首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
以大量岩心观察为基础,结合室内电镜扫描和物性特征分析,对西部斜坡带储层成岩序列与孔隙演化进行了研究,认为储层岩石类型主要为长石岩屑砂岩及岩屑长石砂岩,储集空间以粒间溶孔和粒内溶孔为主,属中孔中渗一低孔低渗型储层。成岩作用及孔隙演化对储层物性有重要影响,该区主要经历了压实、胶结、溶解以及交代等多种成岩作用,其中压实作用和交代作用对储层起破坏作用,溶解作用对储层改善起建设性作用。成岩阶段可划分为早成岩A期、B期和晚成岩A1期、A2期及B期,目前储层处于晚成岩A2期,原生孔隙大部分被破坏,次生孔隙发育,并在2900~3200m和3600。4000m处形成两个次生孔隙发育带。  相似文献   

2.
冀中坳陷深县凹陷东营组砂岩储层岩石类型以长石岩屑砂岩或岩屑长石砂岩为主,岩石成分成熟度和结构成熟度均较低,反映了近物源和多物源的特征。通过对研究区的岩心化验分析资料、薄片和扫描电镜资料的分析,认为深县凹陷东营组储集空间类型主要包括原生孔隙和次生孔隙两类,其中以原生的粒间孔隙为主。研究区岩性孔渗资料的统计结果表明,储层的物性较好,基本为中高孔中渗型储层,根据深县凹陷储层评价标准,可以将深县凹陷储层分为4类,东营组储层主要是Ⅰ类和Ⅱ类储层。深县凹陷东营组主要为辫状河流相沉积,其沉积作用直接决定着储集砂体的类型、展布范围以及后期成岩改造作用。而储层储集性能主要受原始沉积作用及后期成岩作用共同控制,控制储层孔隙演化的成岩作用主要为机械压实作用和胶结作用。  相似文献   

3.
通过运用岩心化验分析资料、薄片、扫描电镜资料及X射线衍射等资料,对深县凹陷古近系砂岩储层岩石特征、成岩作用类型、成岩阶段、成岩演化序列和孔隙演化进行了系统的分析。研究结果表明:深县凹陷古近系砂岩类型为长石岩屑砂岩或岩屑长石砂岩,岩石的结构成熟度和成分成熟度均较低;影响该区储层物性的成岩作用主要是压实作用、胶结作用、溶蚀作用和交代作用;在此基础上,通过成岩阶段划分与孔隙演化研究,深县凹陷古近系砂岩储层位于成岩阶段的早成岩B期至晚成岩B期。不同成岩阶段的成岩作用强度不同,因此,不同成岩阶段的储层物性变化较大。  相似文献   

4.
盐家地区位于东营凹陷北部陡坡带,沙四上亚段形成了近岸水下扇沉积体系.本次研究利用扫描电镜、铸体薄片等方法.结合X-射线衍射分析化验资料,着重对成岩作用以及孔隙演化等方面做了研究.该区储层岩石类型主要为岩屑长石砂岩,成分成熟度和结构成熟度低;对储层有显著影响的成岩作用主要有机械压实作用,胶结作用,以及长石、岩屑等不稳定碎屑的溶蚀作用;通过有机质热演化、黏土矿物的含量变化及相互转化、石英加大程度以及溶蚀作用等的分析,可以推知盐家地区沙四上亚段储层处于中成岩阶段A期;2个次生孔隙发育带的形成分别与长石溶解与碳酸盐溶解有关.  相似文献   

5.
Shwebo盆地勘探多年来,储层是影响勘探成效的关键因素。研究结果表明,Shwebo盆地白垩系—古近系储层主要岩石类型为长石砂岩、石英砂岩及凝灰质砂岩;孔隙类型主要为残余粒间原生孔隙和微裂隙溶蚀孔隙。孔隙结构复杂、非均质性强以及低孔、低渗是储层的主要特征。沉积环境和成岩作用是影响储层质量的主要因素,其中,影响盆地西部岛弧带储层质量的关键因素是火山活动及成岩作用;影响Shwebo盆地内储层质量的关键因素是胶结作用及压实作用,并指出了盆地有利储层勘探区。  相似文献   

