首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Recent studies have suggested that sea surface temperature (SST) is an important source of variability of the North Atlantic Oscillation (NAO). Here, we deal with four basic aspects contributing to this issue: (1) we investigate the characteristic time scales of this oceanic influence; (2) quantify the scale-dependent hindcast potential of the NAO during the twentieth century as derived from SST-driven atmospheric general circulation model (AGCM) ensembles; (3) the relevant oceanic regions are identified, corresponding SST indices are defined and their relationship to the NAO are evaluated by means of cross spectral analysis and (4) our results are compared with long-term coupled control experiments with different ocean models in order to ensure whether the spectral relationship between the SST regions and the NAO is an intrinsic mode of the coupled climate system, involving the deep ocean circulation, rather than an artefact of the unilateral SST forcing. The observed year-to-year NAO fluctuations are barely influenced by the SST. On the decadal time scales the major swings of the observed NAO are well reproduced by various ensembles from the middle of the twentieth century onward, including the negative state in the 1960s and part of the positive trend afterwards. A six-member ECHAM4-T42 ensemble reveals that the SST boundary condition affects 25% of total decadal-mean and interdecadal-trend NAO variability throughout the twentieth century. The most coherent NAO-related SST feature is the well-known North Atlantic tripole. Additional contributions may arise from the southern Pacific and the low-latitude Indian Ocean. The coupled climate model control runs suggest only the North Atlantic SST-NAO relationship as being a true characteristic of the coupled climate system. The coherence and phase spectra of observations and coupled simulations are in excellent agreement, confirming the robustness of this decadal-scale North Atlantic air–sea coupled mode.  相似文献   

2.
利用大气环流模式模拟北大西洋海温异常强迫响应   总被引:3,自引:1,他引:3  
李建  周天军  宇如聪 《大气科学》2007,31(4):561-570
北大西洋地区的海温异常能够在多大程度上对大气产生影响,一直是一个有争议的问题。作者利用伴随北大西洋涛动出现的海温异常对大气环流模式CAM2.0.1进行强迫,考察了模式在冬季(12月、1月和2月)对三核型海温异常的响应。通过与欧洲中期天气预报中心提供的再分析资料的对比,发现该模式可以通过海温强迫在一定程度上再现具有北大西洋涛动特征的温度场和环流场。在北大西洋及其沿岸地区,模式模拟出了三核型的准正压响应,与经典的北大西洋涛动型大气异常是一致的。模式结果与北大西洋地区大气内部主导模态的差别主要体现在两个方面:一是异常中心位置多偏向于大洋上空,在陆地上的异常响应强度很弱;二是高纬地区对海温异常的响应不显著,没有强迫出与实际的大气模态相对应的异常中心,表明该地区海洋的反馈作用较弱。  相似文献   

3.
Holocene climate modes are identified by the statistical analysis of reconstructed sea surface temperatures (SSTs) from the tropical and North Atlantic regions. The leading mode of Holocene SST variability in the tropical region indicates a rapid warming from the early to mid Holocene followed by a relatively weak warming during the late Holocene. The dominant mode of the North Atlantic region SST captures the transition from relatively warm (cold) conditions in the eastern North Atlantic and the western Mediterranean Sea (the northern Red Sea) to relatively cold (warm) conditions in these regions from the early to late Holocene. This pattern of Holocene SST variability resembles the signature of the Arctic Oscillation/North Atlantic Oscillation (AO/NAO). The second mode of both tropical and North Atlantic regions captures a warming towards the mid Holocene and a subsequent cooling. The dominant modes of Holocene SST variability emphasize enhanced variability around 2300 and 1000 years. The leading mode of the coupled tropical-North Atlantic Holocene SST variability shows that an increase of tropical SST is accompanied by a decrease of SST in the eastern North Atlantic. An analogy with the instrumental period as well as the analysis of a long-term integration of a coupled ocean-atmosphere general circulation model suggest that the AO/NAO is one dominant mode of climate variability at millennial time scales.  相似文献   

