首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Otumba and Sierra de Pachuca obsidian deposits in Central Mexico have been important sources of raw material since pre‐Hispanic times. Numerous archaeological investigations have suggested that the economical and political expansion of major Mesoamerican societies were linked to the control of obsidian sources and distribution of quarried material. Sierra de Pachuca contains several obsidian flows and numerous quarries throughout the region that were preferentially exploited by different cultures. The Otumba Volcanic Complex has four important obsidian domes, but three of them have not been studied in detail. A geochemical characterization of subsources from the Sierra de Pachuca and Otumba Volcanic Complex is an important step toward future sourcing of obsidian artifacts that would help provide insight into spheres of influence and trade by past cultures in Central Mexico. Having this purpose in mind, inductively coupled plasma mass spectrometry (ICP‐MS) was used to analyze obsidian samples collected from five separated locations at Sierra de Pachuca and four at Otumba, followed by statistical analysis (density‐based spatial clustering of applications with noise, DBSCAN). We were able to distinguish three chemically distinctive subsources in Sierra de Pachuca and three in Otumba. This study illustrates the importance of accurate characterization of obsidian raw material when attempting to define subsource usage.  相似文献   

2.
Users of the obsidian hydration dating method have routinely assumed that artifacts which originate from the same geological flow will be of the same chemical composition and thus hydrate at the same rate under equivalent conditions of temperature and relative humidity. Recent laboratory experimentation into the hydration process has shown that the intrinsic water content of the glass is the dominant factor in establishing the rate of hydration. Water content determinations on a large suite of samples from numerous prehistoric quarries within the Coso volcanic field, California, indicated that water content values, and thus hydration rate, varied significantly on a within flow basis. It is recommended that water determinations be made on individual artifacts prior to obsidian hydration dating. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
The Coso and Big Pine volcanic fields of eastern California exhibit different magmatic histories. The Big Pine field erupted only basalt lavas, some of which bear mantle xenoliths, whereas the Coso field erupted both basalt and rhyolite and is a major geothermal resource. These different magmatic products could be explained if Coso basalts stalled in the crust before erupting, providing heat to generate silicic magma, whereas Big Pine basalts erupted directly from mantle depths. Clinopyroxene–liquid thermobarometry indicates an average clinopyroxene crystallization depth of 45 km for Big Pine basalts and 19 km for Coso basalts, consistent with this hypothesis. Differences in crustal density, crustal structure, and prior magmatic history may have contributed to the different magmatic processes operating at each field. Our results indicate that the effects of analytical error, crystal zoning, and correlated errors on estimated temperatures and pressures from the thermobarometer are relatively small compared to intersample differences.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

4.
The mechanical interaction between an elliptically shaped magma chamber and a fault subject to transtension is investigated with particular reference to the Coso geothermal field. The geologic setting of the Coso field is interpreted as a releasing bend step-over structure formed by the Airport Lake and Owens Valley dextral strike-slip fault system. The role of the Coso volcano-magmatic center in the development of the “over-step” structure is examined by treating the magma chamber as a liquid inclusion in a viscoelastic crust containing a fault (Airport Lake). The problem is numerically solved using a 2D viscoelastic finite element model with thermally activated viscosity to account for thermal weakening of the rock. The temperature distribution around the magma body is calculated based on a 3D steady-state approach and using the mesh-less numerical method. The fault is modeled as a frictionless contact. The simulated distributions of stress and strain around the inclusion display a rotation caused by the shearing component of the applied transtension. The results indicate that the fault tends to overstep the chamber in a geometric pattern similar to a step-over. There is good correspondence between the computed distributions of the maximum shear stress in the vicinity of the magma chamber and the map of earthquake epicenters at a depth of 7–10 km in Coso.  相似文献   

5.
Basaltic lava flows and high-silica rhyolite domes form the Pleistocene part of the Coso volcanic field in southeastern California. The distribution of vents maps the areal zonation inferred for the upper parts of the Coso magmatic system. Subalkalic basalts (<50% SiO2) were erupted well away from the rhyolite field at any given time. Compositional variation among these basalts can be ascribed to crystal fractionation. Erupted volumes of these basalts decrease with increasing differentiation. Mafic lavas containing up to 58% SiO2, erupted adjacent to the rhyolite field, formed by mixing of basaltic and silicic magma. Basaltic magma interacted with crustal rocks to form other SiO2-rich mafic lavas erupted near the Sierra Nevada fault zone.Several rhyolite domes in the Coso volcanic field contain sparse andesitic inclusions (55–61% SiO2). Pillow-like forms, intricate commingling and local diffusive mixing of andesite and rhyolite at contacts, concentric vesicle distribution, and crystal morphologies indicative of undercooling show that inclusions were incorporated in their rhyolitic hosts as blobs of magma. Inclusions were probably dispersed throughout small volumes of rhyolitic magma by convective (mechanical) mixing. Inclusion magma was formed by mixing (hybridization) at the interface between basaltic and rhyolitic magmas that coexisted in vertically zoned igneous systems. Relict phenocrysts and the bulk compositions of inclusions suggest that silicic endmembers were less differentiated than erupted high-silica rhyolite. Changes in inferred endmembers of magma mixtures with time suggest that the steepness of chemical gradients near the silicic/mafic interface in the zoned reservoir may have decreased as the system matured, although a high-silica rhyolitic cap persisted.The Coso example is an extreme case of large thermal and compositional contrast between inclusion and host magmas; lesser differences between intermediate composition magmas and inclusions lead to undercooling phenomena that suggest smaller T. Vertical compositional zonation in magma chambers has been documented through study of products of voluminous pyroclastic eruptions. Magmatic inclusions in volcanic rocks provide evidence for compositional zonation and mixing processes in igneous systems when only lava is erupted.  相似文献   

