首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
万天丰  朱鸿 《现代地质》2007,21(1):1-13
在尊重比较可靠的、测试精度较高的地块古地磁数据,重视生物古地理与地质构造演化史的相似性和协调性等原则的基础上,笔者编制了中国大陆及邻区各陆块古生代和三叠纪的古地磁数据表,并采用类似的比例尺,将中国各陆块放到相应的全球古大陆复原图上去。由此可以清晰地看出,在古生代早期全球各大陆的主要部分都位于赤道附近及南半球,大致表现为沿纬度、呈东西向排列的特征,中国及邻区的小陆块群在古生代始终都处在劳伦大陆、西伯利亚与冈瓦纳大陆之间;随着西伯利亚大陆的快速北移,在劳伦大陆与冈瓦纳大陆的西部地区发生南北向拼合,亚皮特斯洋和里克洋的消亡,到古生代晚期形成统一的泛大陆;而冈瓦纳大陆的东部(澳大利亚和印度等)则逐渐向南移动、离散,地壳张开,构成古特提斯洋;中国及邻区的小陆块群则一直处在古特提斯洋中,保持离散状态,总体上缓慢地向北运移,并逐渐转为近南北向的排列方式,石炭纪到三叠纪才在天山-兴安岭、昆仑山、秦岭-大别、金沙江和绍兴-十万大山等地段发生一系列局部性的陆陆碰撞,使中国大陆地块的大部分逐渐并入欧亚大陆。  相似文献   

2.
从古地磁研究看中国大陆形成与演化过程   总被引:12,自引:1,他引:11  
古地磁学是进行大陆板块或微板块(地块)运动演化过程和古地理重建的最有效手段之一。近半个世纪以来,通过中外学者艰苦卓绝的努力,在中国大陆上积累了大量的古地磁数据,为中国大陆各主要块体的起源、构造演化和碰撞拼合过程等提供了定量约束。文中根据现代古地磁数据可靠性判别标准,对扬子、华北及塔里木地块显生宙古地磁数据进行了重新分析和筛选,结合拉萨和喜马拉雅地块的古地磁数据,对中国大陆的形成和演化提出了几点认识:(1)古生代中国大陆各主要块体基本位于赤道附近的低纬度地区;早古生代扬子、华北及塔里木地块与东冈瓦纳大陆关系密切;(2)中生代是中国大陆各主要块体发生碰撞和拼合的主要时期;(3)中国大陆主要块体间的碰撞和拼合具有局部首先碰撞、相互旋转、完全拼合、陆内挤压造山和伸展反弹的特点。  相似文献   

3.
针对古生代中国中西部华北、华南和塔里木三大陆块在全球洋-陆格局中的古地理位置还存在的争议问题,本论文以国际最新的古地理位置重建研究方法和思路,在对中国三大陆块盆地(鄂尔多斯、四川和塔里木盆地)古生界钻井岩心的古地磁实测研究、全球古生代古地磁数据收集与有效性筛选处理、全球主要地质事件约束等多参数融合分析的基础上,采用最新的 GPlates 板块重建方法,对中国华北、华南和塔里木三大陆块在全球洋-陆格局中的古地理位置进行了重建和定位。研究结果表明:古生代三大陆块主要在全球 ±30° 之间的南北中低纬度之间迁移;三大陆块在古生代至少发生了 3 次不同的顺时针旋转和方位角转换;三大陆块运移速率至少经历了 3 次以上不同高、低速度间的转换与变化过程;响应于古生代全球洋-陆形成与演化,中国三大陆块古构造格局总体上经历了洋盆扩张下的“多岛洋”离散、俯冲碰撞下的离散-汇聚并存、俯冲消减下的差异汇聚隆升、新旧洋盆转换下的差异汇聚-离散、拼合与地幔柱控制下的差异汇聚-离散内部拉张的差异性演变过程。古生代中国三大陆块在全球洋-陆格局中的位置与差异性演变,奠定了中国三大陆块古生代不同性质盆地的形成与演化、不同层系油气烃源、储集原始物质差异性发育的基础。  相似文献   

