首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithogeochemical features of Riphean fine-grained terrigenous rocks of the Kama-Belaya aulacogen are discussed. It is shown that aluminosiliciclastic material delivered to the aulacogen during the Riphean was characterized by a low maturity degree. The successively increasing K2O/Al2O3 values in the Riphean summary section correlate negatively with the CIA index values, indicating a gradually strengthening tendency for climate aridization in erosion zones. Data on some indicator ratios of trace elements and REE systematics in Riphean silty mudstones and shales of the Kama-Belaya aulacogen imply the involvement of mafic and ultramafic rocks, in addition to acid igneous and metamorphic varieties, in erosion during accumulation of the Nadezhdino, Tukaevo, Ol’khovka, Usinsk, and Priyutovo formations. Comparison of data on the composition of rocks in provenances based on the mineralogical-petrographic study of sandstones and investigation of geochemical features of silty mudstones and shales revealed their sufficiently high similarity. The geochemical data made it possible to specify the composition of rocks in provenances. Low Ce/Cr values in the fine-grained terrigenous rocks of the Lower Riphean Kyrpy Group suggest their formation with a significant contribution of erosion products of the Archean substrate, which is atypical for higher levels of the section. Thus, the Early-Middle Riphean transition period was likely marked by substantial changes in the mineral composition of material delivered to the Kama-Belaya aulacogen. The lack of exhalative components in the examined specimens of silty mudstones and shales points to a relatively low permeability of the Earth’s crust in the eastern East European Platform through the entire Riphean.  相似文献   

2.
Analysis of the litho-geochemistry of fine-grained terrigenous rocks (metapelites, shales, and mudstones) of sedimentary megasequences in the Southern Urals, Uchur-Maya area, and the Yenisei Kryazh indicates that Riphean sequences in these regions are dominated by chlorite-hydromica rocks, with montmorillonite and potassic feldspar possibly occurring only in some of the lithostratigraphic units. According to the values of their hydrolysate modulus, most clay rocks from the three Riphean metamorphosed sedimentary sequences are normal or supersialites, with hydrosialites and hydrolysates playing subordinate roles. The most lithochemicaly mature rocks are Riphean clays in the Yenisei Kryazh (Yenisei Range). The median value of their CIA is 72, whereas this index is 70 for fine-grained aluminosilicate rocks from the Uchur-Maya area and 66 for fine-grained terrigenous rocks of the Riphean stratotype. Hence, at ancient water provenance areas from which aluminosilicate clastic material was transported in sedimentation basins in the southwestern (in modern coordinates) periphery of the Siberian Platform, the climate throughout the whole Riphean was predominantly humid. At the same time, the climate at the eastern part of the East European Platform was semiarid-semihumid. The K2O/Al2O3 ratio, which is employed as an indicator of the presence of petro-and lithogenic aluminosilicate clastic component in Riphean sedimentary megasequences, shows various tendencies. According to their Sc, Cr, Ni, Th, and La concentrations and the Th/Sc ratio, the overwhelming majority of Riphean shales and mudstones notably differ from the average Archean mudstone and approach the average values for post-Archean shales. This suggests that mafic Archean rock in the provenance areas did not play any significant role in the origin of Riphean sedimentary megasequences. The Co/Hf and Ce/Cr ratios of the terrigenous rocks of the three Riphean megaseqeunces and their (Gd/Yb) N and Eu/Eu* ratios place these rocks among those containing little (if any) erosion products of primitive Archean rocks. According to various geochemical data, the source of the great majority of fine-grained aluminosilicate clastic rocks in Riphean sediment megasequences in our study areas should have been mature sialic (felsic), with much lower contents of mafic and intermediate rocks as a source of the clastic material. The REE patterns of the Riphean shales and metapelites in the Bashkir Meganticlinorium, Uchur-Maya area, and Yenisei Kryazh show some features that can be regarded as resulting from the presence of mafic material in the ancient provenance areas. This is most clearly seen in the sedimentary sequences of the Uchur-Maya area, where the decrease in the (La/Yb) N ratio up the sequence of the fine-grained terrigenous rocks from 15–16.5 to 5.8–7.1 suggests that mantle mafic volcanics were brought to the upper crust in the earliest Late Riphean in relation to rifting. Analysis of the Sm-Nd systematics of the Riphean fine-grained rocks reveals the predominance of model age values in the range of 2.5–1.7 Ga, which can be interpreted as evidence that the rocks were formed of predominantly Early Proterozoic source material. At the same time, with regard for the significant role of recycling in the genesis of the upper continental crust, it seems to be quite possible that the ancient provenance areas contained Archean complexes strongly recycled in the Early Proterozoic and sediments formed of their material. An additional likely source of material in the Riphean was mafic rocks, whose variable contribution is reflected in a decrease in the model age values. Higher Th and U concentrations in the Riphean rocks of the Yenisei Kryazh compared to those in PAAS indicate that the sources of their material were notably more mature than the sources of fine-grained aluminosilicate clastic material for the sedimentary megaseqeunces in the Southern Urals and Uchur-Maya area.  相似文献   

