首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To understand the seasonal variations of water use efficiency (WUE) of coniferous plantation in the subtropical monsoon area, the experiment was conducted in 2003 and 2004 which presented two distinguished climatic conditions (severe summer drought in 2003 and normal climatic condition in 2004). The water stress influenced WUE greatly, which caused a special seasonal WUE pattern. WUE reached the minimum in summer drought and the maximum in winter, which was contrary to the variation of gross primary production (GPP) and canopy evaporation (Fw). In winter, GPP and Fw increased along with the increasing of air temperature and vapor pressure deficit (VPD), with the similar increasing rate. However, in drought summer, there was an adverse trend among GPP/Fw and air temperature and VPD, and the decreasing rate of GPP was far larger than that of Fw. In summer, the conservation of WUE was changed because of the environmental factors, resulting in the decreasing WUE. The photosynthesis and transpiration of vegetation were mainly controlled by the environmental factors in winter, and the impact of stomatal regulation was relatively weak. In summer, Fw was mainly controlled by the stomatal closure and GPP by both environmental factors and stomatal closure.  相似文献   

2.
As one component of ChinaFLUX, the measurement of CO2 flux using eddy covariance over subtropical planted coniferous ecosystem in Qianyanzhou was conducted for a long term. This paper discusses the seasonal dynamics of net ecosystem exchange (NEE), ecosystem respiration (RE) and gross ecosystem exchange (GEE) between the coniferous ecosystem and atmosphere along 2003 and 2004. The variations of NEE, RE and GEE show obvious seasonal variabilities and correlate to each other, i.e. lower in winter and drought season, but higher in summer; light, temperature and soil water content are the main factors determining NEE; air temperature and water vapor pressure deficit (VPD) influence NEE with stronger influence from VPD. Under the proper light condition, drought stress could decrease the temperature range for carbon capture in planted coniferous, air temperature and precipitation controlled RE; The NEE, RE, and GEE for planted coniferous in Qianyanzhou are ?387.2 g C·m?2 a?1, 1223.3 g C·m?2 a?1, ?1610.4 g C·m?2 a?1 in 2003 and ?423.8 g C·m?2 a?1, 1442.0 g C·m?2 a?1, ?1865.8 g C·m?2 a?1 in 2004, respectively, which suggest the intensive ability of plantation coniferous forest on carbon absorbing in Qianyanzhou.  相似文献   

3.
Liu  Yunfen  Yu  Guirui  Wen  Xuefa  Wang  Yinghong  Song  Xia  Li  Ju  Sun  Xiaomin  Yang  Fengting  Chen  Yongrui  Liu  Qijing 《中国科学:地球科学(英文版)》2006,49(2):99-109

As one component of ChinaFLUX, the measurement of CO2 flux using eddy covariance over subtropical planted coniferous ecosystem in Qianyanzhou was conducted for a long term. This paper discusses the seasonal dynamics of net ecosystem exchange (NEE), ecosystem respiration (RE) and gross ecosystem exchange (GEE) between the coniferous ecosystem and atmosphere along 2003 and 2004. The variations of NEE, RE and GEE show obvious seasonal variabilities and correlate to each other, i.e. lower in winter and drought season, but higher in summer; light, temperature and soil water content are the main factors determining NEE; air temperature and water vapor pressure deficit (VPD) influence NEE with stronger influence from VPD. Under the proper light condition, drought stress could decrease the temperature range for carbon capture in planted coniferous, air temperature and precipitation controlled RE; The NEE, RE, and GEE for planted coniferous in Qianyanzhou are −387.2 g C·m−2 a−1, 1223.3 g C·m−2 a−1, −1610.4 g C·m−2 a−1 in 2003 and −423.8 g C·m−2 a−1, 1442.0 g C·m−2 a−1, −1865.8 g C·m−2 a−1 in 2004, respectively, which suggest the intensive ability of plantation coniferous forest on carbon absorbing in Qianyanzhou.