4.
利用一个全球海气耦合模式(BCM),结合观测资料,讨论了热带太平洋强迫对北大西洋年际气候变率的影响。研究表明,BCM能够相对合理地模拟赤道太平洋的年际变率模态及相应的海温距平型和大气遥相关型,尽管其准3年的振荡周期过于规则。来自数值模式和观测上的证据都表明,北大西洋冬季海温的主导性变率模态,即自北而南出现的“- -”的海温距平型,受到来自热带太平洋强迫的显著影响,其正位相与赤道中东太平洋冷事件相对应。换言之,赤道太平洋暖事件的发生,在太平洋-北美沿岸激发出PNA遥相关型,进而通过在北大西洋产生类似NAO负位相的气压距平型,削弱本来与NAO正位相直接联系的三核型海温距平。北大西洋三核型海温距平对热带太平洋强迫的响应,要滞后2—3个月的时间。  相似文献   

5.
The NCEP twentieth century reanalyis and a 500-year control simulation with the IPSL-CM5 climate model are used to assess the influence of ocean-atmosphere coupling in the North Atlantic region at seasonal to decadal time scales. At the seasonal scale, the air-sea interaction patterns are similar in the model and observations. In both, a statistically significant summer sea surface temperature (SST) anomaly with a horseshoe shape leads an atmospheric signal that resembles the North Atlantic Oscillation (NAO) during the winter. The air-sea interactions in the model thus seem realistic, although the amplitude of the atmospheric signal is half that observed, and it is detected throughout the cold season, while it is significant only in late fall and early winter in the observations. In both model and observations, the North Atlantic horseshoe SST anomaly pattern is in part generated by the spring and summer internal atmospheric variability. In the model, the influence of the ocean dynamics can be assessed and is found to contribute to the SST anomaly, in particular at the decadal scale. Indeed, the North Atlantic SST anomalies that follow an intensification of the Atlantic meridional overturning circulation (AMOC) by about 9 years, or an intensification of a clockwise intergyre gyre in the Atlantic Ocean by 6 years, resemble the horseshoe pattern, and are also similar to the model Atlantic Multidecadal Oscillation (AMO). As the AMOC is shown to have a significant impact on the winter NAO, most strongly when it leads by 9 years, the decadal interactions in the model are consistent with the seasonal analysis. In the observations, there is also a strong correlation between the AMO and the SST horseshoe pattern that influences the NAO. The analogy with the coupled model suggests that the natural variability of the AMOC and the gyre circulation might influence the climate of the North Atlantic region at the decadal scale.  相似文献   

6.
This paper explores the role of synoptic eddy feedback in the air-sea interaction in the North Atlantic region, particularly the interaction between the North Atlantic Oscillation (NAO) and the North Atlantic sea surface temperature anomalies (SSTA) tripole. A linearized five-layer primitive equation atmospheric model with synoptic eddy and low-frequency flow (SELF) interaction is coupled with a linearized oceanic mixed-layer model to investigate this issue. In this model, the “climatological” storm track/activity (or synoptic eddy activity) is characterized in terms of spatial structures, variances, decay time scales and propagation speeds through the complex empirical orthogonal function (CEOF) analysis on the observed data, which provides a unique tool to investigate the role of synoptic eddy feedback in the North Atlantic air–sea coupling. Model experiments show that the NAO-like atmospheric circulation anomalies can produce tripole-like SSTA in the North Atlantic Ocean, and the tripole-like SSTA can excite a NAO-like dipole with an equivalent barotropic structure in the atmospheric circulation, which suggests a positive feedback between the NAO and the SSTA tripole. This positive feedback makes the NAO/SSTA tripole-like mode be the leading mode of the coupled dynamical system. The synoptic eddy feedback plays an essential role in the origin of the NAO/SSTA tripole-like leading mode and the equivalent barotropic structure in the atmosphere. Without synoptic eddy feedback, the atmosphere has a baroclinic structure in the response field to the tripole-like SSTA forcing, and the leading mode of the dynamic system does not resemble NAO/SSTA tripole pattern.  相似文献   

7.
The interplay between the North Atlantic Oscillation (NAO) and the large scale ocean circulation is inspected in a twentieth century simulation conducted with a state-of-the-art coupled general circulation model. Significant lead–lag covariance between oceanic and tropospheric variables suggests that the system supports a damped oscillatory mode involving an active ocean–atmosphere coupling, with a typical NAO-like space structure and a 5 years timescale, qualitatively consistent with a mid-latitude delayed oscillator paradigm. The two essential processes governing the oscillation are (1) a negative feedback between ocean gyre circulation and the high latitude SST meridional gradient and (2) a positive feedback between SST and the NAO. The atmospheric NAO pattern appears to have a weaker projection on the ocean meridional overturning, compared to the gyre circulation, which leads to a secondary role for the thermohaline circulation in driving the meridional heat transport, and thus the oscillatory mode.  相似文献   