3.
The paper presents data on the mineralogy, petrography, and lithogeochemistry of Riphean and Vendian sandstones in the Volga-Ural region. The studied rocks generally differ in several parameters. The Zr/Sc and Th/Sc values typical of psammites suggest that the rocks are dominated by the petrogenic clastic material. This conclusion is supported by median K2O/Al2O3 values (from 0.39 to 0.45). The fine-grained clastic rocks associated with sandstones are also characterized by sufficiently high K2O/Al2O3 values, indicating the prevalence of the first cycle material therein. It is shown that the Prikamsk and Tukaevo sandstones include, in addition to the petrogenic quartz, a significant amount of lithogenic (multifold redeposited) quartz, whereas ratio of these rock types is approximately equal in the Leonidovo and Baikibashevo sandstones. Sandstones of the Kairovo and Shkapovo groups are dominated by the petrogenic quartz. Analysis of the ln(Q/L + CE)-ln(Q/F) diagram shows that the Vendian psammites are dominated by disintegration products of plutonic rocks, whereas the Riphean psammites contain a significant portion of clastic material (related to the erosion of metamorphic rocks) along with felsic and intermediate-felsic igneous rocks. Relationships of feldspars, rock clasts, polycrystalline quartz, and quartz, in general, reflected in the Qt/(F + R)-Qp/(F + R) diagram indicate that the Riphean psammites were deposited in a humid setting; the Vendian psammites, in a semihumid/semiarid setting.  相似文献   

4.
The geochemical features of basal fine-grained terrigenous rocks from the Riphean sedimentary megasequences of the Southern Urals, Uchur-Maya region, and Yenisei Range were compared in order to estimate the maturity of the continental crust that was formed by the beginning of the Riphean. It was shown that initial shales from the base of the Riphean sequence of the Yenisei Range and fine-grained aluminosiliciclastic rocks from the base of the Riphean sections of the Southern Urals were formed by the erosion of a rather mature continental crust. In contrast, fine-grained terrigenous rocks from the base of the Riphean of the Uchur-Maya region were derived from immature Late Archean protoliths or their Early Proterozoic analogs. The fine-grained terrigenous rocks of the three sedimentary megasequences show different variations in the (La/Yb)N ratio. In the Southern Urals, this ratio is high (12–15) in the Burzyan Group and decreases upsection to 6–10. In the shales of the Uchur-Maya region, the (La/Yb)N ratio decreases upsection, and the La/Sc ratio shows a sympathetic behavior. This is due to a decrease in the proportion of “primitive” tonalite-trondhjemite associations of the Archean granite-greenstone terranes in the provenance area with time and the appearance of intra-plate (riftogenic?) granitoids and significant amounts of basic and ultrabasic rocks. The latter marks the onset of large rift-forming events in the Uchur-Maya region at the beginning of the Late Riphean. The (La/Yb)N of the studied rocks from the Yenisei Range are mostly similar to the PAAS ratio, but higher values were found in the Upper Vorogovka and Chingasan groups, which was related to the contribution of strongly LREE-enriched granitoids and rift felsic and alkali basaltic volcanic associations to the formation of the terrigenous material. A comparison of Rb, Sr, Y, Zr, Ba, Hf, Th, U, Cr, and Ni contents and Zr/Y, (La/Yb)N, Ni/Co, Cr/Th, Cr/Sc, and La/Th ratios in the fine-grained terrigenous rocks of the Riphean megasequences of the Southern Urals, Uchur-Maya region, and the Yenisei Range with those in the model geochemical objects (PAAS, UCPR1, UCAR2, and others) showed that, in terms of most of the parameters, the Riphean fine-grained terrigenous rocks from the three regions are similar to each other, PAAS, and Proterozoic cratonic shales. This indicates a fairly high general maturity of the protoliths that were eroded during the Riphean in the eastern East European craton and in the southeastern and southwestern parts of the Siberian craton.  相似文献   

