首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 642 毫秒
1.
High-resolution spectroscopic searches for the starlight reflected from close-in extrasolar giant planets have the capability of determining the optical albedo spectra and scattering properties of these objects. When combined with radial velocity measurements they also yield the true mass of the planet. To date, only two such planets have been targeted for reflected-light signals, yielding upper limits on the optical albedos of the planets. Here we examine the prospects for future searches of this kind. We present Monte Carlo estimates of prior probability distributions for the orbital velocity amplitudes and planet/star flux ratios of six bright stars known to harbour giant planets in orbits with periods of less than 5 d. Using these estimates, we assess the viability of these targets for future reflected-light searches using 4- and 8-m class telescopes.  相似文献   

2.
W.B. Hubbard  M.F. Hattori  I. Hubeny 《Icarus》2007,187(2):358-364
We present calculations for the evolution and surviving mass of highly-irradiated extrasolar giant planets (EGPs) at orbital semimajor axes ranging from 0.023 to 0.057 AU using a generalized scaled theory for mass loss, together with new surface-condition grids for hot EGPs and a consistent treatment of tidal truncation. Theoretical estimates for the rate of energy-limited hydrogen escape from giant-planet atmospheres differ by two orders of magnitude, when one holds planetary mass, composition, and irradiation constant. Baraffe et al. [Baraffe, I., Selsis, F., Chabrier, G., Barman, T.S., Allard, F., Hauschildt, P.H., Lammer, H., 2004. Astron. Astrophys. 419, L13-L16] predict the highest rate, based on the theory of Lammer et al. [Lammer, H., Selsis, F., Ribas, I., Guinan, E.F., Bauer, S.J., Weiss, W.W., 2003. Astrophys. J. 598, L121-L124]. Scaling the theory of Watson et al. [Watson, A.J., Donahue, T.M., Walker, J.C.G., 1981. Icarus 48, 150-166] to parameters for a highly-irradiated exoplanet, we find an escape rate ∼102 lower than Baraffe's. With the scaled Watson theory we find modest mass loss, occurring early in the history of a hot EGP. In this theory, mass loss including the effect of Roche-lobe overflow becomes significant primarily for masses below a Saturn mass, for semimajor axes ?0.023 AU. This contrasts with the Baraffe model, where hot EGPs are claimed to be remnants of much more massive bodies, originally several times Jupiter and still losing substantial mass fractions at present.  相似文献   

3.
We present a new analysis of the expected magnetospheric radio emission from extrasolar giant planets (EGPs) for a distance limited sample of the nearest known extrasolar planets. Using recent results on the correlation between stellar X-ray flux and mass-loss rates from nearby stars, we estimate the expected mass-loss rates of the host stars of extrasolar planets that lie within 20 pc of the Earth. We find that some of the host stars have mass-loss rates that are more than 100 times that of the Sun and, given the expected dependence of the planetary magnetospheric radio flux on stellar wind properties, this has a very substantial effect. Using these results and extrapolations of the likely magnetic properties of the extrasolar planets, we infer their likely radio properties.
We compile a list of the most promising radio targets and conclude that the planets orbiting Tau Bootes, Gliese 86, Upsilon Andromeda and HD 1237 (as well as HD 179949) are the most promising candidates, with expected flux levels that should be detectable in the near future with upcoming telescope arrays. The expected emission peak from these candidate radio emitting planets is typically ∼40–50 MHz. We also discuss a range of observational considerations for detecting EGPs.  相似文献   