8.
 The last 810 years of a control integration with the ECHAM1/LSG coupled model are used to clarify the nature of the ocean-atmosphere interactions at low frequencies in the North Atlantic and the North Pacific. To a first approximation, the atmosphere acts as a white noise forcing and the ocean responds as a passive integrator. The sea surface temperature (SST) variability primarily results from short time scale fluctuations in surface heat exchanges and Ekman currents, and the former also damp the SST anomalies after they are generated. The thermocline variability is primarily driven by Ekman pumping. Because the heat, momentum, and vorticity fluxes at the sea surface are correlated in space and time, the SST variability is directly linked to that in the ocean interior. The SST is also modulated by the wind-driven geostrophic fluctuations, resulting in persistent correlation with the thermocline changes and a slight low-frequency redness of the SST spectra. The main dynamics are similar in the two oceans, although in the North Pacific the SST variability is more strongly influenced by advection changes and the oceanic time scales are larger. A maximum covariance analysis based on singular value decomposition in lead and lag conditions indicates that some of the main modes of atmospheric variability in the two oceans are sustained by a very weak positive feedback between the atmosphere, SST, and the strength of the subtropical and subpolar gyres. In addition, in the North Atlantic the main surface pressure mode has a small quasi-oscillatory component at 6-year period, and advective resonance occurs for SST around 10-year period, both periods being also singled out by multichannel singular spectrum analysis. The ocean-atmosphere coupling is however much too weak to redden the tropospheric spectra or create anything more than tiny spectral peaks, so that the atmospheric and oceanic variability is dominated in both ocean sectors by the one-way interactions. Received: 2 April 1999 / Accepted: 14 October 1999  相似文献   

9.
 To assess the extent to which atmospheric low-frequency variability can be ascribed to internal dynamical causes, two extended runs (1200 winter seasons) of a three level quasi-geostrophic model have been carried out. In the first experiment the model was forced by an average forcing field computed from nine winter seasons; in the second experiment we used a periodically variable forcing in order to simulate a seasonal cycle. The analysis has been focused on the leading Northern Hemisphere teleconnection patterns, namely the Pacific North American (PNA) and the North Atlantic Oscillation (NAO) patterns, and on blocking, both in the Euro-Atlantic and Pacific sectors. The NAO and PNA patterns are realistically simulated by the model; the main difference with observations is a westward shift of the centres of action of the NAO. Related to this, the region of maximum frequency of Atlantic blocking is shifted from the eastern boundary of the North Atlantic to its central part. Apart from this shift, the statistics of blocking frequency and duration compare favourably with their observed counterparts. In particular, the model exhibits a level of interannual and interdecadal variability in blocking frequency which is (at least) as large as the observed one, despite the absence of any variability in the atmospheric energy sources and boundary conditions on such time scales. Received: 30 January 1997 / Accepted: 17 June 1997  相似文献   

10.
The interannual variability of the European winter air temperature is partially caused by anomalous atmospheric circulation and the associated advection of air masses, mainly linked to the North Atlantic Oscillation (NAO). However, a considerable part of the temperature variability is not linearly described by atmospheric circulation anomalies. Here, a long control simulation with a coupled atmosphere-ocean climate model is analyzed, with the goal of decomposing the European temperature (ET) anomalies in a part linked to the anomalous atmospheric circulation and a residual. The amount of interannual variability of each contribution is roughly 50%, although at subdecadal (overdecadal) time scales the variability of the residuals is dominant. These residuals are found to be linked to temperature anomalies of the same sign in the whole North Atlantic and Greenland, in contrast to the well-known temperature zonal seesaw associated with the NAO. The association between the residuals and other processes in the North Atlantic has been also analyzed. The thermohaline circulation, closely connected in the model to the intensity of the Gulf Stream, lags the evolution of the temperature residuals by several years and thus is not able to control their evolution. The variability of the oceanic convection in the Northern North Atlantic, on the other hand, correlates with the temperature residual at lags close to zero. It is hypothesized that oceanic convection produces a sea-surface temperature fingerprint that leads to the ET residuals. The implications of these results for multi-year predictability and for empirical climate reconstructions are discussed.  相似文献   