6.
盐城凹陷天然气储层为成分成熟度很低的砂砾岩、砾状砂岩、砂岩和少量粉砂岩,砂岩类型主要为长石岩屑砂岩和少量岩屑长石砂岩。成岩矿物主要类型有粘土矿物、石英、钠长石、碳酸盐、硬石膏和石膏等。储层以次生孔隙发育为特点,以粒间孔隙和骨架颗粒溶孔最为发育,溶解作用发育程度与泥质岩在成岩过程中粘土矿物和有机质的演化关系极其密切。盐城天然气进入储层发生在始新世———新近纪,主要成藏期发生在4.5~10Ma。天然气储层成岩演化阶段处于晚成岩A亚期。储层性质明显地受到沉积相和成岩作用的影响。沉积物粒度较粗、厚度较大的河道砂的储集物性明显优于各种粒度较细、厚度较薄的席状砂体。  相似文献   

7.
鄂尔多斯盆地延长组石油资源丰富,储层致密,为了查明湖盆致密砂岩储层发育机理,综合利用岩心观察、铸体薄片鉴定、X射线衍射分析、扫描电镜观察、高压压汞测试等方法,对鄂尔多斯盆地陕北地区长7段致密油储层特征及其发育主控因素进行了分析。研究结果显示,研究区长7段长石含量高,主要发育长石砂岩和岩屑长石砂岩。致密砂岩储层孔隙类型以长石粒内溶蚀孔隙和粒间溶蚀孔隙为主,同时晶间微孔和微裂缝较为发育。研究区长7段时期主要为三角洲前缘与滨浅湖沉积环境,水动力较弱,发育砂岩中泥质含量较高。中等强度压实作用及早期的方解石胶结作用使原生孔隙消失殆尽,胶结作用进一步使孔隙减小。由于长石及黏土含量较高,其受溶蚀作用形成溶蚀孔隙,改善储层质量,同时也是研究区长7段致密砂岩储层发育的主要控制因素。  相似文献   

8.
首次分析睡宝盆地A井区古近系成岩演化序列并提出其储层处于中成岩A1-A2期,此成岩阶段有利于次生孔隙的保护。研究区古近系储层成岩演化序列具有特殊性:第一期胶结作用为硅质胶结,早于机械压实作用或者同时进行,强烈的机械压实作用使得孔隙度减小15%,此后第二期碳酸盐胶结作用占主导,镜下统计两期胶结作用的减孔量为4%~6%;渐新世受到挤压构造运动和表生成岩作用的双重影响,紧临渐新统不整合面以下的储层由于碳酸盐胶结物溶解而形成次生孔隙。2009年中海油新钻井地处冲起构造,后期的这种构造变形对始新统及其以下的核部地层产生侧向挤压形成构造压实效应,原始孔隙遭到更多的破坏,而对渐新统起到构造托举的作用,可以减缓上覆沉积物的静岩压实效应。成岩演化序列的特殊性和多期构造运动使得古近系储层物性出现差异,总结储集性好的储层并分析其成因机制,对睡宝盆地下一步勘探具有重要指导意义。  相似文献   

9.
综合应用铸体薄片、扫描电镜、阴极发光、恒速压汞、流体包裹体和X衍射等分析技术,对储层岩石学、孔喉结构和成岩作用类型及特征进行深入研究,探讨储层致密化过程和物性演化。结果表明:平湖组储层砂岩类型主要为长石岩屑质石英砂岩,以细-中粒结构为主,分选性中到好;孔隙类型以溶蚀粒间孔为主,孔隙半径主要集中于130~190μm,喉道半径主要集中于0.2~10μm;埋藏压实是导致平湖组储层低渗-特低渗的主因,埋深、粒度及泥质决定了压实作用的强弱,而后期次生溶蚀及胶结作用的差异加剧了储层的非均值性。中成岩A期平湖组储层次生溶蚀规模受限于流体环境,细粒沉积不利于后期溶蚀是造成储层致密化的主因;进入中成岩B期,成岩环境呈碱性且逐渐封闭,大量含铁碳酸盐、呈丝状或弯曲片状伊利石等富集堵塞喉道,致使储层大规模致密。  相似文献   

10.
北黄海盆地中生界为残留盆地,油气勘探难度大、程度低,勘探工作主要集中于盆地东部.根据砂岩铸体薄片、扫描电镜、X射线衍射、阴极发光、流体包裹体测温等多种分析测试手段,对中生界储层砂体的岩石学特征、成岩作用及对孔隙的影响进行了研究.结果表明,该区中生界砂岩岩性以长石砂岩、长石岩屑砂岩为主,成岩作用主要有压实作用、胶结作用、...  相似文献   

