首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Czechoslovak bituminous coals rich in inertinite contain a considerable amount of inertinite with a reflectance range displaced towards and partly overlapping that of the vitrinite reflectance. Together with the existence of the transitional maceral group of semivitrinite, this causes difficulties in maceral analysis as well as in the technological evaluation of these coals. The relationship between the volatile matter of vitrinite and its reflectance is very close for both vitrinite- and inertinite-rich coals. The analogous relationship between the vitrinite reflectance and the volatile matter of inertinite displays a considerable scatter due to the effects of some higher values of the volatile matter of inertinite — related to the presence of inertinite with relatively low reflectance. The results of investigations into the coking properties of coals rich in inertinite, however, do not supply any proof of a higher fusibility of these coals.  相似文献   

2.
Secretinite—a maceral of the inertinite group as recognized by the ICCP in 1996—is a noncellular maceral of seed fern origin. New reflectance data indicate that this maceral has primary anisotropy with bireflectances of 0.4% to 0.9% in high-volatile B bituminous (Ro=0.6%) Carboniferous coal of North America. The highest reflectance is in cross-section as opposed to longitudinal section. Characteristic feature of secretinite is the virtual absence of Si and Al, unlike that in associated vitrinite. This indicates the absence of submicron aluminosilicates in secretinite and their presence in vitrinites. Secretinite is highly aromatic as indicated by low O/C ratios and high contribution of aromatic hydrogen bands detected by FTIR analysis.  相似文献   

3.
Thermally metamorphosed Tertiary age coals from Tanjung Enim in South Sumatra Basin have been investigated by means of petrographic, mineralogical and chemical analyses. These coals were influenced by heat from an andesitic igneous intrusion. The original coal outside the metamorphosed zone is characterized by high moisture content (4.13–11.25 wt.%) and volatile matter content (> 40 wt.%, daf), as well as less than 80 wt.% (daf) carbon and low vitrinite reflectance (VRmax = 0.52–0.76%). Those coals are of subbituminous and high volatile bituminous rank. In contrast the thermally metamorphosed coals are of medium-volatile bituminous to meta-anthracite rank and characterized by low moisture content (only < 3 wt.%) and volatile matter content (< 24 wt.%, daf), as well as high carbon content (> 80 wt.%, daf) and vitrinite reflectance (VRmax = 1.87–6.20%). All the studied coals have a low mineral matter content, except for those which are highly metamorphosed, due to the formation of new minerals.The coalification path of each maceral shows that vitrinite, liptinite and inertinite reflectance converge in a transition zone at VRmax of around 1.5%. Significant decrease of volatile matter occurs in the zone between 0.5% and 2.0% VRmax. A sharp bend occurs at VRmax between 2.0% and 2.5%. Above 2.5%, the volatile matter decreases only very slightly. Between VRr = 0.5% and 2.0%, the carbon content of the coals is ascending drastically. Above 2.5% VRr, the carbon content becomes relatively stable (around 95 wt.%, daf).Vitrinite is the most abundant maceral in low rank coal (69.6–86.2 vol.%). Liptinite and inertinite are minor constituents. In the high rank coal, the thermally altered vitrinite composes 82.4–93.8 vol.%. Mosaic structures can be recognized as groundmasss and crack fillings. The most common minerals found are carbonates, pyrite or marcasite and clay minerals. The latter consist of kaolinite in low rank coal and illite and rectorite in high rank coal. Change of functional groups with rank increase is reflected most of all by the increase of the ratio of aromatic C–H to aliphatic C–H absorbances based on FTIR analysis. The Oxygen Index values of all studied coals are low (OI < 5 mg CO2/g TOC) and the high rank coals have a lower Hydrogen Index (< 130 mg HC/g TOC) than the low rank coals (about 300 mg HC/g TOC). Tmax increases with maturity (420–440 °C for low rank coals and 475–551 °C for high rank coals).Based on the above data, it was calculated that the temperature of contact metamorphism reached 700–750 °C in the most metamorphosed coal.  相似文献   