4.
The detection of extrasolar planets by measuring a photometric drop in the stellar brightness due to a planetary transit can be statistically improved by observing eclipsing binary systems and photometrically improved by observing small component systems. In particular the system CM Draconis, with two dM4 components, would allow the detection of extrasolar planets in the size range of Earth-to-Neptune requiring a ground-based photometric precision of about 0.08% to 1.1% (photometric precision of about 0.3% is routinely achievable with 1-meter class telescopes at the magnitude of CM Draconis, 11.07 inR-filter). In addition, the transit of extrasolar planets in a binary star system provides a unique, quasi-periodic signal that can be cross-correlated with the observational data to detect sub-noise signals. We examine the importance of making such observations to an understanding of the formation and evolution of terrestrial-type planets in main-sequence star systems. Terrestrial planets could have formed with substancially shorter periods in this lower luminosity system, for example, and might be expected to have accreted essentially in the binary orbital plane (however, non-coplanar planets may also eventually be detectable due to precession). We also report on a network of medium-sized telescopes at varying longitudes that have been organized to provide such constraints on terrestrial-planet formation processes and discuss the extention of near-term observations to other possible binary systems, as well. Finally, we discuss a more speculative, future observation that could be performed on the CM Draconis system that would be of exobiological as well as astrophysical interest.  相似文献   

5.
Direct observation of exoplanets will make it possible to clarify many principal questions connected both with extrasolar planets and planetary systems and to measure atmospheric spectra of the planets. Obtaining an exoplanet image not distorted by the light from a star is at the cutting edge of present-day optical technologies owing to the combination of tremendous brightness contrasts and small angular distances between the planet and star. To observe the exo-Earth, it is necessary to weaken the brightness of the parent star image by 9–10 orders of magnitude (in the optical and near-IR ranges). To compensate the influence of the atmosphere, ground-based (e.g., 8–10 m) telescopes intended for observing exoplanets are equipped with adaptive optics systems, the spatial and temporal resolutions of which are not yet sufficient. A meter-class space telescope equipped with a star coronagraph will make it possible to observe the nearest exoplanets. In this paper, an improved tool for star coronagraphy is considered, namely, the achromatic interferometric coronagraph with a variable rotational shear. It is fabricated according to the optical scheme of the common path interferometer for studying extrasolar planets by direct observations. Theoretical and experimental estimations for the main characteristics of the scheme were carried out. Laboratory experimental measurements were carried out on a coronagraph model.  相似文献   

6.
Roger V. Yelle 《Icarus》2004,170(1):167-179
One-dimensional aeronomical calculations of the atmospheric structure of extra-solar giant planets in orbits with semi-major axes from 0.01 to 0.1 AU show that the thermospheres are heated to over 10,000 K by the EUV flux from the central star. The high temperatures cause the atmosphere to escape rapidly, implying that the upper thermosphere is cooled primarily by adiabatic expansion. The lower thermosphere is cooled primarily by radiative emissions from H+3, created by photoionization of H2 and subsequent ion chemistry. Thermal decomposition of H2 causes an abrupt change in the composition, from molecular to atomic, near the base of the thermosphere. The composition of the upper thermosphere is determined by the balance between photoionization, advection, and H+ recombination. Molecular diffusion and thermal conduction are of minor importance, in part because of large atmospheric scale heights. The energy-limited atmospheric escape rate is approximately proportional to the stellar EUV flux. Although escape rates are large, the atmospheres are stable over time scales of billions of years.  相似文献   

7.
The ionization and dissociation of molecular hydrogen by the ultraviolet (UV) radiation of the parent star lead to the formation of hydrogen atoms with an excess of kinetic energy and, thus, are an important source of suprathermal hydrogen atoms in the upper atmosphere of exoplanet HD 209458b. Contemporary aeronomical models did not investigate these processes because they assumed the fast local thermalization of the hot atoms of hydrogen by elastic collisions. However, the kinetics and transfer of these atoms were not calculated in detail, because they require the solving of the Boltzmann equation for a nonthermal atom population. This work estimates the effect of the UV radiation of the parent star and the accompanying photocleacton flux on the production of the suprathermal fraction of atomic hydrogen in the H2 → H transition region. We also consider the formation of the escaping flux of Hatoms created by this effect in the upper atmosphere of HD 209458b. We calculate the production rate and energy spectrum of the hydrogen atoms with excess kinetic energy during the dissociation of H2. Using the numerical stochastic model created by Shematovich (2004) for a hot planetary corona, we investigate the molecular-scale kinetics and transfer of suprathermal hydrogen atoms in the upper atmosphere and the emergent flux of atoms evaporating from the atmosphere. The latter is estimated as 3.4 × 1012 cm−2 s−1 for a moderate stellar activity level of UV radiation, which leads to a planetary atmosphere evaporation rate of 3.4 × 109 g s−1 due to the process of the dissociation of H2. This estimate is close to the observational value of ∼1010 g s−1 for the rate of atmospheric loss of HD 209458b.  相似文献   

