首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Irrigation activities alter water distribution and storage in arid and semi-arid regions worldwide. The removal of water from streams can drastically impact instream flows. However, irrigation water conveyance and application onto fields can create surface and subsurface hydrologic connections, or lateral inflows, that return some of this diverted water back to streams. Prior research has shown the impact of surface water diversions from streams on downstream warming that increases stress on aquatic species. However, the combined effects of flow depletion and irrigation-enhanced lateral inflows on stream temperature and river ecosystems remains poorly studied. To further understand these relationships, we combined intensive field monitoring over three irrigation seasons and thermal aerial imagery to identify irrigation-enhanced subsurface lateral inflow locations and evaluate their effects on stream flow and temperature patterns over a 2.5-km highly depleted study reach. Considering variable hydrology, weather, flow diversions, channel geometry and lateral inflows, we found irrigation-enhanced lateral inflows were the likely explanation for buffered longitudinal and diel warming patterns that prevented stressful or lethal thermal conditions for brown trout. These localized temperature effects were more pronounced in drier years, under high diversion rates and during high solar radiation intensity. We also found that lateral inflows corresponded with greater spatial variability of stream temperatures and potential thermal refugia. Study results illustrate the potential ecological consequences of reducing irrigation-enhanced lateral inflows and highlight the importance of hydrologic monitoring in irrigated arid river valleys. The role and preservation of these lateral inflows should be considered in water resources management related to irrigation efficiency and environmental flows.  相似文献   

2.
Joshua C. Koch 《水文研究》2016,30(21):3918-3931
Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post‐snowmelt water budgets. A water budget focused only on post‐snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid‐summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra‐permafrost subsurface inflows from basin‐edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

3.
Water is a limiting factor for life in the McMurdo Dry Valleys (MDV), Antarctica. The active layer (seasonally thawed soil overlying permafrost) accommodates dynamic hydrological and biological processes for 10–16 weeks per year. Wetted margins (visually wetted areas with high moisture content) adjacent to lakes and streams are potential locations of great importance in the MDV because of the regular presence of liquid water, compared with the rest of the landscape where liquid water is rare. At 11 plots (four adjacent to lakes, seven adjacent to streams), soil particle size distribution, soil electrical conductivity, soil water content and isotopic signature, width of the wetted margin, and active layer thaw depth were characterised to determine how these gradients influence physicochemical properties that determine microbial habitat and biogeochemical cycling. Sediments were generally coarse‐grained in wetted margins adjacent to both lakes and streams. Wetted margins ranged from 1·04 to 11·01 m in average length and were found to be longer at lakeside sites than streamside. Average thaw depths ranged from 0·12 to 0·85 m, and were found to be deepest under lake margins. Lake margins also had much higher soil electrical conductivity, steeper topographic gradients, but more gradual soil moisture gradients than stream margins. Patterns of soil water δ18O and δD distribution indicate capillary action and evaporation from wetted margins; margin pore waters generally demonstrated isotopic enrichment with distance from the shore, indicating evaporation of soil water. Lake margin pore waters were significantly more negative in DXS (DXS = δD‐8δ18O) than streamside pore waters, indicating a longer history of evaporation there. Differences between lake and stream margins can be explained by the more consistent availability of water to lake margins than stream margins. Differences in margin characteristics between lakes and streams have important consequences for the microbial habitat of these margins and their functional role in biogeochemical cycling at these terrestrial–aquatic interfaces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Water and gas samples were collected from (1) nine shallow groundwater aquifers overlying Marcellus Shale in north‐central West Virginia before active shale gas drilling, (2) wells producing gas from Upper Devonian sands and Middle Devonian Marcellus Shale in southwestern Pennsylvania, (3) coal‐mine water discharges in southwestern Pennsylvania, and (4) streams in southwestern Pennsylvania and north‐central West Virginia. Our preliminary results demonstrate that the oxygen and hydrogen isotope composition of water, carbon isotope composition of dissolved inorganic carbon, and carbon and hydrogen isotope compositions of methane in Upper Devonian sands and Marcellus Shale are very different compared with shallow groundwater aquifers, coal‐mine waters, and stream waters of the region. Therefore, spatiotemporal stable isotope monitoring of the different sources of water before, during, and after hydraulic fracturing can be used to identify migrations of fluids and gas from deep formations that are coincident with shale gas drilling.  相似文献   

5.
Ecological base line states for fish communities are necessary for the evaluation of ecological integrity. In Austria the fish communities of all the larger lakes are strongly influenced by human activities, like commercial fisheries, fish stocking, eutrophication or shore line degradation, and therefore these baseline states can not be developed by comparison with a natural, undisturbed lake. We developed ecological baseline states for the fish communities of the lakes Hallstättersee, Traunsee, Mondsee, Irrsee and Wallersee by reconstructing the native fish communities of these lakes from historical documents (from between 1500 to 1940). Then we classified the potential fish species of these lakes according to their ecological requirements. Finally we developed the base line states with 16 different ecological factors similar to the factors used for the ecological integrity assessment procedure for streams.