4.
Assembly and Breakup of Rodinia (Some results of IGCP project 440)   总被引:2,自引:0,他引:2  
The principal results of project 440 “Assembly and Breakup of Rodinia” of the International Geological Correlation Programme (IGCP) are reviewed in this work. A map of that supercontinent compiled using geological and paleomagnetic data describes global paleogeography 900 Ma ago. The assembly of Rodinia, which comprised most of Precambrian continental blocks, lasted ca. 400 m.y. (from 1300 to 900 Ma). Its breakup presumably triggered by mantle superplume took place between 830 and 650 Ma. The correlation between tectonic events in different continental blocks is considered. Some problems concerning the Rodinia reconstruction and history, e.g., the slow growth of juvenile crust and effects of mantle-plume events during the amalgamation period and of glaciations at the breakup time, are discussed. The latter caused changes in the biosphere and climate, whereas postglacial periods stimulated progress in biota evolution.  相似文献   

5.
迄今为止,位于扬子地块的西北缘,夹持于扬子、华北、塔里木和羌塘—昌都地块之间呈倒三角形构造区块的巴颜喀拉褶皱带尚未有构造古地磁研究成果报导。为配合该区油气勘查与油气资源评价,并对构造区块定位提供定量数据,开展了松潘—阿坝地块的古地磁研究。采样区集中在西秦岭构造区南亚带(摩天岭和若尔盖)、中亚带(洮河)和巴颜喀拉构造区的马尔康复向斜带(巴颜喀拉褶皱区)4个微地块。采样地层单元主要为三叠系。共采集57个采点,376块岩心标本。通过对岩石样品测试数据的分析和计算,获得洮河、巴颜喀拉、摩天岭和若尔盖(后两者夹于前两者之间)4个微地块古地磁极极点位置:经度为191.4°E~202.9°E,纬度为49.5°N~58.5°N。洮河和巴颜喀拉两微地块在晚三叠世的古纬度同为26.2°N,表明晚三叠世这4个被断裂相隔的微地块已构成一个统一的较大的地块。洮河和巴颜喀拉地块在三叠纪时的古纬度变化分别从早三叠世的13.4°N和11.3°N向北移动到晚三叠世的26.2°N,同时在北向移动过程中从早三叠世至晚三叠世分别发生了约40°和16°的逆时针旋转。  相似文献   

6.
A paleomagnetic study of the late Middle to possibly early Late Cambrian Liberty Hills Formation in the Ellsworth Mountains, Antarctica, reveals a stable magnetization with positive fold and reversal tests. The paleopole is based on 16 sites from volcanic and sedimentary rocks and lies at lat 7.3 degrees N and long 326.3 degrees E (A95=6.0&j0;). The new paleomagnetic data support the view that the Ellsworth Mountains are part of a microplate-the Ellsworth-Whitmore Mountains crustal block-that rotated independently of the main Gondwana continental blocks during breakup. The Liberty Hills pole differs from both previous poles recovered from Cambrian rocks in the Ellsworth Mountains and from the available Gondwana reference pole data. Our pole indicates a more northerly prebreakup position for the Ellsworth Mountains than previously suggested, contradicting the overwhelming geologic evidence for a prebreakup position close to southern Africa. The reasons for this are uncertain, but we suggest that problems with the Gondwana apparent polar wander path may be important. More well constrained, early Paleozoic paleomagnetic data are required from the Ellsworth Mountains and the Gondwana continents if the data are to constrain further the Middle-Late Cambrian location of the Ellsworth-Whitmore Mountains block.  相似文献   

