首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Radio and X-ray observations are presented for three flares which show significant activity for several minutes prior to the main impulsive increase in the hard X-ray flux. The activity in this ‘pre-flash’ phase is investigated using 3.5 to 461 keV X-ray data from the Solar Maximum Mission, 100 to 1000 MHz radio data from Zürich, and 169 MHz radio-heliograph data from Nançay. The major results of this study are as follows:
  1. Decimetric pulsations, interpreted as plasma emission at densities of 109–1010 cm?3, and soft X-rays are observed before any Hα or hard X-ray increase.
  2. Some of the metric type III radio bursts appear close in time to hard X-ray peaks but delayed between 0.5 and 1.5 s, with the shorter delays for the bursts with the higher starting frequencies.
  3. The starting frequencies of these type III bursts appear to correlate with the electron temperatures derived from isothermal fits to the hard X-ray spectra. Such a correlation is expected if the particles are released at a constant altitude with an evolving electron distribution. In addition to this effect we find evidence for a downward motion of the acceleration site at the onset of the flash phase.
  4. In some cases the earlier type III bursts occurred at a different location, far from the main position during the flash phase.
  5. The flash phase is characterized by higher hard X-ray temperatures, more rapid increase in X-ray flux, and higher starting frequency of the coincident type III bursts.
  相似文献   

2.
Celebrating the diamond jubilee of the Physics Research Laboratory (PRL) in Ahmedabad, India, we look back over the last six decades in solar physics and contemplate on the ten outstanding problems (or research foci) in solar physics:
  1. The solar neutrino problem
  2. Structure of the solar interior (helioseismology)
  3. The solar magnetic field (dynamo, solar cycle, corona)
  4. Hydrodynamics of coronal loops
  5. MHD oscillations and waves (coronal seismology)
  6. The coronal heating problem
  7. Self-organized criticality (from nanoflares to giant flares)
  8. Magnetic reconnection processes
  9. Particle acceleration processes
  10. Coronal mass ejections and coronal dimming
The first two problems have been largely solved recently, while the other eight selected problems are still pending a final solution, and thus remain persistent Challenges for Solar Cycle 24, the theme of this jubilee conference.  相似文献   

3.
This paper is primarily concerned with the questions of models and the mechanisms of radio emission for pulsars, the polarization of this radiation and related topic. For convenience and to provide a more complete picture of the problems involved, a short summary of the data on pulsars is also given. Besides the introduction, the paper contains the following sections:
  1. Some Facts about Pulsars.
  2. The Astrophysical Nature of Pulsars.
  3. Coherent Mechanisms of Radio Emission from Pulsars.
  4. Models of Pulsars: Magnetic, Pulsating White Dwarfs and Neutron Stars.
  5. The Polarization of the Radio Emission from Pulsars.
  6. A Synthesized Model of Pulsars — Magnetic, Pulsating and Rotating Neutron Stars.
  7. Concluding Remarks.
  相似文献   

4.
The properties of rapidly changing inhomogeneities visible in the H and K lines above sunspot umbrae are described. We find as properties for these ‘Umbral Flashes’:
  1. A lifetime of 50 sec. The light curve is asymmetrical, the increase is faster than the decrease in brightness.
  2. A diameter ranging from the resolution limit up to 2000 km.
  3. A tendency to repeat every 145 sec.
  4. A ‘proper motion’ of 40 km/sec generally directed towards the penumbra.
  5. A Doppler shift of 6 km/sec.
  6. A magnetic field of 2100 G.
  7. A decrease in this field of 12 G/sec. This decrease is probably related to the flash motion.
  8. At any instant an average of 3–5 flashes in a medium-sized umbra. A weak feature often persists in the umbra after the flash. This post-flash structure initially shows a blue shift, but 100–120 sec after the flash, it shows a rapid red shift just before the flash repeats.
  相似文献   

5.
The Transition Region and Coronal Explorer (TRACE) gave us the highest EUV spatial resolution and the Ramaty High Energy Solar Spectrometric Imager (RHESSI) gave us the highest hard X-ray and gammaray spectral resolution to study solar flares. We review a number of recent highlights obtained from both missions that either enhance or challenge our physical understanding of solar flares, such as:
  1. Multi-thermal Diagnostic of 6.7 and 8.0 keV Fe and Ni lines
  2. Multi-thermal Conduction Cooling Delays
  3. Chromospheric Altitude of Hard X-Ray Emission
  4. Evidence for Dipolar Reconnection Current Sheets
  5. Footpoint Motion and Reconnection Rate
  6. Evidence for Tripolar Magnetic Reconnection
  7. Displaced Electron and Ion Acceleration Sources.
  相似文献   