11.
渐新世花港组是东海陆架盆地西湖凹陷发育的最主要储层,基于普通薄片、铸体薄片、扫描电镜和荧光显微观察,结合同位素地球化学对东海陆架盆地西湖凹陷花港组砂岩储层的成岩作用、成岩序列及成岩流体演化进行了研究。结果表明,花港组砂岩储层目前处于中成岩阶段B期,主要经历了机械压实、绿泥石粘土摸、酸性及碱性溶蚀作用,石英次生加大,碳酸盐胶结和自生高岭石胶结等成岩作用。研究区发育有三期碳酸盐胶结物,早期菱铁矿胶结物,中期铁方解石和晚期铁白云石。根据碳酸盐胶结物的碳氧同位素特征分析认为早期碳酸盐胶结物是由过饱和的碱性湖水沉淀造成的,而晚期碳酸盐胶结物的形成与有机酸密切相关。研究区存在两类溶蚀作用,酸性溶蚀作用和碱性溶蚀作用,早期的酸性溶蚀作用主要是有机酸对长石、岩屑及早期碳酸盐胶结物的溶蚀,晚期的碱性溶蚀作用主要是发生于碱性环境下流体对石英及硅质胶结物的溶蚀。研究区发育有两期油气充注,早期发生于晚中新世,早期发生于晚中新世,早于中期碳酸盐胶结,晚于长石溶蚀和石英胶结充注,充注量较大,第四纪以来研究区发生了第二次充注,第二次充注发生于铁白云石胶结之后,此时储层已非常致密。  相似文献   

12.
The Upper Triassic – Lower Jurassic Åre Formation comprising the deeper reservoir in the Heidrun Field offshore mid-Norway consists of fluvial channel sandstones (FCH), floodplain fines (FF), and sandy and muddy bay-fill sediments (SBF, MBF) deposited in an overall transgressive fluvial to lower delta plain regime. The formation has been investigated to examine possible sedimentary facies controls on the distribution of cementation and compaction based on petrography and SEM/micro probe analyses of core samples related to facies associations and key stratigraphic surfaces. The most significant authigenic minerals are kaolinite, calcite and siderite. Kaolinite and secondary porosity from dissolution of feldspar and biotite are in particular abundant in the fluvial sandstones. The carbonate minerals show complex compositional and micro-structural variation of pure siderite (Sid I), Mg-siderite (Sid II), Fe-dolomite, ankerite and calcite, displaying decreasing Fe from early to late diagenetic carbonate cements. An early diagenetic origin for siderite and kaolinite is inferred from micro-structural relations, whereas pore filling calcite and ankerite formed during later diagenesis. The Fe-dolomite probably related to mixing-zone dolomitization from increasing marine influences, and a regional correlatable calcite cemented layer has been related to a flooding event. Porosity values in non-cemented sandstone samples are generally high in both FCH and SBF facies associations averaging 27%. Differential compaction between sandstone and mudstone has a ratio of up to 1:2 and with lower values for MBF. We emphasize the role of eogenetic siderite cementation in reducing compactability in the fine-grained, coal-bearing sediments most prominent in MBF facies. This has implications for modeling of differential compaction between sandstone and mudstones deposited in fluvial-deltaic environments.  相似文献   

13.
西湖凹陷KX构造始新统平湖组是重要产气层系.利用大量薄片、岩心和分析化验资料,对该平湖组储集层进行了详细的岩石学特征、储层物性分析以及影响储层发育的主控因素的研究.结果表明,该套储层的岩石类型以长石岩屑质石英砂岩主,填隙物丰富、分选中等—好、成分成熟度低、磨圆程度高;孔隙类型以次生孔隙为主;喉道类型以片状、弯曲片状喉道为主;孔喉组合类型为中孔小喉、小孔小喉组合;储层物性较差,为低孔低渗储层;平湖组储层主要受潮汐改造的分流河道微相控制,压实作用、胶结作用、溶蚀作用和破裂作用等成岩作用是研究区储集层物性的主要控制因素.  相似文献   