6.
The compositionally bimodal Pleistocene Coso volcanic fieldis located at the western margin of the Basin and Range province  相似文献   

7.
刘扬  陈全家  侯亚梅 《第四纪研究》2008,28(6):1042-1049
文章对近年来发现于吉林东部即长白山山地地区的12处旧石器遗址中9处含有细石器的遗存予以关注,并将它们界定为"含细石器遗存"。由于延边大洞遗址的材料整理工作尚未结束,只对其中的8处进行了实际分析和研究。主要从细石核型式和细石器工艺技术两个方面对这些遗存中发现的细石器进行了分析,同时把与细石器伴生的非细石器制品作为石制品组合从原料、技术、器物大小和类型等方面给予探讨。基于上述几方面的分析研究,提出该地区含细石器遗存包括了以细石器为主体、以小石器为主体和以大石器为主体的3种类型,并初步认为该地区细石器制作技术来源于华北地区。遗存年代为旧石器时代晚期或偏晚。  相似文献   

8.
Obsidian is abundant in the Main Ethiopian Rift (MER). Petrological and geochemical features of obsidian from four volcanic centers in the MER, namely Birenti, Dofen, Fentale and Kone, are presented. Compositional and petrological variability is noted among the Dofen and Fentale obsidian, but not in those from Kone and Birenti where each have separate but uniform elemental composition. The Fentale and Kone obsidian were source materials for the artifacts of a number of Middle Stone Age and Later Stone Age/Neolithic sites in the region. We have yet to determine whether Dofen and Birenti were sources for archeological artifacts. The study also shows that volcanic episodes from a single center do not necessarily result in compositional variability.  相似文献   

9.
The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs.  相似文献   

10.
In many instances, geologically distinct obsidian flows located within even a relatively small geographic area can be uniquely identified by their chemical composition. This happens to be true for several obsidian sources from central Oregon. Internally each obsidian locality is chemically homogeneous, but the obsidian rocks from different collection sites exhibit chemical differences. Based on the geochemical variations and on K/ Ar dating of the end members of the chemical differentiation trend, these differences are related to the fractionation of a single Late Miocene magma chamber, dated at 6.5 Ma. By understanding the underlying causes of the chemical differences, constraints are disclosed that will govern the possible chemical variations of other, as yet unidentified but related obsidian flows. These can be useful for identifying the possible natural sources of obsidian artifacts which do not match known obsidian sources, and for suggesting possible geographic areas where these as yet undiscovered obsidian flows may be found. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Cation-ratio dating: A new rock varnish age-determination technique   总被引:1,自引:0,他引:1  
Rock varnish coats many surfaces of geomorphic and archaeologic interest in arid lands. All varnish dating techniques are limited by the time lag between the exposure of a surface to subaerial processes and the onset of varnishing. They are valid only where manganese is not remobilized after deposition, for example, in most arid environments. The premise of a new age-determination method, cation-ratio dating, is that the ratio of the more mobile cations (e.g., K and Ca) to titanium in varnish decreases with time. Although there are many inherent assumptions and potential limitations, cation-ratio dating has been verified on relative age-sequences from a Death Valley debris cone, Negev Desert talus flatirons, and prehistoric lake levels at Searles Lake in California. Varnish cation ratios have been calibrated to independently dated surfaces in the Coso volcanic field and vicinity in California. Tentative absolute dates have been assigned to geomorphic surfaces in the Coso area. Cation ratios have been used to distinguish relative ages of archaeologic artifacts in southwestern North America and to demonstrate that varnish at the South Stoddard locality, Mojave Desert, did not form in 25 yr.  相似文献   