7.
The paper summarizes paleomagnetic results obtained from the Neoproterozoic rocks of the western margin of the Siberian craton. On the basis of the obtained paleomagnetic poles and available paleomagnetic data for the Precambrian of Siberia, a new version of the Neoproterozoic segment of the apparent polar wandering path (APWP) is proposed for the craton and is compared with the Laurentian APWP. The superposition of these paths suggests that in the Neoproterozoic the southern margin of the Siberian craton (in modern coordinates) faced the Canadian margin of Laurentia. Most likely, in the end of the Mesoproterozoic and during the Neoproterozoic the Siberian craton and Laurentia were connected to form the supercontinent Rodinia. At 1 Ga the western margin of the Siberian craton was a northern (in modern coordinates) continuation of the western margin of Laurentia. The available paleomagnetic data on Laurentia and continental blocks of Eastern Gondwana (Australia, Antarctica, India, South China) and the proposed APWP trend allowed a new model for the breakup of this segment of Rodinia. Analysis of a total of the data available suggests that strike-slip movements on the background of the progressive opening of the oceanic basin between Siberia and Laurentia were predominant in the south of the Siberian craton during the Neoproterozoic. Similar kinematics is typical of the western margin of Laurentia, where strike-slip motions are probably associated with the progressive opening of the ocean basin between Laurentia and eastern Gondwana.  相似文献   

8.
前寒武纪的超大陆旋回及其板块构造演化意义   总被引:13,自引:1,他引:12  
太古代末早古生代存在4次超大陆或大陆聚合时期,超大陆的聚合与裂解造成全球性的重大构造热事件,成为全球板块构造演化的主线,威尔逊旋回在早前寒武纪已明显起作用。超大陆的聚合表现为克拉通的增生与陆块的碰撞造山作用;超大型的裂解表现为非造山岩浆活动、大规模基性岩墙群侵位及大陆裂谷的爆发等。超大陆的裂解可能与地幔柱上涌或超大陆下放射性物质积聚造成的热能积累有关,或地外物质冲击的触发有关。华北克拉通与世界古陆块的前寒武纪构造演化对比,及其在超大陆中的拼合模式成为我国大陆地质学研究面临的挑战性重大科学问题。  相似文献   

9.
According to geologic reconstructions, the motion of the Sierran-Great Valley block with respect to the Colorado Plateau was mainly westerly at more than 20 mm/yr from 16 to 10 Ma, changing to northwest or NNW since 8 to 10 Ma, at an average rate of 15 mm/yr. These kinematics are consistent with two other independent methods of determining the position of the block since 20 Ma–reconstructions based on paleomagnetic data from range blocks that bound the Basin and Range on the west, and a revised history of Pacific-North America plate motion based on a global plate circuit (Atwater and Stock, 1998, this issue). The plate-tectonic reconstruction shows a change to more northerly motion between the Pacific and North American plates at ~8 Ma, in concert with the motion of the Sierran-Great Valley block. Moreover, the northeast limit of extant oceanic crust (as indicated by the reconstruction of the continental geology) tracks closely with the southwest limit of extant continental crust (as indicated by the positions of oceanic plates) since 20 Ma. The coordination between plate motions and the intraplate geology suggests that plate-boundary forces strongly influenced deformation within the continent.  相似文献   

10.
The continent of China developed through the coalescence of three major cratons(North China, Tarim and Yangtze) and continental micro-blocks through the processes of oceanic crust disappearance and acceretionary-collision of continental crusts. The strata of the Chinese continental landmass are subdivided into 12 tectonic-strata regions. Based on the composition of geological features among the three main cratons, continental micro-blocks and other major global cratons, their affinities can be preliminarily deduced during the Tonian period, using evidence from sedimentary successions, paleobiogeography, tectonic and magmatic events. The Yangtze and Tarim cratons show that they have close affinities during the assembly-dispersal milestone of the Rodinia Supercontinent. The sedimentary record and magmatic age populations in the blocks suggest that there was a widespread, intensive magmatic event that resulted from a subduction process during ~1000–820 Ma, related to continental rifting around the Yangtze and Tarim cratons. However, they differ greatly from the North China Craton. The continental micro-blocks in the Panthalassic Ocean could have some missing connection with the North China Craton that persisted until the Middle-Late Devonian. In contrast, the Alxa Block showed a strong affinity with the Tarim Craton. The revised Tonian paleogeography of the Rodinia Supercontinent is a good demonstration of how to show the relationship between the main cratons and the continental micro-blocks.  相似文献   