4.
The quantitative maceral study of the Queen seam from Mailaram coalfield of Godavari valley has displayed alternate coal bands rich in vitrinite/liptinite or inertinite. The random vitrinite reflectance (Ro max. %) of these coals, from top part ranges from 0.50 to 0.64%. However, the bottom part of the seam has indicated lower reflectance, between 0.49 and 0.52%. Thus, the Queen seam, in general, has attained high volatile bituminous C rank. The study indicates that the depositional site has been a slowly sinking basin that witnessed alternate dry (oxidizing) and wet (reducing) spells. This subsequently caused fluctuation in water table of the basin and the formation of oxic and anaoxic moor condition, where accumulated vegetal resource transformed into mixed and fusic coal types in due course of time. Being high in liptinite and vitrinite contents and low mineral matter, the Queen seam of Mailaram coalfield has high economic potential.  相似文献   

5.
Results are given in the petrography of Greek coals collected from most of the major coal-bearing basins in Greece.Rank was determined by measuring reflectances on the maceral varieties eu-ulminite A and eu-ulminite B and on the maceral textinite. Reflectances obtained from these components indicate a coalification stage of brown coal for all samples. Within this group of samples there is, however, a fairly wide scatter of reflectance values indicating for some of them the transition zone from peat to brown coal and for others a coalification stage close to the transition into bituminous coals. Reflectances obtained from eu-ulminite A and eu-ulminite B were found to correlate well with chemical rank parameters such as volatile matter and calorific value.Composition was determined by maceral analysis. The coals are in general characterized by low amounts of macerals of the inertinite group, low to intermediate amounts of macerals of the liptinite group and high amounts of macerals of the huminite group. Within the latter group densinite, attrinite, eu-ulminite and textinite make up the bulk of the samples.Typical macerals observed in the coals are illustrated by two black and white and three colour plates.Cluster analysis based on maceral distribution, mineral matter and reflectance indicates that the samples studied can be divided into three major groups. The first one is dominated by eu-ulminite and densinite with relatively high reflectances. The second is dominated by attrinite, textinite and texto-ulminite with somewhat lower reflectances. The third is represented by a single sample in which textinite and resinite are the most abundant macerals. This sample also has the lowest reflectance.  相似文献   

6.
A detailed macro- and micro-petrological investigation of 8 coal seam profiles of Eocene age from the sub-Himalayan zone of Jammu was undertaken in order to characterize them petrographically and to focus on their evolution. The quantitative data suggest that these coals are vitrinite rich, with low concentrations of inertinite and rare occurrences of liptinite. According to microlithotype concentration these coals may be characterized as vitrinite rich, with minor amounts of clarite, vitrinertite and trimacerite. The dominant minerals are clays, siderite and pyrite (occurring mostly as disseminations, cavity filling and in framboidal state). These coals are vitric in type, low volatile bituminous in rank and ashy in grade.The petrographic character and the presence of teleutospores suggest that, similar to other Tertiary coal deposits in the world, the angiosperm flora contributed chiefly to the development of coal facies in the area. The maceral and microlithotype composition shows that these coals originated from the low forest and undisturbed (in situ) peat in foreland basins under limno-telmatic depositional conditions. The water was brackish with regular influxes of fresh water.  相似文献   

7.
An attempt has been made to study the petro-chemical characteristics of some high sulphur sub-bituminous coal samples from Makum coalfield, Assam, India. The proximate and ultimate analyes were carried out and forms of sulphur were determined and their relationships with the Maceral constituents (vitrinite, liptinite, and inertinite) were investigated. The macerals (vitrinite+liptinite+inertinite) have significant relationships (R2>0.500) with volatile matter and carbon, whereas weak correlations were seen with rest of the physico-chemical characteristics of the coals. The study reveals that these coals are rich in vitrinites and sulphur and are aromatic in nature. These coals have good hydrocarbon potential.  相似文献   