6.
An observational study of maps of the longitudinal component of the photospheric fields in flaring active regions leads to the following conclusions:
  1. The broad-wing Hα kernels characteristic of the impulsive phase of flares occur within 10″ of neutral lines encircling features of isolated magnetic polarity (‘satellite sunspots’).
  2. Photospheric field changes intimately associated with several importance 1 flares and one importance 2B flare are confined to satellite sunspots, which are small (10″ diam). They often correspond to spot pores in white-light photographs.
  3. The field at these features appears to strengthen in the half hour just before the flares. During the flares the growth is reversed, the field drops and then recovers to its previous level.
  4. The magnetic flux through flare-associated features changes by about 4 × 1019 Mx in a day. The features are the same as the ‘Structures Magnétiques Evolutives’ of Martres et al. (1968a).
  5. An upper limit of 1021 Mx is set for the total flux change through McMath Regions 10381 and 10385 as the result of the 2B flare of 24 October, 1969.
  6. Large spots in the regions investigated did not evince flux changes or large proper motions at flare time.
  7. The results are taken to imply that the initial instability of a flare occurs at a neutral point, but the magnetic energy lost cannot yet be related to the total energy of the subsequent flare.
  8. No unusual velocities are observed in the photosphere at flare time.
  相似文献   

7.
Shock remagnetization is a significant mode of alteration of the intensity and direction of magnetization in planetary crustal rocks subjected to the dynamic and thermochemical effects associated with meteorite impact. Shock remagnetization will take place almost instantaneously during and following the transient shock episode, and over longer times depending on residual temperature effects associated with shock heating and the production of impact melt. Remagnetization will follow certain demagnetization effects. The following transitions and residual effects will result in remagnetization of planetary crustal material:
  1. First order reversible crystallographic transitions in bodycentered cubic iron-nickel alloys.
  2. Second order Curie temperature transitions in face-centered cubic iron-nickel alloys.
  3. Shock induced uniaxial anisotropy due to magnetoelasstic coupling of magnetic vectors to the shock wave.
  4. Shock melting of iron containing silicates.
  5. Subsolidus reduction and FeO decomposition.
  6. Partial ther moremanence due to post-shock temperature.
  7. Total thermoremanence due to post-shock temperature.
  8. Production of a superparamagnetic distribution of iron which is sensitive to surface temperature fluctuation.
  9. Thermal effects in metal and alloy phases.
Lunar breccia and soil samples are generally more reduced than crystalline rocks and some of th's reduction is subsolidus probably associated with the transient thermal effects due to meteorite impact in teh porous reglith.  相似文献   

8.
The properties of small (< 2″) moving magnetic features near certain sunspots are studied with several time series of longitudinal magnetograms and Hα filtergrams. We find that the moving magnetic features:
  1. Are associated only with decaying sunspots surrounded entirely or in part by a zone without a permanent vertical magnetic field.
  2. Appear first at or slightly beyond the outer edge of the parent sunspot regardless of the presence or absence of a penumbra.
  3. Move approximately radially outward from sunspots at about 1 km s?1 until they vanish or reach the network.
  4. Appear with both magnetic polarities from sunspots of single polarities but appear with a net flux of the same sign as the parent sunspot.
  5. Transport net flux away from the parent sunspots at the same rates as the flux decay of the sunspots.
  6. Tend to appear in opposite polarity pairs.
  7. Appear to carry a total flux away from sunspots several times larger than the total flux of the sunspots.
  8. Produce only a very faint emmission in the core of Hα.
A model to help understand the observations is proposed.  相似文献   

9.
Correlation and spectral analysis of solar radio flux density and sunspot number near the maximum of the sunspot cycle has indicated the existence of
  1. long period amplitude modulation of the slowly varying component (SVC) of radio emission
  2. coronal storage over a period of the order of three solar rotations
  3. fast decay (one solar rotation period or less) of gyromagnetic emissions from radio sources
  4. shift in location of chromospheric sources compared to those of either the upper corona or the photosphere.
  相似文献   

10.
In order to establish some regularities or variations in the distribution of widths and intensities of the coronal line profiles λ 5303 and λ 6374 depending upon the solar activity, a statistical analysis was made for more than 3000 profiles (the data covering the period 1966–1972). The following results obtained:
  1. The distribution of coronal line profile widths changes depending upon the solar activity phase.
  2. The character of the relation between the intensities and widths varies with variation of the solar activity phase.
  相似文献   