5.
The paper reports newly obtained geological, geochronological (U-Pb zircon method), Nd isotopic, and geochemical data on Middle and Late Paleozoic granitoids and metamorphic rocks from the southern slope of the Mongolian Altai and Gobi Altai and on granitoids from the Trans-Altai Gobi. Tectonically, the former rocks are hosted in the margin of a Caledonian paleocontinent, and the latter are localized among island-arc and oceanic complexes related to the development of the Hercynian Southern Mongolian Ocean. According to their geological setting, the intrusive complexes are subdivided into two major groups: (i) related to processes of regional metamorphism and (ii) separated from these processes. Geochemical data suggest that the source of most of the granitoids and metamorphic rocks contained island-arc rocks and their erosion products. Nd isotopic evidence indicates that practically all of the allochthonous granitoids, regardless of their composition, age, and structural setting, have positive ?Nd(T) values [i.e., belong to the ?(+) type] and could not be formed by the melting of metaterrigenous rocks widespread at the modern erosion level. These granitoids in both the Caledonian and the Hercynian structures have practically identical Late Riphean Nd model ages [TNd(DM) = 0.97–0.60 Ga], which become slightly younger in the granitoids of the Hercynides. The exception are ultrametamorphic subautochthonous ?(?) granites of the first group localized in the peripheral part of migmatite fields. The sources of these granitoids could be the host metaterrigenous rocks. The results obtained in the course of this research suggest, with regard for preexisting data on granitoids in the isotopic provinces in Central Asia, that the sources of the Paleozoic granitoids were the rocks of the “juvenile” Caledonian and Hercynian island-arc crust and of the older crust of cratonic blocks with a Early Precambrian and Late Riphean basement, respectively. The Late Riphean crustal material in Caledonian and Hercynian structures related to the development of the corresponding oceanic basins most probably consisted of clastic sediments or relatively small fragments of the Late Riphean crust. The occurrence of this crustal material in the sources of the granitoids can be explained by the involvement of sediments in subduction zones and the participation of these sediments and fragments of Late Riphean complexes in the accretionary-collision processes during the closure of the paleoceanic basins. Simultaneously, the subduction zones received juvenile material that could be later involved in the melting processes together with older rocks.  相似文献   

6.
This work restored the erosion thickness of the top surface of each Cretaceous formations penetrated by the typical well in the Hari sag, and simulated the subsidence burial history of this well with software BasinMod. It is firstly pointed out that the tectonic subsidence evolution of the Hari sag since the Cretaceous can be divided into four phases: initial subsidence phase, rapid subsidence phase,uplift and erosion phase, and stable slow subsidence phase. A detailed reconstruction of the tectonothermal evolution and hydrocarbon generation histories of typical well was undertaken using the EASY R_0% model, which is constrained by vitrinite reflectance(R_0) and homogenization temperatures of fluid inclusions. In the rapid subsidence phase, the peak period of hydrocarbon generation was reached at c.a.105.59 Ma with the increasing thermal evolution degree. A concomitant rapid increase in paleotemperatures occurred and reached a maximum geothermal gradient of about 43-45℃/km. The main hydrocarbon generation period ensued around 105.59-80.00 Ma and the greatest buried depth of the Hari sag was reached at c.a. 80.00 Ma, when the maximum paleo-temperature was over 180℃.Subsequently, the sag entered an uplift and erosion phase followed by a stable slow subsidence phase during which the temperature gradient, thermal evolution, and hydrocarbon generation decreased gradually. The hydrocarbon accumulation period was discussed based on homogenization temperatures of inclusions and it is believed that two periods of rapid hydrocarbon accumulation events occurred during the Cretaceous rapid subsidence phase. The first accumulation period observed in the Bayingebi Formation(K_1 b) occurred primarily around 105.59-103.50 Ma with temperatures of 125-150℃. The second accumulation period observed in the Suhongtu Formation(K_1 s) occurred primarily around84.00-80.00 Ma with temperatures of 120-130℃. The second is the major accumulation period, and the accumulation mainly occurred in the Late Cretaceous. The hydrocarbon accumulation process was comprehensively controlled by tectono-thermal evolution and hydrocarbon generation history. During the rapid subsidence phase, the paleo temperature and geothermal gradient increased rapidly and resulted in increasing thermal evolution extending into the peak period of hydrocarbon generation,which is the key reason for hydrocarbon filling and accumulation.  相似文献   