The process of reconstructing the fish communities and some advantages and disadvantages of the base line states for fish communities are discussed.  相似文献   


6.
ABSTRACT

Because of the late withdrawal of the Levantine lake waters and because of low relief the Eastern Romanian Plain was fragmented only by big alochthonous rivers (Ialomi?a, C?lm??ui and Buz?u).

The tabular-like, 40–50-km-wide interfluve areas covered by loessoid deposits and eolian sands on the periphery are deprived of surface drainage which accounts for their present evolution.

The major relief forms in these interfluves are depressions called in Romanian ‘crov’ (sink-holes) in the central areas and short valleys formed initially by erosion processes and now modelled by mechanical and chemical weathering at their periphery: in these depressions (sink-holes) and in the secondary valleys, peripheral to the interfluve areas, lakes had started to be formed.

Because of the semiarid climate sink-hole lakes have an intermittent hydrological regime, whereas those located in the small fluviatile liman-type valleys, enjoy a permanent regime. By the absence of surface drainage, by the loss of significant amounts of water through evaporation and the degree of mineralization, these lakes fall within the group of salt lakes.

In the past few years (since 1966 and especially since 1969) the level of these lakes has continually risen and the depressions formerly lacking water started being flooded by the rising of the piezometric level.

An analysis was made of the water balance of the Amara-Ialomi?a lake to investigate this phenomenon.

Level and evaporation recordings were made in the period 1956–1970. The findings revealed that the supply of underground water to the lake amounts to 47·3 per cent exceeding the water supply produced by the rains that fell on the surface of the lake (46·7 per cent). A close relationship was established (with a lapse of 8–12 months) between the surface supply of the basin (through rainfalls) and the flow of underground water to the lake.

Extending the precipitation-induced level changes over a longer period (1896–1915 and 1921–1970) it was found that level increases are cyclic, as a direct consequence of the corresponding precipitation regime.  相似文献   

7.
Fan-deltas are formed in mountain lakes, contributing to changes in shorelines' shapes and filling lake basins with sediments. Factors that condition sediment delivery to the lakes and the formation of fan-deltas are not fully understood. This study aims to identify processes forming fan-deltas in mountain lakes based on the sedimentary architecture of a fan-delta filling Zelené Kežmarské Lake (Slovakia). Our study is based on ground-penetrating radar and seismic refraction surveys conducted over the lake and debris-flow fans in its vicinity, and grain-size analyses of the surface deposits. The internal structure of the fan-delta comprises foreset deposits representing the fan-delta lobes. Mouth bars were identified in the near-shore zone. The fan-delta is built of sands and silty sands whereas an alluvial debris-flow dominated fan west of the lake contains gravels. A general trend of downslope fining of the fan surface sediments, disturbed by zones of coarse gravels, was identified in the surficial sediments forming the fan. The fan-delta was formed by depositional events in humid periods, alternating with dry periods featured with a small or no deposition. The lake-level steadily rose in the humid periods and remained stable in dry periods. The contrast between the coarse sediments forming the alluvial debris-flow dominated fan, and sands forming the fan-delta was caused by a selective deposition. Coarse gravels in the fan were mobilized in humid periods but did not reach the lake-shore. The reason was a basement rock ridge situated parallel to the lake shore. Sands were delivered to the fan-delta in humid periods owing to frequent high-energy flows. A deposition of silts took place in dry periods. The studied fan-delta might preserve the sedimentary record of three humid periods from the last 200 years. However, further studies are needed to establish the timing of the fan-delta formation.  相似文献   

8.
A genetic and evolutionary model is established for saline depressions in continental areas. These depressions are located in arid or subarid areas, and are developed on low permeability geological mediums (K<10 mm/day) with a lack of streams reaching the small lakes. The phenomenon of evaporation is fundamental, since it is the basic requirement for the presence or absence of a free water surface in the lake, and also for depression of the phreatic surface, which causes inflow of groundwater towards the lake. With these conditions, the proposed model includes the following stages: (i) initiation of the close depression; (ii) deepening of the depression; (iii) formation of the lake basin and the end of the deepening; and (iv) levelling and lateral extension of the lake basin. The combined effects of groundwater flows and aeolian action offer a coherent explanation for the origin and evolution both of the closed depressions found in the Ebro Valley, and of the salt lakes that subsequently form. The processes described form morphologies of oval shape with the main axis parallel to the direction of the wind, flat floors and evaporitic sedimentation, although they act on geological materials with different lithologies. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
Summary