11.
Three different numerical techniques are tested to determine the number of integrals of motion in dynamical systems with three degrees of freedom.
  1. The computation of the whole set of Lyapunov Characteristic Exponents (LCE).
  2. The triple sections in the configurations space.
  3. The Stine-Noid box-counting technique.
These methods are applied to a triple oscillator with coupling terms of the third order. Cases are found for which one effective integral besides the Hamiltonian subsists during a very long time. Such orbits display simultaneously chaotic and quasi-periodic motion, according to which coordinates are considered. As an application, the LCE procedure is applied to a triaxial elliptical galaxy model. Contrary to similar 2-dimensional systems, this 3-dimensional one presents noticeable zones in the phase space without any non-classical integral.  相似文献   

12.
Evening twilight airglow emissions of OH (7,2) band and Li 6708 Å are observed by Dunn-Manring type photometer and following important results are obtained.
  1. Intensity of OH (7,2) and Li (6708 Å) decrease exponentially during evening twilight period.
  2. OH (7,2) band covaries with Li (6708 Å) during evening twilight period.
  3. Empirical equations of OH (7,2) band with time is obtained.
  4. Possible explanations of such type of variations is also presented.
  相似文献   

13.
The radio emission of a selected number of solar active regions has been investigated with high angular resolution at two frequencies: 10 and 17 GHz. By comparing the results of the two observations the following conclusions can be drawn:
  1. The brightness temperature distribution of an active region is often composed of very bright cores of small dimension (angular extent θ?20″) imbedded in extended halos of lower brightness.
  2. The radio emission of such structures as well as the degree of polarization can be explained with a thermal process. The halos can originate by pure thermal bremsstrahlung while in the case of the very bright cores found at 10 GHz (brightness temperature T b?1–9 × 106K) the emission at the harmonics of the gyrofrequency is needed.
  相似文献   

14.
We present a broad range of complementary observations of the onset and impulsive phase of a fairly large (1B, M1.2) but simple two-ribbon flare. The observations consist of hard X-ray flux measured by the SMM HXRBS, high-sensitivity measurements of microwave flux at 22 GHz from Itapetinga Radio Observatory, sequences of spectroheliograms in UV emission lines from Ov (T ≈ 2 × 105 K) and Fexxi (T ≈ 1 × 107 K) from the SMM UVSP, Hα and Hei D3 cine-filtergrams from Big Bear Solar Observatory, and a magnetogram of the flare region from the MSFC Solar Observatory. From these data we conclude:
  1. The overall magnetic field configuration in which the flare occurred was a fairly simple, closed arch containing nonpotential substructure.
  2. The flare occurred spontaneously within the arch; it was not triggered by emerging magnetic flux.
  3. The impulsive energy release occurred in two major spikes. The second spike took place within the flare arch heated in the first spike, but was concentrated on a different subset of field lines. The ratio of Ov emission to hard X-ray emission decreased by at least a factor of 2 from the first spike to the second, probably because the plasma density in the flare arch had increased by chromospheric evaporation.
  4. The impulsive energy release most likely occurred in the upper part of the arch; it had three immediate products:
  1. An increase in the plasma pressure throughout the flare arch of at least a factor of 10. This is required because the Fexxi emission was confined to the feet of the flare arch for at least the first minute of the impulsive phase.
  2. Nonthermal energetic (~ 25 keV) electrons which impacted the feet of the arch to produce the hard X-ray burst and impulsive brightening in Ov and D3. The evidence for this is the simultaneity, within ± 2 s, of the peak Ov and hard X-ray emissions.
  3. Another population of high-energy (~100keV) electrons (decoupled from the population that produced the hard X-rays) that produced the impulsive microwave emission at 22 GHz. This conclusion is drawn because the microwave peak was 6 ± 3 s later than the hard X-ray peak.
  相似文献   

15.
The purpose of this paper is to present the correlation of seasonal variation of 5893 Å line intensity with relative sunspot numbers, solar flare numbers and the variable component of 10.7 cm solar flux. A study has been made and the following important results have been obtained.
  1. The intensity of 5893 Å line at Calcutta shows periodic variation with different solar parameters during descending part of secondary peak of 21st solar cycle (1984–1985).
  2. 5893 Å line intensity of Mt. Abu also shows periodic variation with solar parameters during the period 1965–1968 when there was a peak phase of 20th solar cycle.
  3. A possible explanation for such type of variation is also presented.
  相似文献   

