首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nepea narinosa Whitehouse, 1939, is as yet the only known species of the Nepeidae and Nepeacea. It is based on fragmentary material unsuitable for conclusive interpretation. The census of Nepeidae as yet unpublished includes five genera and twelve species, confined to the Middle and early Upper Cambrian of Australia. All nepeids have cedariform posterior sutures, free cheeks fused into a unit, a preglabellar boss, forked ocular ridges and a pustulose test. Nepea narinosa is distinguished by its very long intergenal spines and pointed, falcate palpebral lobes provided with a doublure.  相似文献   

2.
Please refer to the attachment(s) for more details.  相似文献   

3.
Baumgartner and Rumble (1988) apply a kinetic continuum theory for stable isotope transport to unidimensional infiltration of fluid into rock. Their numerical applications are restricted to the simplified case of rapid isotope exchange between phases, where the sharp isotope fronts of pure advection are distended by dispersive mechanisms only. However, kinetic limitations of isotope exchange are potentially an equally important distending mechanism, and it will only rarely be possible to ascribe front gradients to diffusion/dispersion alone. Abrupt isotopic changes at vein boundaries are more often a secondary signal of lithologic change than the expression of a retarded advective front. At such boundaries, diffusion and dispersion play a role that is comparable to, or greater than, that of advection, so that the detailed shapes of isotope fronts depend upon boundary conditions for the infiltration process. Zerodimensional box models have legitimate, if limited, uses in the modelling of fluid-rock interaction, and are reexamined.  相似文献   

4.
5.
In the Dragon Belly cave helictites, a special type of irregular speleothem, are found, which grew on stalactites in all vertical and horizontal directions without any affinity to gravity. Microstructural and mineralogical analyses of this stalactite–helictite system indicate that its evolution is initiated by clogging of the central stalactite channel at its tip, probably when the cave was flooded by muddy water. Clogging caused the formation of secondary channels (≈0.2 mm in diameter) for water passage through the outer surface of the stalactite, where helictites start to grow. The secondary channel passes into the central channel of the helictite.The helictites consist of stacked idiomorphic calcite crystals with uniform orientation. Growth of calcite is essentially controlled by water transfer through the central channel and via canalicules (narrow channels of ≈0.05 mm in diameter) following the crystal boundaries of the calcite mesocrystal induced by capillary hydrostatic forces. At straight parts of the helictites calcite crystals are almost uniform in size, but at bended parts crystals are significantly smaller inside (≤0.1 mm in length) than outside of the bend (≤0.5 mm). It is proposed that the difference in calcite volume (larger crystals) vs. the inside of the bend leads to a helix form, which explains the origin of the term helictite.The Sr and Ba concentrations measured by laser ablation along helictites can be explained by cation incorporation during calcite precipitation close to equilibrium. Dilution effects caused by seasonality control the elemental distribution in the helictite, which result in a positive correlation between Sr and Ba. Variability of Mg is unrelated with Sr and Ba, and is probably due to the incongruent dissolution of Mg–calcite from the host rock.  相似文献   

6.
The carbonatites of the Ilmeny-Vishnevogorsky Alkaline Complex (IVAC) are specific in geological and geochemical aspects and differ by some characteristics from classic carbonatites of the zoned alkaline-ultramafic complexes. Geological, geochemical and isotopic data and comparison with relevant experimental systems show that the IVAC carbonatites are genetically related to miaskites, and seem to be formed as a result of separation of carbonatite liquid from a miaskitic magma. Appreciable role of a carbonate fluid is established at the later stages of carbonatite formation. The trace element contents in the IVAC carbonatites are similar to carbonatites of the ultramafic-alkaline complexes. The characteristic signatures of the IVAC carbonatites are a high Sr content, a slight depletion in Ba, Nb, Та, Ti, Zr, and Hf, and enrichment in HREE in comparison with carbonatites of ultramafic-alkaline complexes. This testifies a specific nature of the IVAC carbonatites related to the fractionation of a miaskitic magma and to further Late Paleozoic metamorphism. Isotope data suggest a mantle source for IVAC carbonatites and indicate that moderately depleted mantle and enriched EMI-type components participated in magma generation. The lower crust could have been involved in the generation of the IVAC magma.  相似文献   

