首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We report Hα observations of a sample of very isolated blue compact galaxies (BCGs) located in the direction of large cosmic voids obtained to understand their stellar population compositions, the present star formation (SF) properties and their SF histories (SFHs). Our observations were combined with photometric data from the Sloan Digital Sky Survey (SDSS) and near-infrared data from the Two Micron All Sky Survey (2MASS), wherever such data were available. The combined data sets were compared with predictions of evolutionary synthesis models by Bruzual & Charlot. Current SF rates (SFRs) were determined from the Hα measurements, and simplified SFHs were derived from broad-band and Hα photometry and comparisons with the models.
We found that the SFRs range within  0.1–1.0 M yr−1  , with a median rate of  0.6 M yr−1  . The observed galaxy colours are better explained by the combination of a continuous SF process with a recent instantaneous SF burst, than by a combination of several instantaneous bursts, as has been suggested previously. We compare our results for the SFR of the sample galaxies with that of samples of dwarf galaxies (DGs) in the Virgo cluster (VC) and find that the BCGs have significantly stronger SFRs. The BCGs follow the correlation between Hα emission and starlight found for DGs in the VC and for other BCGs.  相似文献   

2.
We study star-formation-inducing mechanisms in galaxies through multiwavelength measurements of a sample of dwarf galaxies in the Virgo cluster described in Paper I. Our main goal is to test how star-formation-inducing mechanisms depend on several parameters of the galaxies, such as morphological type and hydrogen content. We derive the star formation rate and star formation histories of the galaxies, and check their dependence on other parameters.   Comparison of the sample galaxies with population synthesis models shows that these objects have significantly lower metallicity than the solar value. The colours can generally be explained as a combination of two different stellar populations: a young (3–20 Myr) metal-poor population which represents the stars currently forming presumably in a starburst, and an older (0.1–1 Gyr) population of previous stellar generations. There is evidence that the older stellar population was also formed in a starburst. This is consistent with the explanation that star formation in this type of objects takes place in short bursts followed by long quiescent periods.   No significant correlation is found between the star formation properties of the sample galaxies and their hydrogen content. Apparently, when star formation occurs in bursts, other parameters influence the star formation properties more significantly than the amount of atomic hydrogen. No correlation is found between the projected Virgocentric distance and the rate of star formation in the galaxies, suggesting that tidal interactions are not significant in triggering star formation in cluster dwarf galaxies.  相似文献   

3.
In the present work we consider the questions of star formation and evolution of nearby dwarf galaxies. We describe the method of star formation history determination based on multicolor photometry of resolved stars and models of color-magnitude diagrams of the galaxies. We present the results of star formation rate determination and its dependence on age and metallicity for dwarf irregular and dwarf spheroidal galaxies in the two nearby galaxy groups M81 and Cen A. Similar age of the last episode of star formation in the central part of the M81 group and also unusually high level of metal enrichment in the several galaxies of the Cen A group are mentioned. We pay special attention to the consideration of perspectives of star formation study in nearby dwarf galaxies with he new WSO-UV observatory.  相似文献   

4.
Dwarf galaxies may play a key role in the formation and evolution of bigger systems. This makes it a topic of major interest to know how they form and evolve and, in particular, how their star formation histories (SFHs) have proceeded since their birth. For nearby galaxies, thecolour–magnitude diagram (CMD) contains stars formed over their full lifetime. It is hence a fossil record of their SFHs. Analysis via synthetic CMDs provides a powerful tool to retrieve them. In this paper, I briefly present the critical issues related to synthetic CMD analysis and make a summary of the currently available results for the SFH extending over the full lifetimes of galaxies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The smallest dwarf galaxies are the most straight forward objects in which to study star formation processes on a galactic scale. They are typically single cell star forming entities, and as small potentials in orbit around a much larger one they are unlikely to accrete much (if any) extraneous matter during their lifetime (either intergalactic gas, or galaxies) because they will typically lose the competition with the much larger galaxy. We can utilise observations of stars of a range of ages to measure star formation and enrichment histories back to the earliest epochs. The most ancient objects we have ever observed in the Universe are stars found in and around our Galaxy. Their proximity allows us to extract from their properties detailed information about the time in the early Universe into which they were born. A currently fashionable conjecture is that the earliest star formation in the Universe occurred in the smallest dwarf galaxy sized objects. Here I will review some recent observational highlights in the study of dwarf galaxies in the Local Group and the implications for understanding galaxy formation and evolution. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The colour–magnitude relation (CMR) of cluster elliptical galaxies has been widely used to constrain their star formation histories (SFHs) and to discriminate between the monolithic collapse and merger paradigms of elliptical galaxy formation. We use a Λ cold dark matter hierarchical merger model of galaxy formation to investigate the existence and redshift evolution of the elliptical galaxy CMR in the merger paradigm. We show that the SFH of cluster ellipticals predicted by the model is quasi-monolithic , with only ∼10 per cent of the total stellar mass forming after   z ∼ 1  . The quasi-monolithic SFH results in a predicted CMR that agrees well with its observed counterpart in the redshift range  0 < z < 1.27  . We use our analysis to argue that the elliptical-only CMR can be used to constrain the SFHs of present-day cluster ellipticals only if we believe a priori in the monolithic collapse model. It is not a meaningful tool for constraining the SFH in the merger paradigm, since a progressively larger fraction of the progenitor set of present-day cluster ellipticals is contained in late-type star-forming systems at higher redshift, which cannot be ignored when deriving the SFHs. Hence, the elliptical-only CMR is not a useful discriminant between the two competing theories of elliptical galaxy evolution.  相似文献   