14.
The Upper Triassic Chang 6 sandstone, an important exploration target in the Ordos Basin, is a typical tight oil reservoir. Reservoir quality is a critical factor for tight oil exploration. Based on thin sections, scanning electron microscopy (SEM), X-ray diffraction (XRD), stable isotopes, and fluid inclusions, the diagenetic processes and their impact on the reservoir quality of the Chang 6 sandstones in the Zhenjing area were quantitatively analysed. The initial porosity of the Chang 6 sandstones is 39.2%, as calculated from point counting and grain size analysis. Mechanical and chemical compaction are the dominant processes for the destruction of pore spaces, leading to a porosity reduction of 14.2%–20.2% during progressive burial. The porosity continually decreased from 4.3% to 12.4% due to carbonate cementation, quartz overgrowth and clay mineral precipitation. Diagenetic processes were influenced by grain size, sorting and mineral compositions. Evaluation of petrographic observations indicates that different extents of compaction and calcite cementation are responsible for the formation of high-porosity and low-porosity reservoirs. Secondary porosity formed due to the burial dissolution of feldspar, rock fragments and laumontite in the Chang 6 sandstones. However, in a relatively closed geochemical system, products of dissolution cannot be transported away over a long distance. As a result, they precipitated in nearby pores and pore throats. In addition, quantitative calculations showed that the dissolution and associated precipitation of products of dissolution were nearly balanced. Consequently, the total porosity of the Chang 6 sandstones increased slightly due to burial dissolution, but the permeability decreased significantly because of the occlusion of pore throats by the dissolution-associated precipitation of authigenic minerals. Therefore, the limited increase in net-porosity from dissolution, combined with intense compaction and cementation, account for the low permeability and strong heterogeneity in the Chang 6 sandstones in the Zhenjing area.  相似文献   

15.
This paper analyses the diagenetic evolution of sandstones belonging to the Bajo Barreal Formation (Cretaceous) in the Golfo de San Jorge Basin (Patagonia, Argentina). The Bajo Barreal Formation includes the main reservoirs, which are located along the western area of the basin and is composed of sandstones, conglomerates, mudstones, tuffaceous mudstones and some layers of tuffs. The principal reservoirs comprise medium-to coarse-grained sandstones, which are dominated by feldspathic litharenites and contain minor amounts of litharenites and lithic arkoses. The authigenic minerals include kaolinite, smectite, chlorite, quartz overgrowths, microquartz and calcite, with minor proportions of megaquartz, siderite, analcime, laumontite, feldspar overgrowths and illite/smectite and chlorite/smectite mixed layers. Secondary porosity is much more important than primary porosity and is produced by the dissolution of feldspar, lithic clasts and clay cements. The diagenetic history of the Bajo Barreal sandstones can be divided into seven diagenetic stages, each of which is characterized by a specific assemblage of authigenic minerals and diagenetic processes. Eogenetic conditions occur in stages 1, 2, 3 and 4. Stage 1 corresponds to shallow burial characterized by the physical reduction of primary porosity by compaction; during stage 2, rim clay cements of chlorite, smectite and clinoptilolite, as well as thin quartz overgrowths, were formed. The precipitation of pore-filling cements of kaolinite, chlorite and smectite occurred during stage 3, while stage 4 records the intense dissolution of feldspar, lithic fragments and kaolinite cements. Mesogenesis occurs in diagenetic stages 5 and 6. The former corresponds to a new phase of authigenic kaolinite, while the latter records the significant dissolution of feldspar, lithic clasts and previous cements, which produced the highest values of secondary porosity. Finally, stage 7 corresponds to the highest degree of diagenesis in the Bajo Barreal Formation (mesogenesis), which resulted in the precipitation of cements of zeolites and calcite, as well as quartz and plagioclase overgrowths.  相似文献   

16.
Rock physical properties, like velocity and bulk density, change as a response to compaction processes in sedimentary basins. In this study it is shown that the velocity and density in a well defined lithology, the shallow marine Etive Formation from the northern North Sea increase with depth as a function of mechanical compaction and quartz cementation. Physical properties from well logs combined with experimental compaction and petrographic analysis of core samples shows that mechanical compaction is the dominant process at shallow depth while quartz cementation dominates as temperatures are increased during burial. At shallow depths (<2000–2500 m, 70–80 °C) the log derived velocities and densities show good agreement with results from experimental compaction of loose Etive sand indicating that effective stress control compaction at these depths/temperatures. This indicates that results from experimental compaction can be used to predict reservoir properties at burial depths corresponding to mechanical compaction. A break in the velocity/depth gradient from about 2000 m correlates with the onset of incipient quartz cementation observed from petrographic data. The gradient change is caused by a rapid grain framework stiffening due to only small amounts of quartz cement at grain contacts. At temperatures higher than 70–80 °C (2000–2500 m) the velocities show a strong correlation with quartz cement amounts. Porosity reduction continues after the onset of quartz cementation showing that sandstone diagenesis is insensitive to effective stress at temperatures higher than 70–80 °C. The quartz cement is mainly sourced from dissolution at stylolites reflected by the fact that no general decrease in intergranular volume (IGV) is observed with increasing burial depth. The IGV at the end of mechanical compaction will be important for the subsequent diagenetic development. This study demonstrates that mechanical compaction and quartz cementation is fundamentally different and this needs to be taken into consideration when analyzing a potential reservoir sandstone such as the Etive Formation.  相似文献   