  相似文献   

4.
CO2 flux was measured continuously in a wheat and maize rotation system of North China Plain using the eddy covariance technique to study the characteristic of CO2 exchange and its response to key environmental factors. The results show that nighttime net ecosystem exchange (NEE) varied exponentially with soil temperature. The temperature sensitivities of the ecosystem (Q 10) were 2.94 and 2.49 in years 2002–2003 and 2003–2004, respectively. The response of gross primary productivity (GPP) to photosynthetically active radiation (PAR) in the crop field can be ex-pressed by a rectangular hyperbolic function. Average A max and α for maize were more than those for wheat. The values of α increased positively with leaf area index (LAI) of wheat. Diurnal variations of NEE were significant from March to May and from July to September, but not remarkable in other months. NEE, GPP and ecosystem respiration (R ec) showed significantly seasonal variations in the crop field. The highest mean daily CO2 uptake rate was ?10.20 and ?12.50 gC·m?2?d?1 in 2003 and 2004, for the maize field, respectively, and ?8.19 and ?9.50 gC?m?2·d?1 in 2003 and 2004 for the wheat field, respectively. The maximal CO2 uptake appeared in April or May for wheat and mid-August for maize. During the main growing seasons of winter wheat and summer maize, NEE was controlled by GPP which was chiefly influenced by PAR and LAI. R ec reached its annual maximum in July when R ec and GPP contributed to NEE equally. NEE was dominated by R ec in other months and temperature became a key factor controlling NEE. Total NEE for the wheat field was ?77.6 and ?152.2 gC·m?2·a?1 in years 2002–2003 and 2003–2004, respectively, and ?120.1 and ?165.6 gC·m?2·a?1 in 2003 and 2004 for the maize field, respectively. The cropland of North China Plain was a carbon sink, with annual ?197.6 and ?317.9 gC·m?2·a?1 in years 2002–2003 and 2003–2004, respectively. After considering the carbon in grains, the cropland became a carbon source, which was 340.5 and 107.5 gC·m?2·a?1 in years 2002–2003 and 2003–2004, respectively. Affected by climate and filed managements, inter-annual carbon exchange varied largely in the wheat and maize rotation system of North China Plain.  相似文献   

5.
Continuous measurement of carbon dioxide exchange using the eddy covariance (EC) technique is made at the Qianyanzhou mid-subtropical planted forest as part of the ChinaFLUX network. Qianyanzhou planted forest is affected by typical subtropical continental monsoon climate. It has plentiful water and heat resource but is in inconsistency of its seasonal distribution in the mid-subtropical region, thus seasonal drought frequently occurs in this planted forest. In this study, seasonal drought effect on ecosystem carbon sequestration was analyzed based on net ecosystem productivity (NEP), ecosystem respiration (RE) and gross ecosystem productivity (GEP) at the month scale in 2003 and 2004. In this drought-stressed planted forest, ecosystem carbon sequestration showed a clear seasonality, with low rates during seasonal drought and in winter. The declining degree of ecosystem carbon sequestration under the seasonal drought condition was determined by the accumulation of soil moisture deficits and a co-occurrence of high temperatures. Different drought effects are expected for RE and GEP. The net effect of ecosystem carbon balance depends on how these two quantities are affected relatively to each other. Summer drought and heat wave are two aspects of weather that likely play an important part in the annual NEP of forest in this region.  相似文献   

6.
Continuous measurement of carbon dioxide exchange using the eddy covariance (EC) technique is made at the Qianyanzhou mid-subtropical planted forest as part of the ChinaFLUX net-work. Qianyanzhou planted forest is affected by typical subtropical continental monsoon climate. It has plentiful water and heat resource but is in inconsistency of its seasonal distribution in the mid-subtropical region, thus seasonal drought frequently occurs in this planted forest. In this study, seasonal drought effect on ecosystem carbon sequestration was analyzed based on net ecosystem productivity (NEP), ecosystem respiration (RE) and gross ecosystem productivity (GEP) at the month scale in 2003 and 2004. In this drought-stressed planted forest, ecosystem carbon sequestration showed a clear seasonality, with low rates during seasonal drought and in winter. The declining degree of ecosystem carbon sequestration under the seasonal drought condition was determined by the accumulation of soil moisture deficits and a co-occurrence of high temperatures. Different drought effects are expected for RE and GEP. The net effect of ecosystem carbon balance depends on how these two quantities are affected relatively to each other. Summer drought and heat wave are two aspects of weather that likely play an important part in the annual NEP of forest in this region.  相似文献   