7.
This method pertains to oil and gas geology and to geology of sedimentary basins prospective for oil and gas. It includes identifying catagenesis zones in drilled areas within the sedimentary cover of the basin based on assay results for drill cores and cuttings using the standard methods. Analysis is primarily made in order to determine rock catagenesis based on the optical characteristics of vitrinite. A correlation between catagenesis zones and layer seismic velocities obtained from regional and exploration seismic data is made for a drilled area. Both the layer seismic velocities and the degree of rock catagenesis increase with depth under the influence of increasing rock density. Correlations between layer velocities and the degree of rock catagenesis have been established. The following ratios have been determined for the Scotian shelf, Canada, and the Barents shelf, Russia: a protocatagenesis zone (the cap) corresponds to layer seismic velocities (V lay) of 1.5–3.3 km/s, a mesocatagenesis zone (the principal hydrocarbon generation area) corresponds to V lay of 3.3–5.0 km/s, and an apocatagenesis zone (an area with a very low hydrocarbon potential) corresponds to V lay of over 5.0 km/s. An advantage of the new method of identification of catagenesis zones is that it can be used prior to drilling. Its conceptual originality and cost efficiency lie precisely in this.  相似文献   

8.
Two metamorphic complexes of the Yenisei Ridge with contrasting composition are analyzed to unravel their tectonothermal evolution and geodynamic processes during the Riphean geologic history of the area. The structural, mineralogical, petrological, geochemical and geochronological data are used to distinguish two stages of the evolution with different ages, thermodynamic regimes, and metamorphic field gradients. Reaction textures, chemical zoning in minerals, shapes of the P-T paths, and isotope dates provide convincing evidence for a poly metamorphic history of the region. The first stage is marked by the formation of the ~ 970 Ma low-pressure zoned And-Sil rocks (P = 3.9-5.1 kbar, T = 510–640 °C) of the Teya aureole and a high metamorphic field gradient with dT/dH = 25–35 °C/km typical of many orogenic belts. At the second stage, these rocks experienced Late Riphean (853–849 Ma) collisional medium-pressure metamorphism of the kyanite-sillimanite type (P = 5.7-7.2 kbar, T = 660–700 °C) and a low metamorphic field gradient with dT/dH < 12 °C/km. This metamorphic event was almost coeval with the Late Riphean (862 Ma) contact metamorphism in the vicinity of the granitic plutons, which was accompanied by a high metamorphic field gradient with dT/dH > 100 °C/km. At the first stage, the deepest blocks of the Garevka complex in the vicinity of the Yenisei regional shear zone underwent high-pressure amphibolite-facies metamorphism within a narrow range of P = 7.1-8.7 kbar and T = 580–630 °C, suggesting the burial of rocks to mid-crustal depths at a metamorphic field gradient with dT/dH ~ 20–25 °C/km. At the second stage, these rocks experienced the Late Riphean (900–850 Ma) syn-exhumation dynamometamorphism under epidote-amphibolte facies conditions (P = 3.9-4.9 kbar, T = 460–550 °C) and a low gradient with dT/dH < 10 °C/km accompanied by the formation of blastomylonitic complexes in shear zones. All these deformation and metamorphic events identified on the western margin of the Siberian craton are correlated with the final episodes of the Late Grenville orogeny and provide supporting evidence for a close spatial connection between Siberia and Laurentia during early Neoproterozoic time, which is in good agreement with recent paleomagnetic reconstuctions.  相似文献   

9.
The climatic impact on the formation of fine-grained rocks from the Riphean stratotype and Vendian Asha Group on the western slope of the South Urals during the time interval lasting approximately 1200 Ma is considered. It is shown that these rocks are largely represented by “tectonosilicate-dominated” shales. This feature combined with changes in the average K2O/Al2O3 values disavows the hypothesis in (Kennedy et al., 2006), according to which the growth of free oxygen concentration in the Late Riphean and Vendian atmosphere was determined by gradual intensification of the organic carbon extraction from the biosphere by clays. The average values of the hydrolyzate module, chemical index of alteration (CIA), and several lithogeochemical parameters calculated for the Riphean and Vendian clayey rocks provide grounds for the conclusion that intensity of weathering in paleodrainage areas during the accumulation of the Upper Precambrian sedimentary successions was low. The curve reflecting changes of the average CIA values in the Upper Precambrian fine-grained siliciclastic rocks of the South Urals is similar to some extent with the “standard” CIAcorrect. curve (GonzalezAlvarez and Kerrich, 2012). It is assumed that changes in microand macrobiotic communities during the Late Precambrian were controlled to a variable extent by climate fluctuations as well. At the same time, these fluctuations most likely left the chemical composition of water in the ocean virtually unchanged, which is evident from analysis of the redox conditions in the ocean and the distribution of primary producers with the average CIAcorrect. and CIA values.  相似文献   