The High-Tatra mountains are situated in the northern part of the Carpathian bend covering an area of about 335 km2 some peaks being high more than 2600 m above sea level. In the said mountain region there are 100 small lakes in heights from 1100 m up to 2200 m above sea level. A detailed mapping of lakes has been carried out using the ground mapping technique “photogrametry” and measurements of depths have been done by ultra-sound. On the base of two examples it may be observed from the obtained results that the stability of lakes, blocked by moraines, may be easily damaged the final consequence being then the extinction of toe lake. Another example describing an interesting water bilan of a lake without inflow and outflow, of a height of 1346 m, is also given. The average precipitation falling down on the lake surface is 933 mm. From this quantity 374 mm evaporate back into the atmosphere. The water level of the lake increases annually by 210 mm in average. The remaining quantity of water seeps into the ground.  相似文献   

10.
Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes‐St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications.  相似文献   

11.
Our understanding of Lake Vostok, the huge subglacial lake beneath the East Antarctic Ice Sheet, has improved recently through the identification of key physical and chemical interactions between the ice sheet and the lake. The north of the lake, where the overlying ice sheet is thickest, is characterized by subglacial melting, whereas freezing of lake water occurs in the south, resulting in ~210 m of ice accretion to the underside of the ice sheet. The accreted ice contains lower concentrations of the impurities normally found in glacier ice, suggesting a net transfer of material from meltwater into the lake. The small numbers of microbes found so far within the accreted ice have DNA profiles similar to those of contemporary surface microbes. Microbiologists expect, however, that Lake Vostok, and other subglacial lakes, will harbour unique species, particularly within the deeper waters and associated sediments. The extreme environments of subglacial lakes are characterized by high pressures, low temperatures, permanent darkness, limited nutrient availability, and oxygen concentrations that are derived from the ice that provides the meltwater. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
The Yinchuan Plain has more than 2000 years of history of irrigation by diverting water from the Yellow River. Currently, the amount of water diverted from the Yellow River is about 21.7 times the water formed on the plain as a result of precipitation and inflow of groundwater. Under the intensive influence of irrigation, the plain changed from a desert into a rich and populous area, earning its name as ‘South China Beyond the Great Wall’, with lakes scattered across the Yinchuan Plain just as stars in the sky. In this research, 17 representative lakes were sampled to analyze and study 2H and 18O content; the results showed that lakes on the plain have undergone obvious non‐equilibrium evaporation. Recharges of the lakes can be divided into three types: recharge from the Yellow River, from groundwater and from both of these. The Craig–Gordon non‐equilibrium evaporation model for isotope fractionation was used to estimate the evaporation proportion of each lake. The results showed that evaporation from lakes on Yinchuan Plain is generally extensive under the dry climatic conditions. Most lakes have an evaporation proportion of over 25%, with the largest originating from Shahu lake and Gaomiaohu lake in the northern part of the plain, at 42.5% and 42.8%, respectively. The evaporation proportions calculated on the basis of 18O and 2H are very close to each other. This shows that the method used in this paper is feasible for estimating the evaporation proportions of lakes in areas with a heavy anthropogenic influence. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Phosphorus (P) loading, exports and concentrations of the four lakes of the Yahara chain (Wisconsin, USA) were compared under four load-reduction plans using a model calibrated with 29–33 years of annual data. P mitigation goals must balance reductions in P concentrations in the four lakes and the export from the lake chain to downstream waters. Lake Mendota, the uppermost lake, is most responsive to P load reductions, and benefits diminish downstream. Nonetheless, the greatest reductions in export from the lake chain to downstream waters derive from P load reductions to lakes lower in the chain. The effective grazer Daphnia pulicaria causes large improvements in water quality. Management to maintain populations of D. pulicaria has substantial benefits that augment those from reductions in P loading. Model projections show high variability in water quality and exports under all load-reduction plans. This variability is driven by inter-annual variation in runoff. Thus lake managers and the public should expect ongoing year-to-year variability in water quality, even though P load mitigation will improve water quality on average. Because of high variability from year to year, ongoing monitoring is essential to assess the effects of management of this chain of lakes.  相似文献   