7.
Hiroki Oue 《水文研究》2005,19(8):1567-1583
Observations made in a paddy field were analysed to show the influences of meteorological and vegetational factors on the crop's energy budget. Energy budget in the paddy field was characterized by the major partitioning to latent heat flux LE and by the negative Bowen ratio B mostly in the afternoon. Canopy resistance rc, estimated with the Penman–Monteith equation, was related to the influences of solar radiation SR, vapour pressure deficit VPD and plant height. The results demonstrated that rc could not directly account for B but that critical canopy resistance rcc, defined as the canopy resistance when B = 0, could be used to standardize rc, and that rcrcc proved to be a good parameter to account for B. Influences of bulk stomatal response on energy partitioning were assessed as follows: the Bowen ratio dropped below zero, while the bulk stomatal aperture dwindled with the increase of VPD. In addition, stomata of a big leaf acted to promote the partitioning to LE against the rise of SR in the condition of higher VPD. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Canopy conductance (gc) is a crucial parameter in simulating evapotranspiration and modulating water exchange, but its variation mechanism has regional uncertainties and complex environmental co-controls. In addition, the effect of extreme rainfall on gc cannot be ignored under the changing climate. Here, we investigated the variation and environmental controls on gc and the effect of extreme rainfall events in a Cunninghamia lanceolata forest across the subtropical area of Southern China. In July 2020, an extreme rainstorm hit the source area of the Xin'an River, with the cumulative rainfall on July 7 and 8 reaching 216.6 mm. The thermal diffusion probe method was used to measure the density of sap flow, and the environmental factors such as air temperature (Ta), net solar radiation (Rn) and soil water content (SWC) were monitored during the growing seasons of 2020 and 2021. Ultimately, gc obtained by the Penman-Monteith equation was adopted since the result from the Köstner equation was overestimated. gc showed a unimodal curve on the diurnal scale, and this characteristic was more obvious after the extreme rainfall. Daily gc appeared a fluctuating pattern with a maximum in summer. gc was simultaneously affected by Ta, Rn, water vapour pressure difference (VPD), SWC, among which Ta was the most significant driving factor at both the diurnal and daily timescales. The regulation of Ta, VPD and SWC on gc had obvious thresholds, and the most definite response mode was VPD (2020: 1.25 kPa; 2021: 0.95 kPa). SWC and Ta were the dominant factors after the rainfall period, and the promotion effect of VPD on post-rainy days turned to inhibition effect on typical sunny days. These findings will further reveal the water exchange mechanism between atmosphere and vegetation and impacts of environmental factors in subtropical coniferous forests, especially after the extreme rainfall events.  相似文献   

9.
The impacts of temperature, photosynthetic active radiation (PAR) and vapor pressure deficit (VPD) on CO2 flux above broad-leaved Korean pine mixed forest in the Changbai Mountains were studied based on eddy covariance and meteorological factors measurements.The results showed that, daytime CO2 flux was mainly controlled by PAR and they fit Michaelis-Menten equation. Meanwhile VPD also had an influence on the daytime flux. Drier air reduced the CO2 assimilation of the ecosystem, the drier the air, the more the reduction of the assimilation. And the forest was more sensitive to VPD in June than that in July and August. The respiration of the ecosystem was mainly controlled by soil temperature and they fit exponential equation. It was found that this relationship was also correlated with seasons; respiration from April to July was higher than that from August to November under the same temperature. Daily net carbon exchange of the ecosystem and the daily mean air temperature fit exponential equation. It was also found that seasonal trend of net carbon exchange was the result of comprehensive impacts of temperature and PAR and so on. These resulted in the biggest CO2 uptake in June and those in July and August were next. Annual carbon uptake of the forest ecosystem in 2003 was -184 gC. m-2.  相似文献   

10.
利用Landsat系列卫星的MSS、TM和ETM+遥感数据,计算了研究区的归一化植被指数(NDVI),并以此为湿地植被活动的指标,研究1973 2011年间该湿地植被变化特征及年内季节变化特征,揭示植被活动在年内和年际变化的控制因子以及湿地植被对于气候变化、人类活动和极端干旱事件的响应特征.结果表明:(1)近40年来南四湖湿地植被各个季节的变化特征不尽相同.春季NDVI呈现先降低后增加的特征,主要先后受到研究区围垦、渔业养殖等人为活动和气候变化(增温)的影响;夏季和冬季的NDVI呈现显著降低趋势,主要受到围垦、渔业养殖等人类活动的影响;秋季NDVI的变化不显著.(2)年内季节变化方面,湿地植被面积和NDVI都呈现单峰的变化特征,从春季开始增加,在夏季末(全年的第202和205 d)达到最大值,然后开始下降,到冬季降至最低.植被的年内季节变化特征主要受到月均温度的控制.(3)干旱在一定程度上不是湖泊湿地NDVI增加的限制因子.干旱导致湖泊水位下降,滨湖滩地及湖底露出,可能会促进湿地植被生长和植被面积的扩大,使得湿地NDVI增加.  相似文献   

