation ratio in the Oyashio region.  相似文献   

9.
Profiles of tidal current and suspended sediment concentration(SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to determine the characteristics of intratidal and neap-spring variations of SSC and suspended sediment transport. Modulated by tidal range and current speed, the tidal mean SSC increased from 0.5 kg/m3 in neap tide to 3.5 kg/m3 in spring tide. The intratidal variation of the depth-mean SSC can be summarized into three types: V-shape variation in neap tide, M-shape and mixed M-V shape variation in medium and spring tides. The occurrence of these variation types is controlled by the relative intensity and interaction of resuspension, settling and impact of water exchange from the rise and fall of tide. In neap tide the V-shape variation is mainly due to the dominant effect of the water exchange from the rise and fall of tide. During medium and spring tides, resuspension and settling processes become dominant. The interactions of these processes, together with the sustained high ebb current and shorter duration of low-tide slack, are responsible for the M-shape and M-V shape SSC variation. Weakly consolidated mud and high current speed cause significant resuspension and remarkable flood and ebb SSC peaks. Settling occurs at the slack water periods to cause SSC troughs and formation of a thin fluff layer on the bed. Fluxes of water and suspended sediment averaged over the neap-spring cycle are all seawards, but the magnitude and direction of tidal net sediment flux is highly variable.  相似文献   

10.
Tidal phase plays a major role in controlling sediment discharge from the Yangtze River estuary in eastern China. Direct measurements indicate that during spring tide in mid-November 1981 approximately 3 times the sediment passed down the main channel of the river as during the next neap tide, 3 days later. The estuary presumably acts as a conduit for riverine sediment during spring tide but as a sink during neap tide. Tidal phase control of sediment discharge appears to be primarily dependent upon tidal range relative to estuarine depth rather than river discharge or absolute tidal range per se.  相似文献   

11.
Observations of the residual fluxes of water, salt and suspended sediment are presented for seven stations along the Tamar Estuary. The data include measurements over single spring and neap tidal cycles, and are generally applicable to medium or high run-off conditions.Surface to bed differences in salinity are typically of the order of several parts per thousand. Gravitational circulation is an important component of residual flow in the deep, lower reaches of the estuary. Here, Stokes drift is insignificant. In the shallow upper reaches, the major residual currents are generated by Stokes drift and freshwater inputs. Data are compared with predictions from Hansen and Rattray's (1966) model of estuarine circulation.Salt fluxes due to tidal pumping and vertical shear are directed up-estuary at spring tides, tidal pumping being dominant. Tidal pumping of salt is also directed up-estuary at neap tides, although it is insignificant in the lower reaches, where vertical shear dominates.Tidal pumping of suspended sediment is directed up-estuary near the head at spring tides, and probably contributes to the formation of the turbidity maximum. The existence of the turbidity maximum is predicted using a simplified model of the transport of water and sediment. The model shows that an additional mechanism for the existence of the turbidity maximum is an up-estuary maximum in the tidal current speeds (and thus resuspension). In the lower reaches, transport of suspended sediment is directed down-estuary at both spring and neap tides, and sediment is essentially flushed to sea with the fresh water.  相似文献   

12.
本文基于4次洪枯季同步水文观测资料,着重分析了长江口北支悬沙浓度的潮周期变化、垂向分布、纵向分布和悬沙输移及其时空差异。研究结果显示,悬沙浓度的潮周期变化过程在大中潮期以M型(双峰型)为主,下段主槽内在大潮期多出现V型,上段在枯季可出现涨潮单峰型;小潮期可出现无峰、单峰或双峰型。涨、落潮悬沙浓度峰值及均值,在枯季多涨潮大于落潮,洪季中小潮特别是小潮期易出现落潮大于涨潮;下段主槽内在大潮期易出现落潮大于涨潮。悬沙浓度的垂向分布及其变化特点,在大中潮期与悬沙的潮周期变化型式有关,其中M型存在显著的洪枯季差异。纵向上,最高悬沙浓度在枯季出现于中段灵甸港至三和港之间及附近河段,洪季则在下段三条港附近。潮周期悬沙净输移,枯季大多向陆特别是大中潮期,洪季中上段大多向海,下段大潮期多向陆、中小潮易出现向海;下段主槽内在大潮期易出现向海。  相似文献   