11.
The kinematics of the Early Caledonian accretion process in the southwest (in modern coordinate) of the Siberian paleocontinent, and the structure of its active continental margin are debatable subjects. This paper contains a generalization of paleomagnetic data on island-arc terranes of the territories of the Altai–Sayan and Baikal–Vitim folded areas for the Late Vendian/Cambrian–Early Ordovician time interval, obtained mostly with the author’s participation during the last two decades. The large accumulated database finally allows one to find unambiguously interpretable patterns in the distribution of paleomagnetic poles for the analyzed terrane system and to justify numerically the kinematics of the Early Caledonian accretion. In particular, the analysis of paleomagnetic data proves our idea stating that the transformation of the active continental margin in the Cambrian consisted in its breakup and segmentation as well as in the detachment of fragments of the initially whole island arc along a system of sinistral strike-slips during the clockwise rotation of the craton and conform drift of the continental and oceanic lithospheric plates. It also validates the mostly oblique conditions of the subduction and subsequent accretion, which means a subduction-transform mode on the ocean–continent margin. We propose a complemented version of the paleotectonic reconstruction for the Cambrian evolution of the Siberian continent western margin, based on the kinematic scheme constructed from paleomagnetic data.  相似文献   

12.
《Gondwana Research》2014,25(1):159-169
The Ediacaran–Early Ordovician interval is of great interest to paleogeographer's due to the vast evolutionary changes that occurred during this interval as well as other global changes in the marine, atmospheric and terrestrial systems. It is; however, precisely this time period where there are often wildly contradictory paleomagnetic results from similar-age rocks. These contradictions are often explained with a variety of innovative (and non-uniformitarian) scenarios such as intertial interchange true polar wander, true polar wander and/or non-dipolar magnetic fields. While these novel explanations may be the cause of the seemingly contradictory data, it is important to examine the paleomagnetic database for other potential issues.This review takes a careful and critical look at the paleomagnetic database from Baltica. Based on some new data and a re-evaluation of older data, the relationships between Baltica and Laurentia are examined for ~ 600–500 Ma interval. The new data from the Hedmark Group (Norway) confirms suspicions about possible remagnetization of the Fen Complex pole. For other Baltica results, data from sedimentary units were evaluated for the effects of inclination shallowing. In this review, a small correction was applied to sedimentary paleomagnetic data from Baltica. The filtered dataset does not demand extreme rates of latitudinal drift or apparent polar wander, but it does require complex gyrations of Baltica over the pole. In particular, average rates of APW range from 1.5° to 2.0°/Myr. This range of APW rates is consistent with ‘normal’ plate motion although the total path length (and its oscillatory nature) may indicate a component of true polar wander. In the TPW scenario, the motion of Baltica results in a back and forth path over the south pole between 600 and 550 Ma and again between 550 and 500 Ma. The rapid motion of Baltica over the pole is consistent with the extant database, but other explanations are possible given the relative paucity of high-quality paleomagnetic data during the Ediacaran–Cambrian interval from Baltica and other continental blocks.A sequence of three paleogeographic maps for Laurentia and Baltica is presented. Given the caveats involved in these reconstructions (polarity ambiguity, longitudinal uncertainty and errors), the data are consistent with geological models that posit the opening of the Iapetus Ocean around 600 Ma and subsequent evolution of the Baltica–Laurentia margin in the Late Ediacaran to Early Ordovician, but the complexity of the motion implied by the APWP remains enigmatic.  相似文献   

13.
The latest concepts about the Earth’s paleogeography for the period of 700–500 million years are quite contradictory. Reliable paleomagnetic data are quite scarce for the Ediacaran-Cambrian of the majority of continental plates, which means that making any reliable global paleogeographic and paleotectonic reconstructions is impossible. According to various authors, Baltica within this time, for example, could have been located at any latitudes from the South Pole to the equator. Making correct reconstructions requires new paleomagnetic data; however, almost all objects that are applicable for such studies within Baltica have already been studied. A possible solution is to study the deformed margins of the plate, in particular, the western megazone of the Middle Urals, where the lower and upper Ediacaran volcanogenic-sedimentary and sedimentary sections are known within the Kvarkushsko-Kamennogorskii anticlinorium [1, 2] (Fig. 1). This paper presents the first paleomagnetic results obtained for the sedimentary rocks of the Upper Ediacaran Chernokamenskaya suite. They are consistent with the group of six poles of the same age [3–7], by which Baltica was located at the subequatorial latitudes at the end of the Educarian.  相似文献   