11.
Some aspects of the monsoon circulation and monsoon rainfall   总被引:1,自引:0,他引:1  
Summary The south Asian summer monsoon from June to September accounts for the greater part of the annual rainfall over most of India and southeast Asia. The evolution of the summer and winter monsoon circulations over India is examined on the basis of the surface and upper air data of stations across India. The salient features of the seasonal reversals of temperature and pressure gradients and winds and the seasonal and synoptic fluctuations of atmospheric humidity are discussed. The space-time variations of rainfall are considered with the help of climatic pentad rainfall charts and diagrams. The rainfall of several north and central Indian stations shows a minimum around mid-August and a maximum around mid-February which seem to be connected with the extreme summer and winter positions of the ITCZ and the associated north-south shifts in the seasonal circulation patterns. Attention is drawn to the characteristic features of the monsoon rainfall that emerge from a study of daily and hourly rainfall of selected stations. Diurnal variations of temperature, pressure, wind and rainfall over the monsoon belt are briefly treated.  相似文献   

12.
ABSTRACT

This study investigates changes in seasonal runoff and low flows related to changes in snow and climate variables in mountainous catchments in Central Europe. The period 1966–2012 was used to assess trends in climate and streamflow characteristics using a modified Mann–Kendall test. Droughts were classified into nine classes according to key snow and climate drivers. The results showed an increase in air temperature, decrease in snowfall fraction and snow depth, and changes in precipitation. This resulted in increased winter runoff and decreased late spring runoff due to earlier snowmelt, especially at elevations from 1000 to 1500 m a.s.l. Most of the hydrological droughts were connected to either low air temperatures and precipitation during winter or high winter air temperatures which caused below-average snow storages. Our findings show that, besides precipitation and air temperature, snow plays an important role in summer streamflow and drought occurrence in selected mountainous catchments.  相似文献   

13.
Drought is one of the severe natural disasters to impact human society and occurs widely and frequently in China,causing considerable damage to the living environment of humans.The Yellow River basin(YRB)of China shows great vulnerability to drought in the major basins;thus,drought monitoring in the YRB is particularly important.Based on monthly data of 124 meteorological stations from 1961 to 2015,the Standardized Precipitation Evapotranspiration Index(SPEI)was used to explore the temporal and spatial patterns of drought in the YRB.The periods and trends of drought were identified by Extreme-point Symmetric Mode Decomposition(ESMD),and the research stages were determined by Bernaola-Galvan Segmentation Algorithm(BGSA).The annual and seasonal variation,frequency and intensity of drought were studied in the YRB.The results indicated that(1)for the past 55 years,the drought in the YRB has increased significantly with a tendency rate of-0.148(10 a)~(-1),in which the area Lanzhou to Hekou was the most vulnerable affected(-0.214(10 a)~(-1));(2)the drought periods(2.9,5,10.2 and 18.3 years)and stages(1961–1996,1997–2002 and 2003–2015)were characterized and detected by ESMD and BGSA;(3)the sequence of drought frequency was summer,spring,autumn and winter with mean values of 71.0%,47.2%,10.2%and 6.9%,respectively;and(4)the sequence of drought intensity was summer,spring,winter and autumn with mean values of 0.93,0.40,0.05 and 0.04,respectively.  相似文献   