7.
The Late-Cretaceous Catalão I contains stockworks of thin dykes of phoscorite-series rocks, which can be subdivided into P1 (olivine-bearing, phoscorites) and P2/P3 (olivine-lacking, nelsonites). Dolomite carbonatites (DC) are intimately associated with nelsonites, as pockets and dykes. The P2 apatite nelsonite, the P3 magnetite nelsonite, and, to a lesser extent DC, host the Catalão I niobium mineralization. C–O isotopes signatures in carbonates reveal several distinct magmatic and post-magmatic processes. Limpid carbonates with stable isotopic mantle-like composition show Rayleigh fractionation and are interpreted as primary, while those with brittle-turbid aspect, and higher oxygen isotope composition, probably underwent recrystallization by interaction with H2O-rich fluids. A group of samples shows higher oxygen compositions and lower carbon values, which could be explained by degassing of carbonatite magma during cooling. A degassing pattern, parallel to magmatic degassing but at higher oxygen and lower carbon compositions, observed in carbonate veins, may indicate degassing of fracture filling fluids. Furthermore, C–O isotopes of carbonate from monazite-bearing carbonatite have a positive correlation, indicating a distinct, late-stage carbo-hydrothermal event. Though the Catalão I nelsonites and phoscorites are of igneous origin, they underwent several post-magmatic events, which sometimes overprinted partially or entirely the magmatic isotope signature.  相似文献   

8.
Geology of Ore Deposits - The article discusses the features of the composition, age, and genesis of gold–antimony mineralization of the East Sayan based on the example of the largest...  相似文献   

9.
10.
11.
12.
On the basis of a worldwide review of Claraia,Pseudoclaraia andEumorphotis,especially their important species,two range zones are recog-nized:the Pseudoclaraia wangi range zone——Upper Griesbachia——and the Claraia stachei-C.aurita-Eumorphotis multiformis acme zone——Upper Griesbachian to Lower Smithian .This result revises both the traditional Chinese concept regarding these fossils as limited in Lower Scythian andthe viewpoint of some Eurasian researchers who hold Eumorphotis multifor-mis to be Upper Scythian.The paleogeographical distribution of the three genera is controlledprimarily by temperature(latitude)and secondarily by physiographic separa-tions.Distribution of these fossils is subdivided into four realms and five prov-inces.The Eastern Asia province of the Tethys realm is suggested as thesource area of these fossils.The striking contrast between the composition ofthe species along the southern and northern margins of the Tethys,togetherwith other distributional characters,supports the pla  相似文献   

13.
The Ni, Co, As, and Cu deposit of Gowd-e-Morad is located 20 km northwest of Anarak in Central Iran. In this hydrothermal deposit, mineralization occurs as veins in a fault breccia zone hosted by the Chahgorbeh (schist and metabasite) complex. The main ores are made up of Ni, Co, and Cu arsenides. Petrologic studies and results obtained from geochemical analyses have indicated that the Ni, Co, As, and Cu are derived from ultramafic rocks while Pb and Zn are likely to be derived from schist. Based on the geochemical evidence, particularly the high correlation between Ni, Co, and As, it is proposed that this deposit be categorized as a “five elements” mineral deposit. Fluid inclusion studies have shown homogenization temperatures (TH) in the range 113?206 ?C and salinity 3?13.5 % wt eq. NaCl. Therefore this “five elements” mineral deposit has been determined as a low temperature, epithermal deposit type. It is proposed that the low fluid temperatures are a result of an environment of formation which was distal to a volcanogenic source systems and the major influence of meteoric waters in the hydrothermal system.  相似文献   

14.
15.
Variations in the abundances of Zn, Cu, and Pb are found to be useful in identifying tectonic regimes and separating oceanisland basalts into enriched- and depleted-source categories. The average Zn, Cu, and Pb contents of normal mid-ocean ridge basalts (N-MORB) are 84, 70, and 0.35 ppm, respectively. Differences in average Zn contents for various ridges reflect more the varying degrees of differentiation than variations of Zn content in the source rocks. At a Mg# of 70, or Mg#70, which is taken to represent primitive MORB, many MORB sequences converge at a Zn content of 58 ± 6 ppm, which is close to the value for primitive mantle (50 ppm) and ordinary chondrites (~55 ppm). Values of 0.1 to 0.15 ppm Pb in MORB at Mg#70, best defined at the superfast-spreading Southern East Pacific Rise, are similar to estimates of Pb in the primitive mantle (0.12 to 0.18 ppm). They also are near the lower end of the range for ordinary chondrites. The very slow spreading Southwest Indian Ocean Ridge has a sequence with higher Pb contents, in addition to a more normal sequence, which has a visual best value of 0.4 ppm Pb at Mg#70. With the exception of the Walvis Ridge, Zn and Cu appear to be little affected by proximity to hotspots (i.e., E-MORB); however, Pb contents are higher and average about 0.6 ppm.

Both Zn and Pb in MORB are incompatible elements (i.e., favor the melt), but Cu is a compatible element. At Mg#70, there is the suggestion of a value of 100 ppm for Cu, with lower values possibly representing partial removal of sulfides and their associated Cu from the source. Nonetheless, Cu contents of primitive MORB tend to be much higher than even high estimates for the primitive mantle (28 ppm), and are closer to ordinary chondrites (~90 ppm). Therefore, Zn, Cu, and Pb all approximate chondritic values in the primitive MORB melt.