13.
珠江河口咸潮期间浮游植物的群落特征   总被引:4,自引:0,他引:4       下载免费PDF全文
根据2007年底至2008年初珠江河口咸潮入侵期间大潮和小潮的两次调查资料, 对浮游植物的种类组成、种数和细胞密度的分布等群落特征进行了分析, 并探讨环境因素对浮游植物群落的影响。共鉴定浮游植物76种, 包括38种硅藻、18种绿藻、14种甲藻、4种蓝藻和2种裸藻。浮游植物种数分布有明显的空间变化, 一般从河口上段至下段种数减少; 大潮时浮游植物的种数低于小潮时, 并且各水层之间浮游植物种数分布不均匀。优势种以淡水硅藻为主, 如颗粒直链藻Melosira granulata、颗粒直链藻最窄变种 Melosira granulata v. angustissima、小环藻 Cyclotella sp.和海链藻Thalassiosira sp.等; 河口上段的站优势种突出, 密度分布不均匀, 均匀度值比较低。大潮和小潮期间浮游植物细胞密度的平均值分别为53.80×104个.L-1和62.21×104个.L-1, 变化范围为(1.48— 290.41)×104个-L-1和(1.52—283.62)×104个.L-1; 二者的平面分布趋势基本相同, 由河口上段至下段呈递减的格局; 硅藻类的细胞密度占明显优势。浮游植物的种类组成、种数和细胞密度的分布受盐度、营养盐等环境因子的影响, 并且具有明显的潮周期性。  相似文献   

14.
基于椒江河口大、小潮期间水位、流速、盐度和悬沙浓度观测数据,研究了椒江河口主潮汐通道的水动力、盐度和悬沙浓度的时空变化特征,解释了高浊度强潮作用下的层化物理机制。椒江河口大潮期悬沙浓度和盐度均大于小潮期,主潮汐通道区域落潮期悬沙浓度大于涨潮期;盐度随潮变化,盐水锋面出现在S2测站,锋面附近出现最大浑浊带;自陆向海,悬沙浓度递减,盐度递增;随水深增加,悬沙浓度与盐度递增。Richardson数与混合参数显示,盐度和悬沙引起的层化现象,是随着潮汐的变化而变化,涨潮时的层化均强于落潮,小潮时的层化持续时间最长,区域更广。混合参数随潮周期变化,大潮期高于临界值1.0,小潮期低于临界值1.0。小潮期水体层化强于大潮期;潮汐应变项是影响势能差异变化率的重要因素;落潮期间层化向混合状态转化,涨潮相反。  相似文献   

15.
长江分汊河口涨、落潮悬沙不对称特征及季节性差异   总被引:1,自引:1,他引:0  
入海河口由于径流的存在以及河口地貌形态的影响,存在涨、落潮水动力、悬沙以及盐度分布等不对称现象,同时这一不对称现象还存在显著的区域性和季节性差异。根据2013年7月和2014年1月洪、枯季长江口定点准同步水文泥沙调查结果,发现长江口分汊型河槽悬沙浓度在时间上存在洪枯季、大小潮不对称特征,在空间上存在东西向沿程分布、南北向横向分布以及垂向上表底层分布不对称特征。河势演变形成南、北支河口涨、落潮悬沙浓度不对称分布的整体格局;洪、枯季变化影响河口涨、落潮悬沙分布的再分配过程;大潮涨、落潮过程对悬沙分布不对称影响显著大于小潮;季节性风浪作用影响河口最大浑浊带涨、落潮悬沙不对称南北差异;底部高含沙浓度对口门段涨、落潮悬沙不对称性贡献显著。  相似文献   

16.
《Oceanologica Acta》1999,22(3):291-302
The time-course evolution of ammonium concentration has been examined in the flood water during the first 25 min of tidal inundation. The way this transport fluctuates with the tidal ranges and wind conditions was investigated. Flood water was collected at three sites, located along a transect from the lower to the upper intertidal area of the Tagus estuary. At spring and intermediate tides, the periods of air exposure vary slightly along the transect due to the high tidal amplitude and the flatness of the area, but the upper site remains uncovered at neap tide over the entire tidal cycle. At each site, sampling was performed at different tidal ranges covering the neap-spring tidal cycle and wind conditions. Ammonium was determined in the flood water at short time intervals: 1, 2, 3, 4, 5, 10, 15, 20 and 25 min. A clear pattern was observed along the transect: considerable quantities of ammonium were exported from the sediment to the water column at the beginning of the inundation, ranging from 0.2 to 4.8 mmol m−2 d−1. The highest transport was recorded at the lower intertidal site under spring tide conditions, which corresponds to the higher energetic situation and shorter emersion period. The lowest transport was observed at the upper intertidal site during the first inundation that followed three days of neap tide and continuous exposure of the sediment to the air. The value rates (0.2–4.8 mmol m−2 d−1) were one order of magnitude higher than those calculated from molecular diffusion (0.07 – 0.16 mmol m−2 d−1). This study points to the importance of the tidal flushing of ammonium from the intertidal sediments, and its spatial and tidal fluctuation.  相似文献   