8.
The oil-generating potential of coals and other organic-rich sediments from the Late Oligocene–Early Miocene Nyalau Formation, the offshore extension of which is believed to be a major source rock, is evaluated. Coals of the Nyalau Formation are typically dominated by vitrinite, with moderate and low amounts of exinite and inertinite, respectively. Significant amounts of clay minerals are present in these coals and those containing between 15 to 65% mineral matter by volume are termed carbargilite. The samples analysed range from sub-bituminous to high-volatile bituminous rank, possessing vitrinite reflectance in the range 0.42% to 0.72%. Tmax values range from 425°–450°C which is in good agreement with vitrinite reflectance data. Good oil-generating potential is anticipated from these coals and carbargilites with moderate to rich exinite content (15–35%). This is supported by their high hydrogen indices of up to 400 mgHC/gTOC, Py–GC (S2) pyrograms with n-alkane/alkene doublets extending beyond nC30, and their being in the early to mid-mature oil-window range. Petrographically, the most significant evidence of the oil-generating potential of these coals is the generation of petroleum-like materials (exsudatinite) visible under the microscope. Exsudatinite is a secondary maceral, commonly considered to represent the very beginning of oil generation in coal, which is shown here to also have an important role to play in hydrocarbon expulsion. The precursor of exsudatinite in these coals is the maceral bituminite which readily expels or mobilizes to hydrocarbon-like material in the form of oil smears and/or exsudatinite as observed under the microscope. The maceral bituminite is considered to play a major generative role via early exsudatinite generation, which is considered to facilitate the overall expulsion process in coaly source rocks.  相似文献   

9.
The chemical composition of the organic matter in the principal macerals of high-volatile bituminous coals from the Gunnedah Basin, New South Wales (Rvmax of telocollinite between 0.6 and 1.1%) has been evaluated from polished section specimens using an electron microprobe technique. Highest proportions of carbon occur in the inertinite macerals, especially fusinite and secretinite (formerly resino-sclerotinite), as well as in sporinite; lowest proportions of carbon occur in the different macerals of the vitrinite group. Oxygen shows the reverse trend, being most abundant in vitrinite and least abundant in the inertinite components, whereas sulphur is lowest in the inertinites and highest in the liptinite (mainly sporinite) present. Evaluations of maceral composition, using the carbon content of telocollinite as a rank indicator, show that carbon is more abundant in both sporinite and semifusinite, relative to vitrinite, in low-rank high-volatile bituminous coals. The difference decreases with increasing rank, and the proportion of carbon in telocollinite becomes essentially the same as that in sporinite and semifusinite at carbon contents of about 89 and 91%, respectively. The carbon content of fusinite and secretinite, on the other hand, does not seem to vary appreciably with rank advance. No significant difference in composition occurs in the rank range studied between the three vitrinite varieties present, desmocollinite, telocollinite and a more highly reflecting telocollinite resembling pseudovitrinite. No evidence was found to indicate a higher hydrogen content, relative to telocollinite, for the vitrinite matrix of desmocollinite.  相似文献   

10.
A detailed study of maceral composition and vitrinite reflectance of the coal deposits from Marki-Jhari-Jamni area, situated in the northwestern extremity of Wardha valley coalfield, Yeotmal district, Maharashtra has been carried out with special reference to their depositional set up. These coals have two distinct types of maceral organization, one having significantly high distribution of the vitrinite group of macerals (35–41%) and the other containing the dominance of inertinite (26–49%). Liptinite maceral group is recorded between 14 and 24%, barring a few coal bands having liptinite maceral group as high as 33–37%. The vitrinite reflectivity ranges from 0.38–0.43%. Thus, they have attained sub-bituminous C rank. Mineral matter in these coals varies between 15 and 22%. The present study suggests that the basin primarily experienced cold climate having intermittent brackish water influx with alternating dry oxidizing spells.  相似文献   

11.
The effect of petrographic composition on the methane sorption capacity has been determined for a suite of coals and organic-rich shales. Subbituminous and bituminous coals were separated into bright and dull lithotypes by hand-picking. The methane sorption capacities range between 0.5 and 23.9 cm3/g at a pressure of 6 MPa. The low volatile bituminous Canmore coal and the anthracite sample have the highest capacities with the “natural coke” having the lowest. For low-rank coals there is no significant difference between bright and dull samples except for one coal with the dull sample having a greater sorption capacity than its bright equivalent. For higher-rank coals, the bright samples have a greater methane capacity than the dull samples and the difference between sample pairs increases with rank. The boghead coal samples have the highest sorption capacities in the liptinite-rich coals suite and are higher than subbituminous to medium volatile bituminous samples. Pore size distribution indicates that methane is held as solution gas in liptinite-rich coals and by physical sorption in micropores in liptinite-poor coals. These contrasting processes illustrate that liptinite-rich samples need to be independently assessed. The positive relationship between reactive inertinite content and methane sorption capacity occurs within the subbituminous to medium volatile bituminous coals because the reactive inertinite is structurally similar to vitrinite and have a higher microporosity than non-reactive inertinite. Reactivity of inertinite should be assessed in CBM studies of dull coals to provide a better understanding of petrographic composition effects on methane capacity.  相似文献   