11.
Summary:Diagnosing a coupled system with linear inverse modelling (LIM) can provide insight into the nature and strength of the coupling. This technique is applied to the cold season output of the GFDL GCM, forced by observed tropical Pacific SSTs and including a slab mixed layer ocean model elsewhere. It is found that extratropical SST anomalies act to enhance atmospheric thermal variability and diminish barotropic variability over the east Pacific in these GCM runs, in agreement with other theoretical and modelling studies. North-west Atlantic barotropic variability is also enhanced. However, all these feedbacks are very weak. LIM results also suggest that North Pacific extratropical SST anomalies in this model would rapidly decay without atmospheric forcing induced by tropical SST anomalies.  相似文献   

12.
Observations show that there was change in interannual North Atlantic Oscillation (NAO) variability in the mid-1970s. This change was characterized by an eastward shift of the NAO action centres, a poleward shift of zonal wind anomalies and a downstream extension of climate anomalies associated with the NAO. The NAO interannual variability for the period after the mid-1970s has an annular mode structure that penetrates deeply into the stratosphere, indicating a strengthened relationship between the NAO and the Arctic Oscillation (AO) and strengthened stratosphere-troposphere coupling. In this study we have investigated possible causes of these changes in the NAO by carrying out experiments with an atmospheric GCM. The model is forced either by doubling CO2, or increasing sea surface temperatures (SST), or both. In the case of SST forcing the SST anomaly is derived from a coupled model simulation forced by increasing CO2. Results indicate that SST and CO2 change both force a poleward and eastward shift in the pattern of interannual NAO variability and the associated poleward shift of zonal wind anomalies, similar to the observations. The effect of SST change can be understood in terms of mean changes in the troposphere. The direct effect of CO2 change, in contrast, can not be understood in terms of mean changes in the troposphere. However, there is a significant response in the stratosphere, characterized by a strengthened climatological polar vortex with strongly enhanced interannual variability. In this case, the NAO interannual variability has a strong link with the variability over the North Pacific, as in the annular AO pattern, and is also strongly related to the stratospheric vortex, indicating strengthened stratosphere-troposphere coupling. The similarity of changes in many characteristics of NAO interannual variability between the model response to doubling CO2 and those in observations in the mid-1970s implies that the increase of greenhouse gas concentration in the atmosphere, and the resulting changes in the stratosphere, might have played an important role in the multidecadal change of interannual NAO variability and its associated climate anomalies during the late twentieth century. The weak change in mean westerlies in the troposphere in response to CO2 change implies that enhanced and eastward extended mid-latitude westerlies in the troposphere might not be a necessary condition for the poleward and eastward shift of the NAO action centres in the mid-1970s.  相似文献   

13.
A wide range of statistical tools is used to investigate the decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) and associated key variables in a climate model (CHIME, Coupled Hadley-Isopycnic Model Experiment), which features a novel ocean component. CHIME is as similar as possible to the 3rd Hadley Centre Coupled Model (HadCM3) with the important exception that its ocean component is based on a hybrid vertical coordinate. Power spectral analysis reveals enhanced AMOC variability for periods in the range 15–30 years. Strong AMOC conditions are associated with: (1) a Sea Surface Temperature (SST) anomaly pattern reminiscent of the Atlantic Multi-decadal Oscillation (AMO) response, but associated with variations in a northern tropical-subtropical gradient; (2) a Surface Air Temperature anomaly pattern closely linked to SST; (3) a positive North Atlantic Oscillation (NAO)-like pattern; (4) a northward shift of the Intertropical Convergence Zone. The primary mode of AMOC variability is associated with decadal changes in the Labrador Sea and the Greenland Iceland Norwegian (GIN) Seas, in both cases linked to the tropical activity about 15 years earlier. These decadal changes are controlled by the low-frequency NAO that may be associated with a rapid atmospheric teleconnection from the tropics to the extratropics. Poleward advection of salinity anomalies in the mixed layer also leads to AMOC changes that are linked to processes in the Labrador Sea. A secondary mode of AMOC variability is associated with interannual changes in the Labrador and GIN Seas, through the impact of the NAO on local surface density.  相似文献   

14.
Summary:Tropical Atlantic Variability (TAV) is simulated in a coupled GCM. The TAV seems to be consistent with a dipole mode that involves both surface and subsurface oceanic dynamics. The poor correlation of the tropical North and South Atlantic SST is suggested to be distorted by the presence of a symmetric tropical Atlantic mode.  相似文献   