7.
We present the Hα flux measurements for 44 nearby dwarf galaxies, derived from the observations at the 6-m BTA telescope. Hα fluxes were used to determine the rate of integral star formation of galaxies, SFR. For the observed galaxies the value of log SFR lies in the range from 0 to ?8 [M /yr]. The specific star formation rate for all the sample galaxies does not exceed the limit of log SSFR = ?9.2 [yr?1]. A burst of star formation was detected in the center of a nearby dwarf galaxy UGC2172.  相似文献   

8.
9.
We have carried out an investigation of the environments of low redshift H  ii galaxies by cross-correlating their positions on the sky with those of faint field galaxies in the Automatic Plate Measuring Machine (APM) catalogues. We address the question of whether violent star formation in H  ii galaxies is induced by low-mass companions by statistically estimating the mean space density of galaxies around them. We argue that even if low-mass companions were mainly intergalactic H  i clouds, their optical counterparts should be detectable at faint limits of the APM scans.
A significantly positive signal is detected for the H  ii galaxy–APM galaxy angular cross-correlation function, but the amplitude is poorly determined. The projected cross-correlation function has a higher signal-to-noise ratio, and suggests that the amplitude is slightly lower than for normal field galaxies. This implies that these bursting dwarf galaxies inhabit slightly lower density environments than those of normal field galaxies, consistent with other studies of emission-line galaxies. This suggests that in these dwarf starburst galaxies, star formation is not always triggered by tidal interactions, and a significant fraction must have a different origin.  相似文献   

10.
It is a truth universally acknowledged, that a galaxy in possession of a good quantity of gas must want to form stars. It is the details of how and why that baffle us all. The simplest theories either would have this process a carefully self-regulated affair, or one that goes completely out of control and is capable of wrecking the galaxy which hosts it. Of course the majority of galaxies seem to amble along somewhere between these two extremes, and the mean properties tend to favour a quiescent self-regulated evolutionary scenario. But there area variety of observations which require us to invoke transitory ‘bursts’ of star-formation at one time or another in most galaxy types. Several nearby dwarf spheroidal galaxies have clearly determined star-formation histories with apparent periods of zero star formation followed by periods of fairly active star formation. If we are able to understand what separated these bursts we would understand several important phenomena in galaxy evolution. Were these galaxies able to clear out their gas reservoir in a burst of star formation? How did this gas return? or did it? Have these galaxies receieved gas from the IGM instead? Could stars from these types of galaxy contribute significantly to the halo population in our Galaxy? To answer these questions we need to combine accurate stellar photometry and Colour-Magnitude Diagram interpretation with detailed metal abundances to combine a star-formation rate versus time with a range of element abundances with time. Different elements trace different evolutionary process (e.g., relative contributions of type I and II supernovae). We often aren't even sure of the abundance spread in these galaxies. We have collected detailed high resolution UVES spectra of four nearby dwarf spheroidal galaxies (Sculptor, Fornax, Leo I &; Carina) to begin to answer these questions. This is a precursor study to a more complete study with FLAMES. We presented at this meeting the initial results for the Sculptor and Fornax dwarf spheroidal galaxies which have been previously had single element (low resolution) calcium abundance studies (Tolstoy et al., 2001). See Figures 1 and 2.  相似文献   