12.
The Tertiary North East Indian coals, classified as sub-bituminous rank, have found less industrial application owing to their physico-chemical attributes. These coals are characterized by low ash (<15%), high volatile matter (>35%) and high sulphur (2.9-4.46%). Majority of the sulphur occurs in organic form affixed to the coal matrix owing to marine influence, is difficult to remove. The coal maceral analysis shows the dominance of vitrinite (>75%) with lesser amounts of liptinite and inertinite. Reflectance measurements (Rmax) of these sub-bituminous coals fall in the range of 0.57 to 0.65. In this study, the petrographical (maceral), thermal and other physico-chemical analyses of some low rank Tertiary sub-bituminous coals from north-east India were carried out to assess their potential for combustion, liquefaction and coal bed methane formation. The petrofactor, conversion (%) and oil yield (%), combustion efficiency of the coal samples were determined. The respective linear correlations of conversion (%) of the coals with their vitrinite contents, petrofactor and oil yield values have been discussed. The relative combustion efficiency of the coals was measured from the thermo gravimetric analysis (TGA) of coals. The influence of maceral composition upon gas adsorption characteristics of these high volatile coals showed the increase in methane adsorption with vitrinite enrichment. Both the maceral and mineral matter contents were observed to have important influence on the gas adsorption characteristics.  相似文献   

13.
 The fibrogenic and cytotoxic potential of coal mine dust is independent of the amount of quartz and other inorganic parameters. Results of coal petrographical and organic geochemical investigations of coals and coal mine dust from the Ruhr and Ibbenbüren Region of Germany demonstrate variations of organic dust amount possibly influencing these noxious properties. Coal mine dust of high rank coals is characterized by a pronounced fibrogenic risk. This risk, independent of the quantity of quartz, is probably based on shape variations of different coal macerals. With increasing coalification of the corresponding seam, the vitrinite is enriched in its dust; however, lower concentrations have been determined for inertinite. Vitrinite shows constant shapes and sizes independent of the rank of coal. Inertinite particles with elongated to fibrous shapes tend to larger sizes with increasing coalification. Strikingly, coal mine dust from miners' lungs with high degrees of coal mine workers' pneumoconiosis (CWP) is enriched in inertinite. In contrast, high cytotoxicities in cell tests are known for coal mine dust from low coalified coals. High concentrations of phenolic compounds can be extracted by dichloromethane from low coalified coal mine dust. These compounds, which are characterized by a high water solubility and therefore high bioavailability, explain the high cytotoxicities of coal mine dust. Contamination of dust by diesel emissions in the coal mine can act as additionally supporting parameters for extended cytotoxicities. Received: 18 August 1995 · Accepted: 15 October 1995  相似文献   

14.
The study of coal succession from bore hole No. Q-448 of Yellendu area of the Godavari valley coalfield, Andhra Pradesh reveals that the coals of Queen seam are high volatile bituminous C in rank and have vitrinite reflectance (Ro max %) varying between of 0.52 and 0.62%. The petrographic constitution however, suggests that the depositional site appears to be a slowly sinking and tectonically controlled basin, having received continuous supply of vegetal matter rich resource at regular intervals. The formation of inertinite rich coal suggests, oxidising enviornment of deposition. The dominence of vitrinite and liptinite constituents in these coals postulates the existence of alternating cold and humid spells. The present study indicates that these coals originated under an alternate oxic and anoxic moor condition.  相似文献   