Average contents of Zn, Cu, and Pb in oceanic island basalts (OIB) are 115, 62, and 3.2 ppm, respectively. At Mg#70, values of Zn and Cu are similar to the respective averages for OIB, with Zn higher and Cu lower than MORB. At a Mg# of ~40, however, OIB and MORB tend to have similar Zn contents. With further differentiation, OIB trachytes can contain >200 ppm Zn. Unlike MORB, OIB can differentiate to high Cu contents of 200 ppm at Mg#s of 40 to 60. In contrast to Zn and Cu, Pb regresses to a value of 0.83 ppm at Mg#70 for Hawaiian and Reunion volcanics, which is much less than the average value for Pb in OIB volcanics, but higher than for MORB.

Average Zn, Cu, and Pb contents of magmatic-arc basalts are 77, 108, and 1.9 ppm, respectively. In basalts, Zn tends to be incompatible, but a dual incompatible and compatible behavior can occur at high SiO2 contents. Dacites may average near 55 ppm Zn, but peralkalic rhyolite can contain >300 ppm Zn. A dual compatible and incompatible nature occurs for Cu. Most common, particularly in submarine volcanics, is a compatible trend, with a Cu content of around 80 ppm at a Mg# of 60, which decreases to less than 40 ppm at a Mg# of 30. The incompatible trend of increasing Cu can achieve >200 ppm at a Mg# of 30, leaving a gap approaching 100 ppm at that Mg#. The gap is less obvious on a plot of Cu vs. SiO2, but is still there. The compatible trend is proposed to result from sulfur-saturated magmas, whereas the incompatible trend is believed to result from sulfur-deficient magmas. Support for this hypothesis is found in sparse sulfur-isotope data. Zn and Cu both can be incompatible over an extended range of Mg#s or silica content. When Zn and Cu are both compatible, Cu decreases more than twice as rapidly as Zn.

Primitive magmas at Mg#70 average about 50 ppm Zn for submarine Mariana arc basalts and 58 ppm for forearc boninites, contents close to MORB values. Mariana arc basalts have a Zn content of ~45 ppm estimated at Mg#70. Cu varies more widely than Zn in primitive magmas, being about 50 ppm Cu for Mariana Islands volcanics and 120 ppm for Kermadec Islands volcanics, a range broadly around MORB values. Average Pb contents are 1.9 ppm for island-arc tholeiites, 5.6 ppm for high-Al basalt, and 3.2 ppm for alkali basalt with average boninite of approximately 1.8 ppm. Back-arc-basin basalts in the deepest parts of the Mariana trough have Pb contents of 0.45 ppm, but more shallow parts may exceed 1.0 ppm Pb. Although the lower contents are similar to MORB values, the 208Pb/204Pb values are greater than Pacific Ocean MORB. At Mg#70 for rocks from the Tonga and Kermadec island arcs, the Pb content is about 0.1 ppm, similar to MORB.  相似文献   

16.
17.
The Novogodnee–Monto oxidized Au–(Cu) skarn and porphyry deposit is situated in the large metallogenic belt of magnetite skarn and Cu–Au porphyry deposits formed along the Devonian–Carboniferous Urals orogen. The deposit area incorporates nearly contemporaneous Middle–Late Devonian to Late Devonian–Early Carboniferous calc-alkaline (gabbro to diorite) and potassic (monzogabbro, monzodiorite- to monzonite-porphyry, also lamprophyres) intrusive suites. The deposit is represented by magnetite skarn overprinted by amphibole–chlorite–epidote–quartz–albite and then sericite–quartz–carbonate assemblages bearing Au-sulfide mineralization. This mineralization includes early high-fineness (900–990?‰) native Au associated mostly with cobaltite as well as with chalcopyrite and Co-pyrite, intermediate-stage native Au (fineness 830–860?‰) associated mostly with galena, and late native Au (760–830?‰) associated with Te minerals. Fluid inclusion and stable isotope data indicate an involvement of magmatic–hydrothermal high-salinity (>20 wt.% NaCl-equiv.) chloride fluids. The potassic igneous suite may have directly sourced fluids, metals, and/or sulfur. The abundance of Au mineralization is consistent with the oxidized character of the system, and its association with Co-sulfides suggests elevated sulfur fugacity.  相似文献   