14.
White WB 《Ground water》2012,50(2):180-186
The very diverse types of ground‐water behavior in carbonate terrains can be classified by relating the flow type to a particular hydrogeologic environment each exhibiting a characteristic cave morphology. The ground water may move by diffuse flow, by retarded flow, or by free flow. Diffuse flow occurs in less soluble rocks such as extremely shaley limestones or crystalline dolomites. Integrated conduits are rare. Caves tend to be small, irregular, and often little more than solutionally widened joints. Retarded flows occur in artesian environments and in situations where unfavorable stratigraphy forces ground water to be confined to relatively thin beds. Network cave patterns are characteristic since hydrodynamic forces are damped by the external controls. Solution occurs along many available joints. Free flowing aquifers are those in which solution has developed a subsurface drainage system logically regarded as an underground extension of surface streams. These streams may have fully developed surface tributaries as well as recharge from sinkholes and general infiltration. Characteristic cave patterns are those of integrated conduit systems which are often truncated into linear, angulate, and branchwork caves. Free Flow aquifers may be further subdivided into Open aquifers lying beneath karst plains and Capped aquifers in which significant parts of the drainage net lie beneath an insoluble cap rock. Other geologic factors such as structure, detailed lithology, relief, and locations of major streams, control the details of cave morphology and orientation of the drainage network.  相似文献   

15.
This study is the first to show, using data from the eruption of Koryakskii Volcano, Kamchatka that began in December 2008 and continued through 2009 that the water in permanent and temporary streams that start on the slopes of the volcanic cone and in temporary lakes when contaminated with fresh tephra is a specific hazard factor related to long-continued hydrothermal-phreatic eruptions on that volcano. This water is characterized by increased acidity (pH 4.1–4.35) and large amounts (up to 50–100 cm3/liter) of solid suspension and is unfit for drinking and irrigation. When combined with tephra, it probably produced mass destruction of a number of animals who lived on the slopes and at the base of the volcano. The water contaminated with tephra is an important component of the atmospheric mud flows occurring on Koryakskii Volcano; for several future years it will be a potential source for enhancing the acidity of ground water in the volcanic edifice.  相似文献   

16.
Effects of ground water exchange on the hydrology and ecology of surface water   总被引:11,自引:0,他引:11  
Ground water exchange affects the ecology of surface water by sustaining stream base flow and moderating water-level fluctuations of ground water-fed lakes. It also provides stable-temperature habitats and supplies nutrients and inorganic ions. Ground water input of nutrients can even determine the trophic status of lakes and the distribution of macrophytes. In streams the mixing of ground water and surface water in shallow channel and bankside sediments creates a unique environment called the hyporheic zone, an important component of the lotic ecosystem. Localized areas of high ground water discharge in streams provide thermal refugia for fish. Ground water also provides moisture to riparian vegetation, which in turn supplies organic matter to streams and enhances bank resistance to erosion. As hydrologists and ecologists interact to understand the impact of ground water on aquatic ecology, a new research field called "ecohydrology" is emerging.  相似文献   

17.
Tritium concentrations are used to trace water circulation in the Urumqi and Turfan basins in the Xinjiang, western China. Tritium analyses were made for 77 water samples of river waters, groundwaters, spring waters, lake waters and glacier ice collected in summers in 1992 and 1994. The tritium concentrations in the waters are in a wide range from 0 to 125 TU, most of which are considerably high compared with those of most waters in Japan, because tritium levels in precipitation in the area are over ten times as high as those in Japan. River waters originating in glacier regions contain melt glacier, the proportion of which is over 0.5 to river water. The mean resi-dence time of circulating meteoric water in the mountain regions is estimated to be about 15 years. Most groundwaters and spring waters in the flat regions are mainly derived from river waters originating in glacier regions. The groundwater of greatest tritium concentrations in wells in Urumqi City is derived from Urumqi River about 25 years ago. It takes several ten years for river water to pass the underground to many springs. Some groundwaters and spring waters have taken a long time more than 40 years to travel under the ground. Enrichment of tritium in lake water by evaporation is considered to estimate the contribution of groundwater flow to the recharge of lake. Various contributions of groundwater to lakes are inferred for the various type of salinity in closed or semi-closed lakes. The inflow rates of groundwater to salt lakes are small as against fresh water lakes.  相似文献   