15.
Summary Interannual variability in the activity of fluctuations with subseasonal time scales is investigated based upon observed data of the extratropical Northern Hemisphere circulation over the recent 38 winters. Their activity is represented in the root mean square (RMS) field of filtered geopotential height in which the fluctuations with time scales between 10 days and a season are retained. The singular value decomposition (SVD) was applied to the covariance matrix between the seasonal mean and RMS fields for the 500-hPa height.The leading SVD mode for the north Pacific represents the strong relationship between the polarity of the Pacific/North American (PNA) pattern in the seasonal-mean anomalies and the amplitude of a meridionally-oriented dipole-like oscillation within the season. It tends to be more active when the seasonal-mean jet stream is strongly diffluent over the central Pacific than when the jet is extended zonally across the Pacific. The leading SVD mode for the north Atlantic is indicative of stronger intraseasonal fluctuations near Greenland in the presence of anticyclonic seasonal-mean anomalies associated with the North Atlantic Oscillation (NAO).The intraseasonal variability in the extratropics is strongly correlated with the underlying sea surface temperature (SST) anomalies, and that in the north Pacific also exhibits significant but rather weak correlation with SST anomalies in the equatorial Pacific. The activity of the atmospheric intraseasonal fluctuations is found to be modulated in accordance with interdecadal variability in the seasonal-mean circulation and SST.On leave from Department of Earth & Planetary Physics, University of Tokyo.With 12 Figures  相似文献   

16.
Daily atmospheric variability in the South American monsoon system   总被引:1,自引:1,他引:0  
The space–time structure of the daily atmospheric variability in the South American monsoon system has been studied using multichannel singular spectrum analysis of daily outgoing longwave radiation. The three leading eigenmodes are found to have low-frequency variability while four other modes form higher frequency oscillations. The first mode has the same time variability as that of El Nino-Southern Oscillation (ENSO) and exhibits strong correlation with the Pacific sea surface temperature (SST). The second mode varies on a decadal time scale with significant correlation with the Atlantic SST suggesting an association with the Atlantic multidecadal oscillation (AMO). The third mode also has decadal variability but shows an association with the SST of the Pacific decadal oscillation (PDO). The fourth and fifth modes describe an oscillation that has a period of about 165 days and is associated with the North Atlantic oscillation (NAO). The sixth and seventh modes describe an intraseasonal oscillation with a period of 52 days which shows strong relation with the Madden-Julian oscillation. There exists an important difference in the variability of convection between Amazon River Basin (ARB) and central-east South America (CESA). Both regions have similar variations due to ENSO though with higher magnitude in ARB. The AMO-related mode has almost identical variations in the two regions, whereas the PDO-related mode has opposite variations. The interseasonal NAO-related mode also has variations of opposite sign with comparable magnitudes in the two regions. The intraseasonal variability over the CESA is robust while it is very weak over the ARB region. The relative contributions from the low-frequency modes mainly determine the interannual variability of the seasonal mean monsoon although the interseasonal oscillation may contribute in a subtle way during certain years. The intraseasonal variability does not seem to influence the interannual variability in either region.  相似文献   

17.
Observed and simulated multidecadal variability in the Northern Hemisphere   总被引:19,自引:5,他引:14  
 Analyses of proxy based reconstructions of surface temperatures during the past 330 years show the existence of a distinct oscillatory mode of variability with an approximate time scale of 70 years. This variability is also seen in instrumental records, although the oscillatory nature of the variability is difficult to assess due to the short length of the instrumental record. The spatial pattern of this variability is hemispheric or perhaps even global in scale, but with particular emphasis on the Atlantic region. Independent analyses of multicentury integrations of two versions of the GFDL coupled atmosphere-ocean model also show the existence of distinct multidecadal variability in the North Atlantic region which resembles the observed pattern. The model variability involves fluctuations in the intensity of the thermohaline circulation in the North Atlantic. It is our intent here to provide a direct comparison of the observed variability to that simulated in a coupled ocean-atmosphere model, making use of both existing instrumental analyses and newly available proxy based multi-century surface temperature estimates. The analyses demonstrate a substantial agreement between the simulated and observed patterns of multidecadal variability in sea surface temperature (SST) over the North Atlantic. There is much less agreement between the model and observations for sea level pressure. Seasonal analyses of the variability demonstrate that for both the model and observations SST appears to be the primary carrier of the multidecadal signal. Received: 8 June 1999 / Accepted: 11 February 2000  相似文献   