10.
The available geological data on the Meso-and Neoproterozoic rocks in the north of the East European Platform are considered, involving the results of a comprehensive study along regional seismic profile I-I that extends for 460 km and crosses the main structural units of the Mezen Syneclise from SW to NE. Many previously unknown structural features of aulacogens filled with thick (up to 4–8 km) sequences of the Meso-and Neoproterozoic sedimentary rocks that make up the preplate complex are demonstrated in this profile. The Riphean rocks are subdivided into three seismostratigraphic sequences: the lower part of the Lower Riphean, the Lower-Middle Riphean, and the Upper Riphean. The geodynamic events in the north of the East European Platform are correlated with those that occurred in its central part and the adjacent foldbelts.  相似文献   

11.

The stable enrichment of pyrite from magnesite ores in δ34S isotope (from 5.4 to 6.9‰) compared with pyrite from the host (sedimentary and igneous) rocks was established in the classical Satka sparry magnesite ore field. Concretionary segregations of fine-grained pyrite in dolomite are depleted in the heavy sulfur isotope (δ34S, from–9.1 to–5.8‰). Pyrite from dolerite is characterized by δ34S values (–1.1 and 1.7‰) close to the meteorite sulfur. The δ34S values in barite from the underlying dolomite horizon vary in the range of 32.3–41.4‰. The high degree of homogeneity of the sulfur isotope composition in pyrite from magnesite is a result of thermochemical sulfate reduction during the syngenetic crystallization of pyrite and magnesite from epigenetic brines, formed during dissolution of evaporite sulfate minerals at the stage of early catagenesis of the Riphean deposits.

  相似文献   

12.
The clarkes of concentrations (Kc) of a wide range of trace elements (Li, Be, B, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, In, Sb, Cs, Ba, REE, Hf, Ta, Hg, Tl, Pb, Bi, Th, and U) were analyzed for fine-gained terrigenous rocks (mudstones, metapelites) from the reference Riphean sections of the Uchur-Maya region and the Yenisei Range. It was established that the shales and mudstones of the Uchur and Aimchan groups in the Riphean hypostratotype section are characterized by moderate (2.5 < Kc < 5) and intense (Kc > 5) geochemical specialization for Li, B, and Zn. At the same time, the similar rocks of the Lakhanda and Ui groups do not exhibit any distinct geochemical specialization, although they are notably enriched in HREE. The metapelites from the basal formations of the Riphean sedimentary successions in the Yenisei Range are distinctly specialized for B and slightly for Li, Rb, Be, Nb, Ta, Th, Ge, and Cd. In addition, moderate specialization for Cu is characteristic of the metapelites from the Korda and Lopatino formations; for Bi, Sb, Hg, and V, for their analogs from the Potoskui Formation; and, for Hg and Cs, for the similar rocks from the Lopatino Formation. The metapelites of the Lower Riphean Korda Formation from the central zone of the Yenisei Range have elevated contents of significantly more elements (Li, Be, Sc, V, Cr, Co, Ni, Zn, As, Rb, Y, Zr, Nb, Sb, Ag, In, Hf, Hg, and others) than their counterparts from its eastern near-platform part. The mudstones of the ore-bearing (Pb, Zn) Gorevo Formation are characterized by elevated concentrations of several ore elements such as Pb, Cd, As, Sb, and Bi. The elevated Kc values of the rare lithophile and of several ore elements in the metapelites of the Yenisei Range are determined by the high geochemical differentiation of the Early Precambrian blocks constituting the western margin of the Siberian Craton, which were eroded in the Riphean, and the syn-sedimentary riftogenic and intraplate magmatism. On the contrary, the fine-grained and terrigenous rocks from the basal part of the Riphean section in the Uchur-Maya region are compositionally closer to the immature Late Archean substrates or their Early Proterozoic analogs.  相似文献   

13.
Before our studies, it was considered that the Bagrusha rhyolite–porphyry complex (BC) including veins and thin dykes occurring in the Kusa region among deposits presumably of the Satka and Avzyan Formations of the Lower and Middle Riphean, respectively. Based on the U–Pb SHRIMP and IDTIMS studies of zircons from rhyodacite—porphyry, we established the age of the BC formation of T0 = 1348.6 ± 3.2 Ma for the first time. The age obtained is inconsistent with the idea on the Paleozoic age of the BC and the geological situation shown on geological maps of the region. The age (T0 = 1348.6 ± 3.2 Ma) of rhyodacite–porphyry from the BC provides evidence for acid volcanism controlled by the Mashak (Middle Riphean) magmatic event in the region, and deposits hosting volcanic rocks of the BC cannot be younger than the base of the Middle Riphean, i.e., the Mashak Formation, which was not previously distinguished by researchers in the western part of the Kusa and Bakal–Satka regions. At the same time, it is possible that deposits hosting dykes and veins of the granite–rhyolite formation may have a Bakal (Lower Riphean) age.  相似文献   