12.
It had long been thought that obsidian found in Iranian sites originated from Anatolia and Armenia, but new research has challenged this assumption. In this study, 68 samples of obsidian obtained from an archaeological survey of Nader‐Tepe Aslanduz were analyzed by Proton Induced X‐ray Emission (PIXE). Nader‐Tepe Aslanduz is a tell site west of the city of Aslanduz in the Parsabad county of the Ardebil province in northern Iran. The site was inhabited from the first millennium B.C. to A.D. 17, and its history may extend back to the third or fourth millennium B.C. Our chemical composition results have been combined with obsidian composition data from Turkey and Armenia and subjected to Principal Component Analysis (PCA). This analysis shows that obsidian from each location can be grouped into distinctive classes—the obsidian from Nader‐Tepe Aslanduz is therefore probably derived from volcanic outcrops of the Sahand and Sabalan region. This study has been unable to assign a known source from Anatolia and Armenia for the obsidian of Nader‐Tepe Aslanduz.  相似文献   

13.
Sierra Las Navajas, known to archaeologists as “the Pachuca obsidian source,” has been a major source of obsidian to Mesoamerican societies for more than 3000 years, producing a fine green obsidian unique in Middle America. It was the primary source of the obsidian that formed the economic backbone of the major sociopolitical centers of Classic period Teotihuacán, epi‐Classic Toltec Tula, and Aztec Tenochtitlán. In this paper, the obsidian of Sierra Las Navajas is discussed in the following contexts: (1) geologically, because the extraordinary quality of the Pachuca obsidian, its ease of extraction, and its distinctive color and chemistry are a direct result of its geologic emplacement; (2) locally, as the different mining localities within Sierra Las Navajas reflect the varying needs of the cultures working them; and (3) globally, as the obsidians of Las Navajas were used in concert with obsidians from other sources, and were traded great distances across Mesoamerica. © 2004 Wiley Periodicals, Inc.  相似文献   

14.
The concentrations of 36 elements in geochemical reference samples issued by the Ministry of Geology and Mineral Resources of China were determined by neutron activation analysis. Three main variants of the technique, instrumental, epithermal, and nreirradiation separation neutron activation analysis (INAA, ENAA, PNAA), were employed in a systematic study of the samples by three laboratories: the Institute of Atomic Energy of the Academia Sinica (INAA, ENAA), the Institute of High Energy Physics of the Academia Sinica (INAA), and the Institute of Geophysical and Geochemical Prosnecting of the Ministry of Geology and Mineral resources (INAA,PNAA). Both long and short irradiations and both Ge(Li) and HPGe detectors were used. A supplementary software nackage for data processing was developed. About 81% of the data determined by neutron activation agreed with recomended values with in 15%.  相似文献   

15.
Hunter‐gatherer mobility and spheres of interaction are important characteristics worthy of investigation in Patagonian archaeology. One way to approach these is by studying the distribution of lithic archaeological materials. Siltstone (limolite) artifacts are found along the western strip of southwestern Patagonia, Argentina. Based on geomorphological studies and the high density of archaeological material, a source was located along the western margin of Cardiel Lake. Neutron activation analysis of samples from the source and archaeological sites in several neighboring basins allowed us to model its circulation. Siltstone's archaeological distribution indicates that its regional circulation had a southerly direction dating from the early Holocene. This southern vector shows an important difference when compared to the distribution of obsidian from Pampa del Asador, which has a broader circulation pattern. This could be related to a greater availability of high‐quality lithic materials north of the siltstone source. This work also contributes to the construction of a lithic source database for southern Patagonia.  相似文献   

16.
Compared with solution ICP‐MS, LA‐ICP‐MS studies have thus far reported comparatively few external reference data for accuracy estimates of experiments. This is largely the result of a paucity of available reference materials of natural composition. Here, we report an evaluation of natural glass (obsidian) as an inexpensive and widely available external reference material. The homogeneity of over forty elements in six different obsidian samples was assessed by LA‐ICP‐MS. Accuracy was tested with two obsidian samples that were fully characterised by electron probe microanalysis and solution ICP‐MS. Laser ablation experiments were performed with a variety of ablation parameters (fluence, spot sizes, ablation repetition rates) and calibration approaches (natural vs. synthetic reference materials, and different internal standard elements) to determine the best practice for obsidian analysis. Furthermore, the samples were analysed using two different laser wavelengths (193 nm and 213 nm) to compare the effect of potential ablation‐related phenomena (e.g., fractionation). Our data indicate that ablation with fluences larger than 6 J cm?2 and repetition rates of 5 or 10 Hz resulted in the most accurate results. Furthermore, synthetic NIST SRM 611 and 612 glasses worked better as reference materials compared with lower SiO2 content reference materials (e.g., BHVO‐2G or GOR128‐G). The very similar SiO2 content of the NIST SRM glasses and obsidian (i.e., matrix and compositional match) seems to be the first‐order control on the ablation behaviour and, hence, the accuracy of the data. The use of different internal standard elements for the quantification of the obsidian data showed that Si and Na yielded accurate results for most elements. Nevertheless, for the analysis of samples with high SiO2 concentrations, it is recommended to use Si as the internal standard because it can be more precisely determined by electron probe microanalysis. At the scale of typical LA analyses, the six obsidian samples proved to be surprisingly homogenous. Analyses with a spot size of 80 μm resulted in relative standard deviations (% RSD) better than 8% for all but the most depleted elements (e.g., Sc, V, Ni, Cr, Cu, Cd) in these evolved glasses. The combined characteristics render obsidian a suitable, inexpensive and widely available, external quality‐control material in LA‐ICP‐MS analysis for many applications. Moreover, obsidian glass is suited for tuning purposes, and well‐characterised obsidian could even be used as a matrix‐matched reference material for a considerable number of elements in studies of samples with high SiO2 contents.  相似文献   