16.
Using the Baranger-Mozer method, we explore the possibility of diagnosing the flare plasma of forbidden Hei lines, that permits the determination of the plasma oscillation frequency and noise level. Examination of the Hei lines observed in solar flare has led us to conclude that:
  1. the appearance of satellites of forbidden components in the flares spectrum, due to turbulent electric fields, is the most probable for Hei 3819.606 Å lines;
  2. the Baranger-Mozer method is more sensitive to the high-frequency component of turbulent fields than to the low-frequency ones;
  3. the upper limit of the turbulent oscillation level in flares is evaluated.
In the spectrum of the solar flare of 26 September, 1963 we detected satellites of the forbidden component of the 3820 Å line and used its relative intensity to derive the level of low-frequency oscillations (~1.5 kVcm-1).  相似文献   

17.
The observational data permit us to establish clear statistical correlations between different parameters of stellar flare activity and the characteristics of quiet stars. These relations are:
  1. between energies and frequencies of flares on stars of different luminosities;
  2. between total radiation energies of flares and quiet stars both in X-ray and Balmer emission lines;
  3. between flare decay rates just after the maxima and flare luminosities at maxima.
  相似文献   

18.
Large number of microwave antennas of size and surface accuracy appropriate for the Square Kilometre Array (SKA) have not been manufactured previously. To minimize total cost, the design needs to be much more carefully considered and optimized than would be affordable for a small number of antennas. The required surface area requires new methods of manufacture and production-line type assembly to be considered. A blend of past antenna construction technology, creativity, and new technology is needed to provide the best possible telescope for the proposed SKA science goals. The following key concepts will be discussed with respect to reflector antennas and many supporting photographs, figures and drawings will be included.
  • Surface and supporting structure – comparison of panels with a one-piece shell as produced by hydroforming.
  • Combined reflector and mount geometry – performance/cost materially governed by this geometry which must be optimized for SKA requirements which are significantly different from typical communications antennas
  • Types of fully steerable mounts – king post, turntable bearing and wheel and track
  • Pointing accuracy – factors effecting cost, non-repeatable and repeatable errors
  • Axis drive concepts – traction devices, gears, screws, etc.
  • Life cycle costs – maintenance and power costs must be considered
  • Synergistic design – all of the above factors must be considered together with the wideband feed and receiver system to optimize the whole system
  •   相似文献   

    19.
    An analysis of the data concerning high-velocity stars from Eggen's catalogue aimed at a determination of the approximate slope of the mass function for the spherical component of our Galaxy, and at estimating the local circular velocity, as well as the local rotation velocity, as by-products, has been performed. Our conclusions are that:
    1. A linear dependence of the mass on the radius is very likely;
    2. the value of the limiting radius is most likely equal to (40±10) kpc;
    3. the two local velocities are approximately equal to each other, being both equal to (230±30) km s?1;
    4. the local escape velocity appears to be most likely equal to (520±30) km s?1;
    5. the total mass of a corona, obtained in this way, is (5±1)×1011 M .
      相似文献   

    20.
    Successful subtraction of instrumental background variations has permitted spectral analyses of two-dimensional measurement arrays of granulation brightness fluctuations at the center of the disk, arrays obtained from Stratoscope I, 1959B-flight, high-resolution frames B1551 and B3241.
    1. RMS's, uncorrected for instrumental blurring, are 0.0850 of mean intensity for B1551 and 0.0736 for B3241, somewhat higher than other determinations. These between-frame and between-investigation differences probably result from a combination of calibration errors, frame resolution differences, and, most likely, granulation pattern differences.
    2. Significant variations over each array of mean intensities and RMS's, determined for sub-arrays with dimensions in the 2500–10000 km range, indicate spatial brightness and RMS variations larger than the ‘scale’ of the granulation pattern, supporting a turbulent interpretation of photospheric convection.
    3. One-dimensional power-spectra shapes provide objective and discriminating criteria for determining granulation pattern differences and, possibly, frame resolution.
    4. Two-dimensional power spectra show small, essentially random deviations from axial symmetry which lie almost entirely within the 50% confidence limits.
    5. Spectral densities and fluctuation power spectra, computed from the two-dimensional power spectra and corrected for instrumental blurring, noise, and blemishes, have a useable radial wavenumber range nearly double that of earlier Stratoscope I analyses.
    6. Corrected RMS's obtained from the corrected fluctuation power spectra, 0.145 ± 0.046 for B1551 and 0.136 ± 0.048 for B3241, depend critically on the accuracy of the correction.
    7. The spectra's wavenumber range includes the granulation-fluctuation-producing domain but not the Kolmogoroff domain of turbulence spectra.
      相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号