14.
Detailed b lattice parameter and illite crystallinity (IC) studies of K-white micas in slates from the Stawell and Ballarat-Bendigo Zones (SZ, BBZ) in the western Lachlan Fold Belt of Victoria, Australia, reveal a metamorphic pattern characterized by regional metamorphism associated with crustal thickening and younger contact metamorphism accompanied by deformation. The IC data indicate that rocks regionally metamorphosed prior to the intrusion of the Early and Late Devonian granitoids, vary in grade from epizonal (greenschist facies) to diagenetic (zeolite facies) and that most are of epizonal to anchizonal (prehnite–pumpellyite facies) grade. In the BBZ, a decrease in grade from west to east occurs. Across fault zones, IC values show little change, indicating that limited vertical displacement has occurred. This is in accord with the thin skinned deformation model proposed for the western Lachlan Fold Belt. The b lattice parameters (x=9.022 Å; n=137; σn=0.009) indicate baric conditions intermediate between those of New Hampshire (P=Al2SiO5 triple point) and Otago (intermediate P ). Thus, a moderately low geothermal gradient existed 450–430 Ma ago, when these rocks were deformed. KD Fe/Mg (actinolite)/Fe/Mg (chlorite) values (0.52–0.70) obtained from coexisting actinolite and chlorite in metabasites from fault zones support the moderately high-P (c. 4 kbar) metamorphism suggested by the b cell parameter values. The metamorphic conditions indicated by these data are contrary to the low-P/high-T conditions proposed by previous authors, who inferred an intimate association between deformation, granitoid intrusion and gold mineralization. The b lattice parameter of white micas in slates adjacent to Early Devonian (c. 400 Ma) granitoids with schist bearing aureoles in the north-eastern part of the BBZ (x=9.002 Å; n=27; σn=0.007), indicate pressures in the order of c. 2.5 kbar which are in accord with those obtained from andalusite–cordierite and zoisite–garnet bearing assemblages observed in the higher grade metapelitic and calcareous rocks. This contrasts with the higher pressure (c. 4 kbar) existing during regional metamorphism and implies that c. 6.5–8 km of metasedimentary rocks in the BBZ were removed before the emplacement of the Early Devonian granitoids. Metamorphic assemblages in hornfelses associated with Late Devonian granitoids indicate a further 5–6 km of metasediment were removed in the next 40 Ma prior to their emplacement. This study shows the value of white mica studies in elucidating the tectonothermal history of a low-grade metamorphic terrane dominated by metapelitic rocks.  相似文献   

15.
The paper presents the first detailed mineralogical, structural, and crystal-chemical characteristics of the mixed-layer corrensite-chlorites from the glauconitic sandy-clayey rocks that make up the bottom (0.10 m) of a basal member (1.50 m) of the lower subformation of the Yusmastakh Formation (Riphean, Anabar Uplift, North Siberia). Like the overlying mudstones (1.40 m) in the basal member, these rocks are generally transformed up to the deep catagenesis level and included in a thick dolomite sequence. In mudstones represented by the dioctahedral micas, the corrensite-type minerals are observed as traces.  相似文献   