17.
Understanding diagenetic heterogeneity in tight sandstone reservoirs is vital for hydrocarbon exploration. As a typical tight sandstone reservoir, the seventh unit of the Upper Triassic Yanchang Formation in the Ordos Basin (Chang 7 unit), central China, is an important oil-producing interval. Results of helium porosity and permeability and petrographic assessment from thin sections, X-ray diffraction, scanning electron microscopy and cathodoluminescence analysis demonstrate that the sandstones have encountered various diagenetic processes encompassing mechanical and chemical compaction, cementation by carbonate, quartz, clay minerals, and dissolution of feldspar and lithic fragments. The sandstones comprise silt-to medium-grained lithic arkoses to feldspathic litharenites and litharenites, which have low porosity (0.5%–13.6%, with an average of 6.8%) and low permeability (0.009 × 10−3 μm2 to 1.818 × 10−3 μm2, with an average of 0.106 × 10−3 μm2).This study suggests that diagenetic facies identified from petrographic observations can be up-scaled by correlation with wire-line log responses, which can facilitate prediction of reservoir quality at a field-scale. Four diagenetic facies are determined based on petrographic features including intensity of compaction, cement types and amounts, and degree of dissolution. Unstable and labile components of sandstones can be identified by low bulk density and low gamma ray log values, and those sandstones show the highest reservoir quality. Tightly compacted sandstones/siltstones, which tend to have high gamma ray readings and relatively high bulk density values, show the poorest reservoir quality. A model based on principal component analysis (PCA) is built and show better prediction of diagenetic facies than biplots of well logs. The model is validated by blind testing log-predicted diagenetic facies against petrographic features from core samples of the Upper Triassic Yanchang Formation in the Ordos Basin, which indicates it is a helpful predictive model.  相似文献   

18.
Thin-bedded beach-bar sandstone reservoirs are common in the Eocene Shahejie Formation (Es4s) of Niuzhuang Sag, along the southern gentle slope of the Dongying Depression. Here we report on the link between sequence stratigraphy, sedimentary facies and diagenetic effects on reservoir quality. Seismic data, wireline logs, core observations and analyses are used to interpret depositional settings and sequence stratigraphic framework. Petrographic study based on microscopic observation of optical, cathodoluminescence (CL), confocal laser scanning (LSCM) and scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were used to describe the fabric, texture, allogenic and authigenic mineralogy of these highly heterogeneous sandstone reservoirs. The Es4s interval is interpreted as third-order sequence, composed of a lowstand systems tract (LST), a transgressive systems tract (TST) and a highstand systems tract (HST). On the fourth order, twenty-nine parasequences and seven parasequence sets have been identified. Sand bodies were deposited mainly in the shoreface shallow lake beach-bar (clastic beach-bar), semi-deep lake (carbonate beach-bar) and the fluvial channels. The depositional and diagenetic heterogeneities were mainly due to the following factors: (1) fine grain size, poor sorting, and continuous thin inter-bedded mud layers with siltstone/fine-sandstone having argillaceous layers in regular intervals, (2) immature sediment composition, and (3) even with the dissolution of grains and several fractures, destruction of porosity by cementation and compaction. Secondary pores from feldspar dissolution are better developed in sandstones with increased cementation. Grain coating smectite clays preserved the primary porosity at places while dominating pore filling authigenic illite and illite/smectite clays reduced permeability with little impact on porosity. Due to the high degree of heterogeneity in the Es4s beach-bar interval, it is recognized as middle to low permeable reservoir. The aforementioned study reflects significant insight into the understanding of the properties of the beach-bar sands and valuable for the comprehensive reservoir characterization and overall reservoir bed quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号