17.
Water circulation, water column nutrients and plankton productivity were studied in a tropical bay with high rates of water exchange (60% to 90% per tide) and short residence times (3 to 4 h). The water circulation is predominantly affected by the semi-diurnal tides, which cause strong and reversing currents in the mangrove creeks (0.60 m·s−1) and currents of low magnitude in the neighbouring seagrass and coral reef zones (< 0.30 m·s−1). Tidal asymmetry, with relatively stronger ebb than flood flows in the mangrove creeks, promotes the net export of nutrients from the river mouth and of organic matter from the mangroves to the seagrass beds. The main sources of the dissolved inorganic nutrients are two rivers (the Kidogoweni and Mkurumuji) which discharge (up to 17.0 m3·s−1) in the upper and lower regions of the bay. The increased input of nutrients did not cause eutrophic conditions since nutrients were rapidly flushed out of the bay. The mangrove biotope generated small amounts of dissolved nutrients which are likely to be used for primary production within the mangrove zone. The production of nutrients in the mangrove zone was masked by high rates of flushing, such that no appreciable nutrient signal was detected in the dry season when the influence of the rivers diminished. The rates of primary production were low in the mangrove, seagrass, and coral reef biotopes in the dry season. Primary production increased slightly during the rainy season. The level of chlorophyll a in the mangrove biotope increased during ebb tides and decreased during flood tides. The highest zooplankton densities, which could not be related directly to primary production in the water-column, occurred at the seagrass station during the wet season.  相似文献   

18.
The utilisation of a brackish estuarine marsh by nekton was investigated over a semi-lunar cycle in August 1994. Nekton migrating in and out of the intertidal creeks of the marsh ‘Het Verdronken Land van Saeftinghe’ in the Westerschelde estuary, SW Netherlands, was sampled passively during seven complete tidal cycles. Sampling one tidal cycle yielded three consecutive flood samples and four consecutive ebb samples. Sampling occurred every 2–3 days, covering diel, tidal and semi-lunar situations, thus allowing comparison of tidal, diel and semi-lunar influences on the composition of the intertidal fauna.Two different tidal-migration modes were observed. The mysid shrimp, Mesopodopsis slabberi, showed maximum abundance around high tide. For the remaining common species, the mysid (Neomysis integer), the shrimp (Palaemonetes varians), the crab (Carcinus maenas) and the goby (Pomatoschistus microps) and the amphipod (Corophium volutator), highest densities were recorded during lower water heights. The faunal assemblage shifts between the different tidal stages.On two occasions, consecutive day and night samples were taken. Total densities were higher during the night samples. During spring tide, difference in community composition was noticed between the night and the day samples. During neap tide, day–night differences were less clear. Recorded total densities were highest during spring tide and lowest during neap tide. At maximum water levels, a drop in total density was observed. A shift in community composition occurred between spring and neap tides.  相似文献   

19.
Tidal effect on nutrient exchange in Xiangshan Bay, China   总被引:1,自引:0,他引:1  
Xiangshan Bay is an estuary in China which borders on the East China Sea. The circulation in the estuary is driven by tidal movement, residual current, the internal density distribution, and synoptic wind forcing; however, the last three are not the main dynamic factors affecting nutrient transport. Because the estuary tends to be eutrophic, a synoptic study was carried out to assess the influence of tidal movement on the nutrient distribution patterns within the estuary and to estimate the fluxes of nutrient transport between the estuary and the sea. Nitrate and ammonium are found to be exported from the estuarine water to the coastal water under usual tidal conditions, except for storm tides which result in large amounts being imported because of the extremely high concentrations in the coastal bottom water. Exports of phosphate and silicate are shown to be consistent during spring tides and neap tides in all seasons. However, the usual tidal regimes resulted in only minor nutrient exchange except during abnormal events.  相似文献   

20.
Underwater light environment and photosynthetic accessory pigments were investigated in Ariake Bay in order to understand how change of the pigments occurs in response to the tidal-induced changes in underwater light conditions. We hypothesize that phytoplankton increases photo-protective pigments and decreases light-harvesting pigments under higher light condition in the mixed layer caused by tidal cycle. Contribution rates of non-phytoplankton particles (a nph (400–700)) for light attenuation coefficient (K d ) was highest (32–85%), and those of phytoplankton particles (a ph (400–700)), dissolved organic matter (a g (400–700)) and water were 6–32, 6–21 and 5–23%, respectively. Mean K d was higher during the spring tide (0.55 ± 0.23 m−1) than the neap tide (0.44 ± 0.16 m−1), and the K d difference was caused by the substances resuspension due to the tidal current. In contrast, ratios of photo-protective pigments (diadinoxanthin and diatoxanthin) per chlorophyll a ((DD+DT)/Chl a) were higher during the neap tide (0.10 ± 0.03 mg mg-Chl a −1) than the spring tide (0.08 ± 0.03 mg mg-Chl a −1). And there was significant positive correlation between (DD+DT)/Chl a and mean relative PAR in the mixed layer ($ \overline {I_{mix} } $ \overline {I_{mix} } ). Moreover, there was significant negative correlation between ratios of light-harvesting pigments (fucoxanthin) per Chl a (Fuco/Chl a) and $ \overline {I_{mix} } $ \overline {I_{mix} } . These results suggested that phytoplankton in Ariake Bay increase photo-protective pigments and decrease light-harvesting pigments in the higher light condition of less turbid, shallower mixed layer during neap tide than spring tide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号