16.
Mineral transformation of host rocks and localization of orebodies at the unconformity-type uranium deposits are considered for the Karku deposit in the northern Ladoga region. It is shown that the great depth of uranium mineral formation and the peculiar composition of host rocks, along with temperature and chemistry of fluids, played a critical role in variation of lithostatic and fluid pressure, porosity, and permeability. The compaction of quartz sandstone and gravelstone, which are typical host rocks at unconformity-type deposits, the development of microstylolithic sutures, conformal structures, pressure solution and deposition of quartz in free pores gave rise to the closure or constraint of pore space and to increase in pore pressure of fluids in the deep part of the Riphean troughs with approaching lithostatic loading. A transitional zone between hydrostatic and lithostatic pressure controlled localization of orebodies and was decisive for uranium mineral formation. This zone coincided with the Riphean-Paleoproterozoic unconformity and sank somewhat into the crystalline basement. Below this transitional zone, the intergranular fluid was under a pressure that was close to the pressure on solid phases, i.e., P totP fl. The reliability of this phenomenon is confirmed by cessation of pressure solution-redeposition of quartz and distinct deceleration of dehydration of hydrous minerals. As is shown for the Karku deposit, the highly hydrated clay minerals of the illite-smectite series are widespread in its subore portion and lacking at the supraore levels along with termination of quartz regeneration. It is suggested that a zone of superhigh fluid pressure in deep parts of sedimentary basins constrains localization of uranium orebodies by structural and stratigraphic unconformity between Riphean and Paleoproterozoic rocks. It is stated that altered wall rocks at the unconformity-type uranium deposits cannot be identified with products of hydrothermal phyllic and argillic alteration of host rocks at the medium- and low-temperature endogenic deposits. The main distinctions consist in lack of wall-rock metasomatic reaction zoning and acid-alkaline evolution of solutions. All transformations of host rocks should be classified as diverse manifestations of deep catagenesis of sedimentary sequences and buried regolith. The carbon and oxygen isotopic compositions of calcite from host rocks at the Karku deposit are far from those of magmatic and hydrothermal carbonates. They are characterized by a high δ18O = +17 to +25‰ and a high dispersion of δ13C = −1.5 to almost −15‰. No granitoid magmatism is known in the regions, where the unconformity-type uranium deposits occur. Therefore, the rocks of the crystalline basement are the most probable source of uranium, which precipitated on the reductive barrier as a product of interaction with bitumen contained in the Riphean basal beds.  相似文献   

17.
General trends of the formation of Middle Riphean fine-grained aluminosiliciclastic rocks in the Bashkir Meganticlinorium are considered. It is shown that Yurmatinian shales do not contain any significant pyroclastic admixture. Judging from the relatively constant Th/Cr ratio throughout the Yurmatinian section, the tectonic regime in the study territory during the early Middle Riphean is suggested to be rather stable. The main paleoclimatic indices and indicators of the pelitic material maturity (CIA, CIW, IVC, PIA, and Ce/Y) suggest that paleodrainage systems in the early Middle Riphean were dominated by humid climate that gave way to the arid or semiarid type in the middle Yurmatinian. The low Mo/Mn ratio and some other indicators of redox conditions in shales from all Yurmatinian lithostratigraphic units show that no explicit reducing conditions existed in the basin during the early Middle Riphean. The shales were characterized by the increase in K2O/Al2O3 ratio, gradual enrichment in REE, and growth of LREE/HREE and LaN/YbN ratios toward the middle Yurmatinian, indicating the gain of an appreciable amount of slightly weathered arkosic aluminosiliciclastic material in the sedimentary basin about 1220–1200 Ma ago. The REE distribution and the UCC- and AUC-normalized shale compositions suggest that the eroded upper crust was compositionally close to the UCC. The occurrence of mafic and ultramafic rocks is also inferred. Data points of Yurmatinian shales plotted in the Cr–Ni, Eu/Eu*–GdN/YbN, and (La/YB)N–YbN diagrams are localized between the fields of Upper Archean and post-Archean rocks or within the latter field. Hence, post-Archean igneous and metamorphic complexes prevailed in paleodrainage systems of the early Middle Riphean. This is also confirmed by the model Nd ages.  相似文献   

18.
New structural, petrological, chemical, isotope, and paleomagnetic data have provided clues to the Late Riphean–Paleozoic history of the Uda–Vitim island arc system (UVIAS) in the Transbaikalian sector of the Paleoasian ocean, as part of the Transbaikalian zone of Paleozoids. The island arc system consists of three units corresponding to main evolution stages: (i) Upper Riphean (Late Baikalian), (ii) Vendian–Lower Paleozoic (Caledonian), and (iii) Middle–Upper Paleozoic (Hercynian). The earliest stage produced the base of the system composed of Late Riphean ophiolite (971–892 Ma, U-Pb) and volcanic (837–789 Ma, U-Pb) and sedimentary rocks (hemipelagic siliceous sediments and dolerite sills) which represent the Barguzin–Vitim oceanic basin and the Kelyana island arc. The main event of the second stage was the formation of the large UVIAS structure (over 150,000 km2) which comprised the Transbaikalian oceanic basin, the forearc and backarc basins, and the volcanic arc itself, and consisted of many volcanic-tectonic units exceeding 100 km2 in area (Eravna, Oldynda, Abaga, etc.). Lithology, stratigraphy, major–element compositions, and isotope ages of Vendian–Cambrian volcanic rocks and associated sediments indicate strong differentiation of calc-alkaline series and the origin of the island arc system upon oceanic crust, in a setting similar to that of the today’s Kuriles–Kamchatka island arc system. The Middle–Upper Paleozoic stage completed the long UVIAS history and left its imprint in sedimentary and volcanic rocks in superposed trough basins. The rocks were studied in terms of their biostratigraphic and isotope age constraints, as well as major- and trace-element compositions, and were interpreted as products of weathering and tectonic-magmatic rework of the UVIAS units.  相似文献   