18.
The boundary separating Maastrichtian Sharwayn Formation from late Paleocene Eocene Umm Er Radhuma (UER) Formation in Dhofar, southern Oman, is characterized by a regionally extensive unconformity. The Jabal Samhan escarpment, north of Marbat-Sadh transect, preserves this unconformable boundary. This paper addresses the lithologic and diagenetic differences of the strata across the boundary and discusses their significance and link to the development of the upper Maastrichtian to lower Paleocene unconformity. The upper part of the Sharwayn Formation is characterized by lower thickly bedded, bioclastic, and peloidal mudstone to wackestone lithofacies overlain by a thick ledge (~5.5 m) of medium to coarse crystalline, (sucrosic) dolostone. Poorly preserved outlines of the framework grains suggest an original peloidal and bioclastic grainstone texture for the dolostone unit. The contact with the overlying UER Formation is sharp. The UER Formation is characterized by thickly bedded, bioclastic mudstone to wackestone overlain by coarse-grained, foraminiferal grainstone. The dolomitization process of the dolomite unit at the top of the Sharwayn Formation is envisaged to a shallow subsurface mixed meteoric and sea water diagenetic realm. This interpretation is supported by an inferred timing of dolomitization of latest Maastrichtian (post-Sharwayn Formation) to early Paleocene (pre-EUR Formation), preservation (although poorly recognizable) of the original depositional texture and diagenetic features that postdate the sucrosic dolomite. Pervasive dolomitization of the dolomite unit was controlled by its original grainstone texture, which permitted efficient percolation of the dolomitizing fluids. Correlation between the reference section of the formation and the section studied in this work raises the thickness of the formation to 28.5 m (relative to a thickness of 22 m at the reference section). Analysis of the new composite section suggests that deposition of the formation took place in a shallowing-upward setting where low-energy subtidal sediments (the lower limestone unit) were succeeded by a high energy sand shoal (upper dolomitized unit).This shallowing-upward succession is attributed to a third-order sea-level drop. The later is also recognized in many parts of the Arabian Peninsula, as well as globally, and interpreted as eustatic sea-level fluctuation.  相似文献   

19.
True graphic quartz structures in pegmatites from Carrara/Giggiga and Harrar (town) districts of Ethiopia, are compared with the micrographic quartz textures in the Rapakiwi granite of Finland. Graphic-like textures of uraninite in microcline are also discussed and compared with these graphic structures.A quartz vein, about 1–2 meters in thickness, intersects a pegmatite in the Carrara/Giggiga district. This quartz vein extends into the microcline of the pegmatite as fine quartz veins which attain the form and character of graphic quartz. Also the graphic quartz of the Harrar pegmatites is observed to extend into and occupy cracks in the microcline.Comparable in origin to these graphic textures is the micrographic quartz in the Rapakiwi granite. Observations show micrographic quartz following the cleavage directions in the orthoclase as well as the interzonal spaces and the boundaries of inclusions in the K-feldspar.On the basis of the observed structures and textures these graphic and micrographic intergrowths are considered to be due to solutions penetrating or infiltrating into existing structures and not due to simultaneous crystallisation as conditions of eutectic crystallisation would require.In addition to the well known graphic structures there occur graphic or myrmekitic-like intergrowths of uraninite in microcline which, from a structural and physico-chemical point of view, cannot be considered to be due to eutectic crystallisation.  相似文献   

20.
The F–(Ba–Pb–Zn) ore deposits of the Zaghouan District, located in NE Tunisia, occur as open space fillings or stratabound orebodies, hosted in Jurassic, Cretaceous and Tertiary layers. The chondrite-normalized rare earth element (REE) patterns may be split into three groups: (i) “Normal marine” patterns characterizing the wallrock carbonates; (ii) light REE (LREE) enriched (slide-shaped) patterns with respect to heavy REE (HREE), with small negative Ce and Eu anomalies, characteristic of the early ore stages; (iii) Bell-shaped REE patterns displaying LREE depletion, as well as weak negative Ce and Eu anomalies, characterizing residual fluids of subsequent stages. The 87Sr/86Sr ratios (0.707654–0.708127 ± 8), show that the Sr of the epigenetic carbonates (dolomite, calcite) and ore minerals (fluorite, celestite) are more radiogenic than those of the country (Triassic, Jurassic, Cretaceous, lower Miocene) sedimentary rocks. The uniformity of this ratio, throughout the District, provides evidence for the isotopic homogeneity and, consequently, the identity of the source of the mineralizing fluids. This signature strongly suggests that the radiogenic Sr is carried by Upper Paleozoic basinal fluids.The δ34S values of barite, associated to mineralizations, are close to those of the Triassic sea water (17‰). The δ34S values of sulfide minerals range from − 13.6‰ to + 11.4‰, suggesting two sulfur-reduced end members (BSR/TSR) with a dominant BSR process.Taking account of the homogeneity in the Pb-isotope composition of galenas (18.833–18.954 ± 0.001, 15.679–15.700 ± 0.001 and 38.690–38.880 ± 0.004, for the 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios respectively), a single upper crustal source for base-metals is accepted. The Late Paleozoic basement seems to be the more plausible source for F–Pb–Zn concentrated in the deposits. The genesis of the Zaghouan District ore deposits is considered as the result of the Zaghouan Fault reactivation during the Late Miocene period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号