14.
太湖梅梁湾与五里湖浮游植物群落的比较   总被引:19,自引:4,他引:15  
富营养化和风浪是影响大型浅水湖泊浮游植物群落的重要因素,本文于2003年10月至2004年9月对太湖梅梁湾和五里湖理化环境因子(水温、透明度值、悬浮质浓度和氮、磷营养盐浓度)和浮游植物群落进行了逐月监测,通过对两个湖区理化因子和浮游植物群落结构在周年内季节变化的比较研究,探讨富营养化程度以及风浪对浮游植物群落结构的影响,结果为:(1)梅梁湾由于受风浪影响悬浮物含量较高,五里湖则富营养化水平更高.(2)周年内五里湖浮游植物平均生物量(6.85 mg/L)高于梅梁湾的平均生物量(4.99 mg/L),两个湖区都呈现夏秋高峰、冬季低谷的变化特征.梅梁湾浮游植物群落季节演替的模式基本为:冬季硅藻(小环藻属Cyclotella spp.)和隐藻(隐藻属Cryptomonas spp.)-春季绿藻(细丝藻属Planctonema sp.)-夏季绿藻(绿球藻目Chlorococcales种类)和蓝藻(微囊藻属Microcystis spp.和浮游蓝丝藻属Planktothrix spp.)-初秋蓝藻(微囊藻属)和硅藻(浮游直链硅藻Aulacoseira spp.)-秋季隐藻(隐藻属).五里湖的季节演替模式没有梅梁湾明显,全年隐藻(隐藻属)都占优势,在此基础上,秋冬季硅藻(小环藻属和浮游直链硅藻属)占优势,裸藻(裸藻属Euglena spp.)在冬春季占优势,绿藻(绿球藻目种类和团藻目衣藻属Chlamydomonas spp.)在整个春季和初夏的优势地位在夏季被蓝藻(微囊藻属和浮游蓝丝藻属)所取代.群落构成的差异是浮游植物对两个湖区不同风浪条件和富营养化水平的响应结果.(3)通过与PEG(Plankton Ecology Group)模式的比较,梅梁湾和五里湖浮游植物群落的季节演替主要受水温、光照、营养盐(氮、磷)浓度和浮游动物牧食等因子的影响,因此,大型富营养化浅水湖泊浮游植物群落演替规律需要进一步的研究.  相似文献   

15.
大气湿沉降向太湖水生生态系统输送氮的初步估算   总被引:30,自引:3,他引:27  
测定和分析了2002年7月至2003年6月太湖周边地区太湖站、拖山岛、东山站、无锡、苏州、湖州、常州等7个站点大气降水化学组成,计算了水气界面TN、NH4 -N、NO3--N、T1N、TON的湿沉降率。结果表明,大气降水的TN浓度变化范围为2.06±0.30(常州)-3.71±0.43(拖山岛),太湖流域大气降水已呈富营养化水质的特征;大气降水TN、NH4 -N、NO3--N、TIN、TON的年均湿沉降率分别为2806.75kg/km2、1458.81kg/km2、631.67kg/km2、2090.48kg/km2和716.28kg/km2;每年由湿沉降直接进入太湖水体的TN约为6562.2t,NH4 -N为3410.7t,NO3--N为1476.8t,TIN为4887.5t,TON为1674.7t;TN占入湖河道年输入污染物总量的13.6%.大气湿沉降中,TIN对TN的贡献比较大,平均约占TN的78.78%.TIN的湿沉降率具有季节性分布,夏季高,春季次之,冬秋季低。这种现象无疑对太湖水体的蓝藻爆发和富营养化具有潜在的促进作用.  相似文献   

16.
Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28′E and 42°24′N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of F NEE, F GPP and R E; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux.LAI and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter.The forest was a net sink of atmospheric CO2 and sequestered ?449 g C·m?2 during the study period; ?278 and ?171 gC·m?2 for 2003 and 2004 respectively. F GPP and F RE over 2003 and 2004 were ?1332, ?1294 g C·m?2. and 1054, 1124 g C·m?2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2.There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of F GPP, and 60.4, 62.1% of R E of the entire year.  相似文献   

17.

Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28′E and 42°24′N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of F NEE, F GPP and R E; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux.

LAI and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter.

The forest was a net sink of atmospheric CO2 and sequestered −449 g C·m−2 during the study period; −278 and −171 gC·m−2 for 2003 and 2004 respectively. F GPP and F RE over 2003 and 2004 were −1332, −1294 g C·m−2. and 1054, 1124 g C·m−2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2.

There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of F GPP, and 60.4, 62.1% of R E of the entire year.