18.
The character of organic carbon (OC) in lake waters is strongly dependent on the time water has spent in the landscape as well as in the lake itself due to continuous biogeochemical OC transformation processes. A common view is that upstream lakes might prolong the water retention in the landscape, resulting in an altered OC character downstream. We calculated the number of lakes upstream for 24,742 Swedish lakes in seven river basins spanning from 56º to 68º N. For each of these lakes, we used a lake volume to discharge comparison on a landscape scale to account for upstream water retention by lakes (Tn tot). We found a surprisingly weak relationship between the number of lakes upstream and Tn tot. Accordingly, we found that the coloured fraction of organic carbon was not related to lake landscape position but significantly related to Tn tot when we analysed lake water chemical data from 1,559 lakes in the studied river basins. Thus, we conclude that water renewal along the aquatic continuum by lateral water inputs offsets cumulative retention by lakes. Based on our findings, we suggest integrating Tn tot in studies that address lake landscape position in the boreal zone to better understand variations in the character of organic carbon across lake districts.  相似文献   

19.
The region studied includes the Laurentian Great Lakes and a diversity of smaller glacial lakes, streams and wetlands south of permanent permafrost and towards the southern extent of Wisconsin glaciation. We emphasize lakes and quantitative implications. The region is warmer and wetter than it has been over most of the last 12000 years. Since 1911 observed air temperatures have increased by about 0·11°C per decade in spring and 0·06°C in winter; annual precipitation has increased by about 2·1% per decade. Ice thaw phenologies since the 1850s indicate a late winter warming of about 2·5°C. In future scenarios for a doubled CO2 climate, air temperature increases in summer and winter and precipitation decreases (summer) in western Ontario but increases (winter) in western Ontario, northern Minnesota, Wisconsin and Michigan. Such changes in climate have altered and would further alter hydrological and other physical features of lakes. Warmer climates, i.e. 2 × CO2 climates, would lower net basin water supplies, stream flows and water levels owing to increased evaporation in excess of precipitation. Water levels have been responsive to drought and future scenarios for the Great Lakes simulate levels 0·2 to 2·5 m lower. Human adaptation to such changes is expensive. Warmer climates would decrease the spatial extent of ice cover on the Great Lakes; small lakes, especially to the south, would no longer freeze over every year. Temperature simulations for stratified lakes are 1–7°C warmer for surface waters, and 6°C cooler to 8°C warmer for deep waters. Thermocline depth would change (4 m shallower to 3·5 m deeper) with warmer climates alone; deepening owing to increases in light penetration would occur with reduced input of dissolved organic carbon (DOC) from dryer catchments. Dissolved oxygen would decrease below the thermocline. These physical changes would in turn affect the phytoplankton, zooplankton, benthos and fishes. Annual phytoplankton production may increase but many complex reactions of the phytoplankton community to altered temperatures, thermocline depths, light penetrations and nutrient inputs would be expected. Zooplankton biomass would increase, but, again, many complex interactions are expected. Generally, the thermal habitat for warm-, cool- and even cold-water fishes would increase in size in deep stratified lakes, but would decrease in shallow unstratified lakes and in streams. Less dissolved oxygen below the thermocline of lakes would further degrade stratified lakes for cold water fishes. Growth and production would increase for fishes that are now in thermal environments cooler than their optimum but decrease for those that are at or above their optimum, provided they cannot move to a deeper or headwater thermal refuge. The zoogeographical boundary for fish species could move north by 500–600 km; invasions of warmer water fishes and extirpations of colder water fishes should increase. Aquatic ecosystems across the region do not necessarily exhibit coherent responses to climate changes and variability, even if they are in close proximity. Lakes, wetlands and streams respond differently, as do lakes of different depth or productivity. Differences in hydrology and the position in the hydrological flow system, in terrestrial vegetation and land use, in base climates and in the aquatic biota can all cause different responses. Climate change effects interact strongly with effects of other human-caused stresses such as eutrophication, acid precipitation, toxic chemicals and the spread of exotic organisms. Aquatic ecological systems in the region are sensitive to climate change and variation. Assessments of these potential effects are in an early stage and contain many uncertainties in the models and properties of aquatic ecological systems and of the climate system. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
新疆平原沙漠区湖泊干缩现象的初步评价   总被引:2,自引:2,他引:0  
王晓峰  章海生 《湖泊科学》1994,6(4):333-339
对新疆平原沙漠区湖泊干缩现象作了初步评价,指出这一现象是干旱、半干旱地区农业灌溉和国民经济发展到一定规模时所必然产生的现象,因而可以视为正常。同时指出,平原区湖泊之存亡既取决于自然条件,更取决于社会经济发展的需要。现存湖泊资源的开发与保护,既要立足于生态环境价值论,也要立足于经济价值论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号