18.
An ocean analysis, assimilating both surface and subsurface hydrographic temperature data into a global ocean model, has been produced for the period 1958–2000, and used to study the time and space variations of North Atlantic upper ocean heat content (HC). Observational evidence is presented for interannual-to-decadal variability of upper ocean thermal fluctuations in the North Atlantic related to the North Atlantic Oscillation (NAO) variability over the last 40 years. The assimilation scheme used in the ocean analysis is a univariate, variational optimum interpolation of temperature. The first guess is produced by an eddy permitting global ocean general circulation forced by atmospheric reanalysis from the National Center for Environmental Prediction (NCEP). The validation of the ocean analysis has been done through the comparison with objectively analyzed observations and independent data sets. The method is able to compensate for the model systematic error to reproduce a realistic vertical thermal structure of the region and to improve consistently the model estimation of the time variability of the upper ocean temperature. Empirical orthogonal function (EOF) analysis shows that an important mode of variability of the wintertime upper ocean climate over the North Atlantic during the period of study is characterized by a tripole pattern both for SST and upper ocean HC. A similar mode is found for summer HC anomalies but not for summer SST. Over the whole period, HC variations in the subtropics show a general warming trend while the tropical and north eastern part of the basin have an opposite cooling tendency. Superimposed on this linear trend, the HC variability explained by the first EOF both in winter and summer conditions reveals quasi-decadal oscillations correlated with changes in the NAO index. On the other hand, there is no evidence of correlation in time between the NAO index and the upper ocean HC averaged over the whole North Atlantic which exhibits a substantial and monotonic warming trend during the last two decades of the analysis period. The maximum correlation is found between the leading principal component of winter HC anomalies and NAO index at 1 year lag with NAO leading. For SST anomalies significant correlation is found only for winter conditions. In contrast, for HC anomalies high correlations are found also in the summer suggesting that the summer HC keeps a memory of winter conditions.  相似文献   

19.
李斐斐  徐彩艳 《气象学报》2023,81(1):124-136
北大西洋涛动作为冬季北大西洋地区大气环流的主模态之一,其年际变率对全球许多地区气候变率具有重要影响,但目前其预测技巧并不高。采用降维投影四维变分同化方法,在耦合模式中建立了基于全球大气资料的弱耦合资料同化系统,直接同化月平均再分析资料,并进行了年代际后报试验。结果表明,通过耦合资料同化的手段,可以显著提升耦合模式对冬季北大西洋涛动年际变率及其相关的欧洲北部、美国东部、欧亚大陆北部的冬季近地面温度年际变率的后报效果,相关系数均超过0.05显著水平t检验。该后报效果的改进主要与在耦合同化过程中通过耦合模式中自由发展的海-气相互作用将大气的观测信息储存在耦合模式的海洋分量中,改进了冬季北大西洋地区海表温度“三极”型分布的时空变率及其时间序列的后报效果有关。该研究强调了耦合模式初始状态的准确度对提升冬季北大西洋涛动年际变率的后报技巧具有重要作用。  相似文献   

20.
春季北大西洋三极型海温异常变化及其与NAO和ENSO的联系   总被引:1,自引:0,他引:1  
利用1951—2016年HadISST逐月海表温度(Sea Surface Temperature,SST)资料,NCEP/NCAR再分析资料以及1958—2016年美国伍兹霍尔海洋研究所(Woods Hole Oceanographic Institution,WHOI)提供的OAFlux数据集,运用经验正交函数分解(Empirical Orthogonal Function,EOF)和偏相关分析等统计方法,研究了春季北大西洋海温异常的主要特征及其与春季NAO和前期冬季ENSO联系。结果表明:春季北大西洋海温异常EOF的第一模态是自北而南出现的三极结构的海温距平型,其方差贡献率为35.7%。春季北大西洋三极型海温异常的形成主要受到春季NAO主导作用,还受到前期冬季热带中东太平洋海温异常的影响。消除前期冬季Niňo3.4的影响后,春季北大西洋三极型海温异常指数与同期北大西洋涛动(North Atlantic Oscillation,NAO)指数的偏相关系数分别为0.50,通过了99%置信度水平的显著性检验。消除春季NAO的影响后,春季北大西洋三极型海温异常指数与前期冬季Niňo3.4指数的偏相关系数为-0.26,通过了95%信度水平的显著性检验。春季NAO正(负)位相引起的海表风场和海表湍流热通量的异常,进而激发出正(负)位相的北大西洋三极型海温异常。前期冬季ENSO事件可以引起春季大气环流异常和热带外海温异常,进而调制春季NAO对北大西洋三极型海温异常的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号