14.
Asia is key to a richer understanding of many important lithospheric processes such as crustal growth,continental evolution and orogenesis. But to properly decipher the secrets Asia holds, a first-order tectonic context is needed. This presents a challenge, however, because a great variety of alternative and often contradictory tectonic models of Asia have flourished. This plethora of models has in part arisen from efforts to explain limited observations(in space, time or discipline) without regard for the broader assemblage of established constraints. The way forward, then, is to endeavor to construct paleogeographic models that fully incorporate the diverse constraints available, namely from quantitative paleomagnetic data, the plentiful record of geologic and paleobiologic observations, and the principles of plate tectonics. This paper presents a preliminary attempt at such a synthesis concerning the early Paleozoic tectonic history of Asia. A review of salient geologic observations and paleomagnetic data from the various continental blocks and terranes of Asia is followed by the presentation of a new, full-plate tectonic model of the region from middle Cambrian to end-Silurian time(500-420 Ma). Although this work may serve as a reference point, the model itself can only be considred provisional and ideally it will evolve with time. Accordingly, all the model details are released so that they may be used to test and improve the framework as new discoveries unfold.  相似文献   

15.
During the Triassic, the Thakkhola region of the Nepal Himalaya was part of the broad continental shelf of Gondwana facing a wide Eastern Tethys ocean. This margin was continuous from Arabia to Northwest Australia and spanned tropical and temperate latitudes.A compilation of Permian, Triassic and early Jurassic paleomagnetic data from the reconstructed Gondwana blocks indicates that the margin was progressively shifting northward into more tropical latitudes. The Thakkhola region was approximately 55° S during Late Permian, 40° S during Early Triassic, 30° S during Middle Triassic and 25° S during Late Triassic. This paleolatitude change produced a general increase in the relative importance of carbonate deposition through the Triassic on the Himalaya and Australian margins. Regional tectonics were important in governing local subsidence rates and influx of terrigenous clastics to these Gondwana margins; but eustatic sea-level changes provide a regional and global correlation of major marine transgressions, prograding margin deposits and shallowing-upward successions. A general mega-cycle characterizes the Triassic beginning with a major transgression at the base of the Triassic, followed by a general shallowing-upward of facies during Middle and Late Triassic, and climaxing with a regression in the latest Triassic.  相似文献   

16.
董猛猛  杨天南  信迪  梁明娟 《岩石学报》2022,(11):3484-3502
在通过锆石U-Pb方法测定岩浆活动时代的过程中总会获取或多或少的继承锆石年龄数据,这些数据对于揭示岩浆岩所处构造单元的构造-岩浆事件序列具有独特优势。本文选择印度-欧亚大陆侧向碰撞带内NEE走向的始-渐新世岩浆岩带作为研究对象,详细收集、梳理该岩浆岩带内现有测年结果中的继承锆石U-Pb年代学和Hf同位素数据,采用统计分析方法,尝试探讨被该岩浆岩带穿越的扬子、印支、保山、腾冲地块的构造-岩浆事件及其序列,对比分析其大地构造亲缘性和地块拼贴历史。继承锆石U-Pb年龄频率分布和Hf同位素数据统计结果显示,扬子与印支地块记录了相同的晋宁期、加里东期、印支期构造-岩浆事件,而腾冲与保山地块则记录了相同的加里东期、印支期构造-岩浆事件。结合现有地层学、古生物和古地磁等方面数据,我们提出扬子-印支与腾冲-保山地块作为两个具有不同结晶基底的独立地块,分别就位于古生代-早中生代古大洋(原、古特提斯洋)的两侧,该大洋板块双向俯冲于这两个地块之下,在两个地块内留下了可高度对比的构造-岩浆事件。由此提出,正向碰撞带班公湖-怒江缝合带内完备的地质记录与侧向碰撞带之间的关联、哀牢山洋的构造属性等是值得深入探究的重大问题。  相似文献   