11.
Although the stellar initial mass function (IMF) has only been directly determined in star clusters, it has been manifoldly applied on galaxy-wide scales. But taking the clustered nature of star formation into account the galaxy-wide IMF is constructed by adding all IMFs of all young star clusters leading to an integrated galactic initial mass function (IGIMF). The IGIMF is top-light compared to the canonical IMF in star clusters and steepens with decreasing total star formation rate (SFR). This discrepancy is marginal for large disc galaxies but becomes significant for Small Magellanic Cloud type galaxies and less massive ones. We here construct IGIMF-based relations between the total far- and near-ultraviolet luminosities of galaxies and the underlying SFR. We make the prediction that the Hα luminosity of star-forming dwarf galaxies decreases faster with decreasing SFR than the ultraviolet (UV) luminosity. This turn-down of the Hα/UV-flux ratio should be evident below total SFRs of  10−2 M yr−1  .  相似文献   

12.
We propose an evolutionary model for dwarf galaxies in which initially metal-poor gas-rich dwarf irregular (dI) galaxies evolve through bursting Blue Compact Dwarf (BCD) stages and eventually fade from the BCD phase to become dwarf ellipticals (dE). During the bursting phase the surface brightness of the galaxy increases rapidly due to enhanced OB star formation. The source of fuel for the intermittent bursts of star formation is assumed to be primordial gas which continues to collapse onto the already formed central structure. The dE galaxies form as a result of eventual gas depletion through star formation.With this proposed dIBCDdE evolutionary sequence we can explain the similar photometric structure of the different dwarf types and the differences in their star formation rates, surface brightnesses,Hi contents and metallicities. A final central BCD burst can account for the nucleation in brighter dEs and their residual star formation, while earlier more widespread star formation bursts would fade to give an irregular dI. Inflow of gas may allow dEs to be less flattened than dIs.Using galaxy fading and metallicity models we can reproduce the observed number ratiosN(dI)N(BCD) andN(dI)N(dE) and also the observed metallicity magnitude relation of local dwarf spheroidal galaxies.  相似文献   

13.
Dwarf galaxies, as the most numerous type of galaxy, offer the potential to study galaxy formation and evolution in detail in the nearby universe. Although they seem to be simple systems at first view, they remain poorly understood. In an attempt to alleviate this situation, the MAGPOP EU Research and Training Network embarked on a study of dwarf galaxies named MAGPOP-ITP. In this paper, we present the analysis of a sample of 24 dwarf elliptical galaxies (dEs) in the Virgo cluster and in the field, using optical long-slit spectroscopy. We examine their stellar populations in combination with their light distribution and environment. We confirm and strengthen previous results that dEs are, on average, younger and more metal-poor than normal elliptical galaxies, and that their [α/Fe] abundance ratios scatter around solar. This is in accordance with the downsizing picture of galaxy formation where mass is the main driver for the star formation history. We also find new correlations between the luminosity-weighted mean age, the large-scale asymmetry, and the projected Virgocentric distance. We find that environment plays an important role in the termination of the star formation activity by ram-pressure stripping of the gas in short time-scales, and in the transformation of discy dwarfs to more spheroidal objects by harassment over longer time-scales. This points towards a continuing infalling scenario for the evolution of dEs.  相似文献   

14.
We investigate the variation of current star formation in galaxies as a function of distance along three supercluster filaments, each joining pairs of rich clusters, in the Pisces-Cetus supercluster, which is part of the two-degree Field Galaxy Redshift Survey (2dFGRS). We find that even though there is a steady decline in the rate of star formation, as well as in the fraction of star-forming galaxies, as one approaches the core of a cluster at an extremity of such a filament, there is an increased activity of star formation in a narrow distance range between 3 and  4  h −170 Mpc  , which is 1.5–2 times the virial radius of the clusters involved. This peak in star formation is seen to be entirely due to the dwarf galaxies  (−20 < M B ≤−17.5)  . The position of the peak does not seem to depend on the velocity dispersion of the nearest cluster, undermining the importance of the gravitational effect of the clusters involved. We find that this enhancement in star formation occurs at the same place for galaxies which belong to groups within these filaments, while group members elsewhere in the 2dFGRS do not show this effect. We conclude that the most likely mechanism for this enhanced star formation is galaxy–galaxy harassment, in the crowded infalling region of rich clusters at the extremities of filaments, which induces a burst of star formation in galaxies, before they have been stripped of their gas in the denser cores of clusters. The effects of strangulation in the cores of clusters, as well as excess star formation in the infalling regions along the filaments, are more pronounced in dwarfs since they more vulnerable to the effects of strangulation and harassment than giant galaxies.  相似文献   