17.
We determined Ar/Ar eruption ages of eight extrusions from the Pleistocene Coso volcanic field, a long-lived series of small volume rhyolitic domes in eastern California. Combined with ion-microprobe dating of crystal ages of zircon and allanite from these lavas and from granophyre geothermal well cuttings, we were able to track the range of magma-production rates over the past 650 ka at Coso. In ≤230 ka rhyolites we find no evidence of protracted magma residence or recycled zircon (or allanite) from Pleistocene predecessors. A significant subset of zircon in the ~85 ka rhyolites yielded ages between ~100 and 200 Ma, requiring that generation of at least some rhyolites involves material from Mesozoic basement. Similar zircon xenocrysts are found in an ~200 ka granophyre. The new age constraints imply that magma evolution at Coso can occur rapidly as demonstrated by significant changes in rhyolite composition over short time intervals (≤10’s to 100’s ka). In conjunction with radioisotopic age constraints from other young silicic volcanic fields, dating of Coso rhyolites highlights the fact that at least some (and often the more voluminous) rhyolites are produced relatively rapidly, but that many small-volume rhyolites likely represent separation from long-lived mushy magma bodies.  相似文献   

18.
New bulk compositional data for 34 Allende chondrules are presented. Whole chondrules were analyzed by instrumental neutron activation analysis (INAA). The new data set is evaluated together with older INAA data on Allende chondrules and recent INAA data on Mokoia chondrules. The Ni/Co ratios of 200 chondrules are close to the CI- or solar ratio. The chondritic Ni/Co ratios require an unfractionated chondritic metal source and set a limit to the fraction of metal lost from molten chondrules. The bulk chondrule Fe/Ni and Fe/Co ratios are more variable but on average chondritic. Iridium and other refractory metals have extremely variable concentrations in chondrules. High Ir chondrules have chondritic Ir/Sc ratios. They are dominated by CAI (Ca,Al-rich inclusion) components. Low Ir chondrules have approximately chondritic Ir/Ni ratios reflecting mixing with chondritic metal. In low Ir chondrules Ir correlates and in high Ir chondrules Ir does not correlate with Ni or Co. A large fraction of Ir may have entered chondrules in variable amounts as tiny grains of refractory metal alloys.Most Allende chondrules have Ir/Sc ratios below bulk meteorite ratios. Matrix must have a complementary high Ir/Sc ratio, as bulk Allende has approximately chondritic Ir/Sc ratio. Similarly, the high average Ir/Ni ratios of Allende chondrules must be balanced by low Ir/Ni ratios in matrix to obtain the bulk Allende Ir/Ni ratio, which is close to the average solar system ratio.More recent data on single chondrules from Allende by ICP-MS (Inductively Coupled Plasma Mass Spectrometry) and ICP-OES (Inductively Coupled Optical Emission Spectrometry) show the same trends as the INAA data discussed here.  相似文献   

19.
Concentration data obtained by instrumental neutron activation analysis (INAA) are presented for up to 36 chemical elements in 93 geochemical reference samples, including some for which there are little previous data. Because all data are based on at least three independent analyses, and for many of the data the uncertainty associated with counting is an insignificant source of error, the values presented here are considered of higher precision than generally reported by INAA. Information on subsampling error (sample heterogeneity) is also presented.  相似文献   

20.
The paper presents data on the leaching efficiency of rare-earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) and radioactive (Th and U) elements by various reagents from alkaline rocks of the Lovozero Massif. Element concentrations were analyzed by ICP-MS and instrumental neutral activation (INAA). A new complex technique is suggested for analyzing elements on the solid phase of polymer hydrogels. This technique makes it possible to enhance the sensitivity and selectivity of INAA when these elements are simultaneously contained in rocks. Data are presented on the selective leaching of trace elements and the application of environmentally safe reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号