19.
The Dovyren intrusive complex includes the ore-bearing (Cu–Ni–PGE) Yoko–Dovyren layered pluton (728 Ma, up to 3.4 km in thickness), underlying ultramafic sills, and comagmatic leuconorite and gabbro-diabase dikes. Studies of Sr–Nd–Pb isotope systems were carried out for 24 intrusive rocks and five associated low- and high-Ti basalts. The high-Ti basalts show 0.7028 ≤ (87Sr/86Sr)T ≤ 0.7048 and 4.6 ≤ εNd(T) ≤ 5.8, similar to the values in MORB. The intrusive basic and ultrabasic rocks are geochemically similar to the low-Ti formation, making a compact cluster of compositions with extremely high ratios of radiogenic Sr and Pb isotopes and low εNd values. The maximum enrichment in radiogenic Sr is shown by the rocks near the pluton bottom ((87Sr/86Sr)T = 0.71387 ± 0.00010 (2σ); εNd(T) = –16.09 ± 0.06), which are the products of crystallization of the most primitive high-Mg magmas. The above-located dunites, troctolites, and gabbro show lower enrichment, probably because of the contamination of the host rocks during the filling of the magma chamber and/or because of the slight heterogeneity of the source. Calculations of the proportions of mixing of the parental melt with carbonate terrigenous material have shown that the variations in the Sr and Nd isotope ratios are due to the incredibly high contamination of the sediments, up to 40–50%. This contradicts the succession of the main rock types in the Yoko–Dovyren pluton in accordance with the crystallization of picrite-basaltic magma. The contribution of 5–10% high-Ti component seems more likely and suggests interaction between two isotopically contrasting magmas in this province in the Late Riphean. In general, the minor variations in εNd(T) of the intrusive rocks and metavolcanics (–14.3 ± 1.1) testify to the isotopically anomalous source of the low-Ti magmas. The time variation trend of εNd and geochemical features of the Dovyren rocks indicate that the products of melting of 2.7–2.8 Ga suprasubduction mantle might have been the massif protolith. Thus, the Dovyren parental magmas formed from a much older (sub)lithospheric source in the Late Riphean. The source was initially enriched in a mafic component with a low Sm/Nd ratio and was isolated from the convecting mantle and mantle melting processes for ~ 2 Gyr. The existence of such a long-living and at least twice reactivated lithospheric substratum is confirmed by the fact that the Nd isotope evolution trend of the initially nonanomalous mantle protolith includes not only the Dovyren rocks but also the Paleoproterozoic gabbro of the Chinei pluton and the Archean enderbites of the Baikal region.© 2015, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.  相似文献   

20.
The analysis of lithogeochemical data on the Upper Riphean and Vendian sandstones from the Bashkirian anticlinorium showed that sandstone associations formed in a passive sluggish tectonic regime in the middle Late Vendian were replaced by associations accumulated in the more active tectonic settings. This is well seen in the SiO2-K2O/Na2O and (Fe2O3* + MgO)-TiO2 diagrams reflecting the particular and median compositions of psammites. The lithochemical characteristics of sandstones were examined to determine the compositional variation of rock complexes eroded on paleodrainage areas. Quartz-rich sedimentary, metasedimentary, and metamorphic rocks, as well as felsic igneous rocks prevailed in the paleodrainage areas throughout the entire Late Riphean and Early Vendian, while the main sources of clastic material in the Late Vendian were igneous intermediate and basic rocks. With allowance made for the previous comparative-lithological data and some other materials, significant similarity in the position and orientation of compositional fields of psammites from the middle and upper levels of the Asha Group (Bashkirian anticlinorium) with fields of psammites from different syncollisional (flysch and molasse) basins in the SiO2-K2O/Na2O, K2O/Na2O-SiO2/Al2O3, F1–F2 and other diagrams suggests that the middle Late Vendian (beginning from the Basa level) was marked by a variation in tectonic/geodynamic settings of sandstone accumulation and in composition of the eroded paleodrainage systems. The revealed trend agrees well with concept of the existence of the Late Riphean-Vendian Pechora paleocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号