15.
We investigate the clustering properties of a complete sample of 105 star-forming galaxies drawn from the data release 4 (DR4) of the Sloan Digital Sky Survey. On scales less than 100 kpc, the amplitude of the correlation function exhibits a strong dependence on the specific star formation rate (SSFR) of the galaxy. We interpret this as the signature of enhanced star formation induced by tidal interactions. We then explore how the average star formation rate (SFR) in a galaxy is enhanced as the projected separation r p between the galaxy and its companions decreases. We find that the enhancement strongly depends on r p, but very weakly on the relative luminosity of the companions. The enhancement is also stronger in low-mass galaxies than in high-mass galaxies. In order to explore whether a tidal interaction is not only sufficient, but also necessary to trigger enhanced star formation in a galaxy, we compute background subtracted neighbour counts for the galaxies in our sample. The average number of close neighbours around galaxies with low to average values of SFR/ M * is close to zero. At the highest SSFRs, however, more than 40 per cent of the galaxies in our sample have a companion within a projected radius of 100 kpc. Visual inspection of the highest SFR/ M * galaxies without companions reveals that more than 50 per cent of these are clear interacting or merging systems. We conclude that tidal interactions are the dominant trigger of enhanced star formation in the most strongly star-forming systems. Finally, we find clear evidence that tidal interactions not only lead to enhanced star formation in galaxies, but also cause structural changes such as an increase in concentration.  相似文献   

16.
Interacting galaxies like the famous Antennae (NGC 4038/4039) or Stephan's Quintet (HCG 92) show considerable star forming activity in their tidal arms. High resolution images (e.g. from HST-observations) indicate that these regions consist of up to hundreds of massive stellar clusters or tidal dwarf galaxies (TDG). In this paper we want to investigate the future fate of these clusters of massive star clusters (in this work called super-clusters). We simulate compact super-clusters in the tidal field of a host-galaxy and investigate the influence of orbital and internal parameters on the rate and timescale of the merging process. We show that it is possible that such configurations merge and build a dwarf galaxy, which could be an important mechanism of how long-lived dwarf satellite galaxies form. A detailed study of the merger object will appear in a follow-up paper.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

17.
We present a quantitative star formation history derivation of the four suspected tidal dwarf galaxies in the M 81 group: Holmberg IX, BK3N,Arp-loop (A0952+69) and Garland using HST/WFPC2 images of these galaxies. We construct a library of synthetic Colour-Magnitude Diagrams(CMDs) based on theoretical isochrones and data-derived determinations of photometric errors. These synthetic CMDs were combined linearly andχ2-compared to observed photometry. All the galaxies show continuous star formation between about 20 and 200 Myr ago with star formation rates between 7.5⋅10-3 M/yr and 7.67⋅10-4 M/yr. The metallicity of the detected stars is spanning rather a wide range, being lower than solar abundance. We suppose, that all the galaxies were formed out of material from metal-poor outer part of the giant spiral galaxy M81after tidal interaction about 200 Myr ago. However, this suggestion requires significantly more deep color-magnitude diagrams to be sure with the scenario of the galaxy evolution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
We discuss a new method for inferring the stellar mass of a distant galaxy of known redshift based on the combination of a near-IR luminosity and multiband optical photometry. The typical uncertainty for field galaxies with I<22 in the redshift range 0相似文献   

19.
We estimate the fraction of star-forming galaxies in a catalogue of groups, constructed from the 2dF Galaxy Redshift Survey by Merchán & Zandivarez. We use the η spectral type parameter of galaxies and subdivide the sample of galaxies in groups into four types depending on the values of the η parameter following Madgwick et al. We obtain a strong correlation between the relative fraction of galaxies with high star formation and the parent group virial mass. We find that even in the environment of groups with low virial mass   M ∼1013 M  the star formation of their member galaxies is significantly suppressed. The relation between the fraction of early-type galaxies and the group virial mass obeys a simple power law spanning over three orders of magnitude in virial mass. Our results show quantitatively the way that the presence of galaxies with high star formation rates is inhibited in massive galaxy systems.  相似文献   

20.
《New Astronomy Reviews》2000,44(4-6):369-373
The origin of HI shells in the Milky Way and nearby galaxies may be connected to the energy released by young and massive OB stars, supernova or hypernova explosions, or to the energy inputs related to gamma ray bursts. We describe the evolution of shells in spiral and dwarf galaxies and distinguish between different origins. We also discuss the conditions, when they fragment and trigger star formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号