  相似文献   

18.
Aggregate stability, one of the main factors controlling soil erodibility, varies over time. Knowledge of its variation would help to identify better soil management practices. In 10 soils from central Greece devoted to cereal cropping, seasonal wet aggregate stability (WAS) fluctuations were investigated over a period of two successive years. The wet‐sieving technique of air‐dried aggregates was used for WAS determinations, according to a test resulting in an instability index calculation. Over the first year, when typical Mediterranean climatic conditions dominated, WAS varied according to a nearly cyclic pattern, from a low in winter or early‐spring months to a high in summer months. The instability index varied from a high between 123–152% of annual average to a low between 58–83% of annual average. Total monthly rainfall (TR) and mean monthly air temperature (MAT) strongly correlated with seasonal WAS. Their ratio (TR/MAT, ombrothermic ratio) has been proved to be a good predictor of structural stability throughout the year, for most of the soils studied. Possible mechanisms deteriorating aggregation seemed to be raindrop impact, repeated soil drying and wetting and repeated soil freezing and thawing, while possible mechanisms promoting aggregation seemed to be soil drying and warming and biological activity. Over the second year, severe climatic inconsistencies complicated the seasonal pattern of WAS response. From January to March, WAS unexpectedly increased, obtaining its maximum value for most of the soils in March, then it varied inconsistently until October and thereafter decreased, obtaining its minimum value in December for all soils. The instability index varied from a high between 130–196% of annual average to a low between 61–83% of annual average. Uneven seasonal distribution of climatic characteristics and extreme events decisively modified the typical for Mediterranean conditions seasonal WAS variation pattern. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Vegetation indices derived from remote sensing data still remain to be used for analysing the relationship between climatic factors and vegetation seasonal phenology in middle latitudes with subtropical conditions forests such as the Canarian laurel forest. The Garajonay National Park, located in the La Gomera Island, protects one of the best preserved examples of the Macaronesian laurel forest, due to the cloud banks produced by trade winds, with rainfall and temperature field data showing a clear Mediterranean climatic pattern. We have analysed seasonal vegetation indices trend for different types of forest inside the Garajonay National Park using normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) products derived from moderate resolution imaging spectrometer (MODIS) Aqua data for two hydrological years (October 2003 to September 2005) in relationship with the existing field climatic data: rainfall, net fog water and temperature. Maximum annual EVI maps show the highest vegetation indices in the laurel forest of La Gomera that occur during the dry season, mainly in late spring to early summer, with EVI temporal profiles showing that valley‐bottom laurel forest areas have the most clear seasonal trend. Difference maps of EVI values between months with the lowest and highest rainfall of each hydrological year clearly confirm the highest photosynthetic activity in the laurel forest during the dry season. In addition, these forests show a significative temporal correlation between EVI values and the temperature in the forest (p < 0·001). Our results prove the absence of summer drought stress in the laurel forest implying that the fog drip income is high enough to maintain enough soil moisture to allow the forest fully transpire when temperatures are higher. As the laurel forest of La Gomera occurs in the main recharge area of the island's aquifer system, our analysis of EVI data suggests that fog drip constitutes a key hydrological factor. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This study investigates reference evapotranspiration (ET0) trends in China from 1960 to 2012 based on the Penman–Monteith equation and gridded meteorological measurements. Under the combined impacts of factors influencing ET0 (i.e., net radiation [RN], mean temperature [TAVE], vapour pressure deficit [VPD], and wind speed [WND]), both seasonal and annual ET0 for the whole China and more than half of the grids decreased over the past 53 years. The attribution analyses suggest that for the whole China, the WND is responsible for annual and seasonal ET0 decreases (excluding summer, where RN is responsible). Across China, the annual cause of WND with the largest spatial extent (43.1% of grids) mainly derives from north of the Changjiang River Basin (CJRB), whereas VPD (RN) as a cause is dispersedly distributed (within and to the south of the CJRB). In summer, RN is dominant in more than half of the grids, but the dominance of VPD and WND accounts for approximately 90% of grids during the remaining seasons. Finally, the correlation coefficients between ET0 and the Atlantic Oscillation (AO), North AO, Indian Ocean Dipole (IOD), Pacific Decadal Oscillation (PDO), and El Niño Southern Oscillation (ENSO) indices with different lead times are calculated. For the whole China, annual and seasonal ET0 always significantly correlate with these indices (excluding the IOD) but with varied lead times. Additionally, near half of the grids show significant and maximum (i.e., the largest one between ET0 and a certain index with a lead time of 0–3 seasons) correlation coefficients of ET0 with PDO in spring and summer, ENSO in autumn, and AO in winter. This study is not only significant for understanding ET0 changes, but it also provides preliminary and fundamental reference information for ET0 prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号