15.
A detailed study of maceral composition and vitrinite reflectance of the coal deposits from Marki-Jhari-Jamni area, situated in the northwestern extremity of Wardha valley coalfield, Yeotmal district, Maharashtra has been carried out with special reference to their depositional set up. These coals have two distinct types of maceral organization, one having significantly high distribution of the vitrinite group of macerals (35–41%) and the other containing the dominance of inertinite (26–49%). Liptinite maceral group is recorded between 14 and 24%, barring a few coal bands having liptinite maceral group as high as 33–37%. The vitrinite reflectivity ranges from 0.38–0.43%. Thus, they have attained sub-bituminous C rank. Mineral matter in these coals varies between 15 and 22%. The present study suggests that the basin primarily experienced cold climate having intermittent brackish water influx with alternating dry oxidizing spells.  相似文献   

16.
在收集和整理大量山西省煤岩资料的基础上,分析了该省太原组和山西组煤的显微煤岩组分,并对各煤田太原组和山西组煤的R0,max的变化规律进行了研究。研究表明:山西省太原组和山西组煤中显微组分一般以镜质组为主,并且有从北向南有不断增加的趋势,惰质组次之,其趋势与镜质组相反,壳质组最少;太原组反射率值在0.6%~3.9%,整体上呈北低南高、西低东高的趋势,煤级从中煤级煤Ⅰ到高煤级煤Ⅱ都有赋存;山西组反射率值在0.6%~4.2%,其反射率变化趋势和煤级赋存特征与山西组类似。研究结果为评价和利用山西省的煤炭资源提供了依据。  相似文献   

17.
A large collection of well-characterized coals, documented in the Center for Applied Energy Research's (CAER) database, was used to estimate the CO2 content of maceral concentrates from Kentucky and Illinois high volatile bituminous coals. The data showed no correlation between CO2 versus coal ranks and between CO2 versus maceral content. Subsequently, eight sets of low-ash density-gradient centrifugation (DGC) maceral concentrates from five coal beds were examined, spanning in the high volatile rank range. Heating value was not determined on the concentrates, but instead was calculated using the Mott–Spooner formula. There was a good correlation between predicted CO2 and maceral content for the individual iso-rank (based on vitrinite reflectance, analyzed on whole (parent) coal) sets. In general, the predicted CO2 increases from liptinite-rich through vitrinite-rich to inertinite-rich concentrates (note: no “concentrates” are absolutely monomaceral).  相似文献   

18.
The petrography of lignitic, subbituminous and bituminous inertinitic coals (i.e. coals containing > 30 modal percent inertinite on a mineral-matter-free basis) derived from limnic and paralic facies in the Upper Silesian coal basin of Poland was investigated. Paralic coals were observed to contain small amounts of telinite and abundant pyrofusinite compared to limnic coals. The ratio of oxysemifusinite and oxyfusinite to pyrosemifusinite and pyrofusinite is lower in paralic coals as compared to limnic coals. The statistical analysis of the reflectances of the inertinite group macerals and of vitrinite shows that paralic coals are more heterogeneous than limnic coals. This greater degree of heterogeneity may explain the differences in reactivity among coals that otherwise have the same rank and elemental and petrographic composition.  相似文献   

19.
Lower Gondwana coal from Garu-Gensi area in the West Siang district of Arunachal Pradesh in the Eastern Himalayas have been characterized with respect to their maceral constituents, mineral matter, ash composition, sulphurand trace-element contents. These are low-rank bituminous coals (V0 = 0.64) and their vitrinite content is about 60%. A first hand data with respect to twenty one trace-elements are reported. Our data indicate that these Lower Gondwana coals of extra-peninsular region are richer in terms of their trace-element content when compared with their counter parts of peninsular India.  相似文献   

20.
Chars produced by the combustion of a set of three coals from Alberta, Canada, were classified morphologically using reflected light microscopy. Produced chars are different in morphological features, pore thickness, anisotropy and degree of reactivity, because of differences in the vitrinite and inertinite contents.The subbituminous A coal produced the highest percentage of unreactive or slightly reactive components due to its high inertinite content (20.0%), followed by isotropic cenospheres. Isotropic cenospheres, both thin- and thick-walled, and exploded cenospheres are the characteristic chars produced by the high-voltile bituminous B coal, whereas the low-volatile bituminous coking coal produced cenospheres with granular anisotropy (mosaic) on the walls and abundant coke fragmentsOptical microscopy is useful in differentiating the performance of a series of coals during combustion based on petrographic composition and rank and can aid in understanding the relationship between ‘reactive’ and ‘non-reactive’ coal macerals to burnout performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号