17.
In this paper we present the results of a generalization of paleomagnetic data for the territory of the Siberian craton and its folded framing that were obtained during the last fifteen years. We propose a new version of the apparent polar wander path for the Siberian continental plate, including the interval from the Mesoproterozoic–Neoproterozoic boundary up to the end of the Mesozoic. The constructed path forms the basis for new concepts on the tectonics of the Siberian paleocontinent and the paleooceans that surrounded it. We present a series of paleotectonic reconstructions based on paleomagnetic data, which not only displays the paleogeographic position of the Siberian continent, but also reveals the features of the tectonic evolution of its margins during the last billion years. In particular it has been established that large-scale strike-slip motions played an important role in the tectonic regime of the continental plate at all stages of its development.  相似文献   

18.
作者由柴达木地块上得到的晚石炭世灰岩和砂岩的古地磁资料表明,该地块在晚石炭世时位于北纬26°,与当时的塔里木地块相邻或可能是塔里木地块的一部分。因而,柴达木地块应是安哥拉古陆的南界。晚石炭世之后,柴达木地块上的采点相对于塔里木地块有过运动,表现为柴达木地块相对于塔里术地块沿阿尔金断层向东移动和作顺时针旋转。  相似文献   

19.
A detailed kinematic study in the Piedras–Girardot area reveals that approximately 32 km of ENE–WSW oblique convergence is accommodated within a northeast-trending transpressional shear zone with a shear strain of 0.8 and a convergence factor of 2. Early Campanian deformation is marked by the incipient propagation of northeast-trending faults that uplifted gentle domes where the accumulation of sandy units did not take place. Maastrichtian unroofing of a metamorphic terrane to the west is documented by a conglomerate that was deformed shortly after deposition developing a conspicuous intragranular fabric of microscopic veins that accommodates less than 5% extension. This extensional fabric, distortion of fossil molds, and a moderate cleavage accommodating less than 5% contraction, developed concurrently, but before large-scale faulting and folding. Paleogene folding and southwestward thrust sheet propagation are recorded by syntectonic strata. Neogene deformation took place only in the western flank of this foldbelt. The amount, direction, and timing of deformation documented here contradict current tectonic models for the Cordillera Oriental and demand a new tectonic framework to approach the study of the structure of the northern Andes. Thus, an alternative model was constructed by defining three continental blocks: the Maracaibo, Cordillera Central, and Cordillera Oriental blocks. Oblique deformation imposed by the relative eastward and northeastward motion of the Caribbean Plate was modeled as rigid-body rotation and translation for rigid blocks (derived from published paleomagnetic and kinematic data), and as internal distortion and dilation for weak blocks (derived from the Piedras–Girardot area). This model explains not only coeval dextral and sinistral transpression and transtension, but also large clockwise rotation documented by paleomagnetic studies in the Caribbean–northern Andean region.  相似文献   

20.
New micropaleontological and paleomagnetic data were obtained by studying core samples of Cenozoic continental deposits from two boreholes drilled in the south of Tyumen oblast (Western Siberia). Palynological assemblages in deposits of the Tavda (upper part), Novomikhailovka, Turtas, Abrosimovka, Tobolsk, Smirnovka, and Suzgun formations were described. Deposits of these formations are enriched in spore-pollen assemblages, which can be correlated with assemblages of regional palynozones of the West Siberian Plain. Ostracods were described in Quaternary deposits. On the basis of biostratigraphic and paleomagnetic data, the Late Eocene (Priabonian)–Holocene age of deposits was substantiated. For the first time, beds with dinocysts of genus Pseudokomewuia were identified in deposits of the Turtas Formation (Upper Oligocene) of the Ishim lithofacial area. In total, nine regional magnetozones were distinguished in the paleomagnetic section. On the basis of palynological and paleomagnetic data, sections of two boreholes were correlated, and hiatuses in sedimentation were revealed. A large hiatus is at the Eocene-Oligocene boundary (Western Siberia): the Lower Oligocene Atlym Horizon and Miocene–Pliocene and Eopleistocene sediments are missing. The Oligocene interval of the section is represented in a reduced volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号