8.
Giant planets in circumstellar disks can migrate inward from their initial (formation) positions at several AUs. Inward radial migration of the planet is caused by torques between the planet and the disk; outward radial migration of the planet is caused by torques between the planet and the spinning star, and by torques due to Roche lobe overflow and consequent mass loss from the planet. We present self-consistent numerical considerations of the problem of migrating giant planets by summing torques on planets for various physical parameters of the disk and of planets. We find that Jupiter-mass planets can stably arrive and survive at small heliocentric distances, thus reproducing observed properties of some of the recently discovered extra-solar planets. The range of fates of massive planets is broad, and some perish by losing all their mass onto the central star during Roche lobe overflow, while others survive for the lifetime of the central star. Surviving planets cluster into two groups when examined in terms of final mass and final heliocentric distance: those which have lost mass and those which have not. Some of the observed extrasolar planets fall into each of these two exclusive classes. We also find that there is an inner boundary for planets' final heliocentric distances, caused by tidal torques with the central star. Planets in small orbits are shown to be stable against atmospheric loss.  相似文献   

9.
The discovery in 1995 of the first extrasolar giant planet 51 Peg b initiated the physics of extrasolar planetary systems. By May 2004, the total number of the detected planets orbiting other stars was 122, including 24 hot jupiters, which have a semimajor axis of the orbit of less than 0.15 AU. Due to the high activity of researchers who work with the radial-velocity method, the probable candidates, say, in the 75-parsec radius, are quickly exhausted. The OGLE-type objects, even if their number increases, may only slightly contribute to the physics of extrasolar planets (or exoplanets), because even to determine the type of the companion (a giant planet, brown dwarf, or star of small mass) is extremely problematic for such weak objects. A search for Earth-like planets is still far beyond the technical capabilities: the Keplerian velocity of the Sun induced by the Earth is only 0.09 m/s, which requires to improve the results obtained by a factor of 20–30. Particularly important results were obtained in the observations of transits of the object HD 209458b, which became the only object of this type namely due to transits. The hope of finding another short-period object with similar transits is becoming less and less. The important role of the star metallicity in the formation of planetary systems predicted during the first years after the discovery of exoplanets has gained recognition and been developed successfully. Metallicity has become an indicator of the possible presence of planetary systems and, probably, even determines the type of planets. This review also considers the statistical data on the orbital and mass characteristics of exoplanets.  相似文献   

10.
Extrasolar planets are expected to emit detectable low-frequency radio emission. In this paper, we present results from new low-frequency observations of two extrasolar planetary systems (Epsilon Eridani and HD 128311) taken at 150 MHz with the Giant Metrewave Radio Telescope (GMRT). These two systems have been chosen because the stars are young (with ages <1 Gyr) and are likely to have strong stellar winds, which will increase the expected radio flux. The planets are massive (presumably) gas giant planets in longer period orbits, and hence will not be tidally locked to their host star (as is likely to be the case for short-period planets) and we would expect them to have a strong planetary dynamo and magnetic field. We do not detect either system, but are able to place tight upper limits on their low-frequency radio emission, at levels comparable to the theoretical predictions for these systems. From these observations, we have a 2.5σ limit of 7.8 mJy for ε Eri and 15.5 mJy for HD 128311. In addition, these upper limits also provide limits on the low-frequency radio emission from the stars themselves. These results are discussed and also the prospects for the future detection of radio emission from extrasolar planets.  相似文献   

11.
The recent discovery that the close-in extrasolar giant planet HD 209458b transits its star has provided a first-of-its-kind measurement of the planet's radius and mass. In addition, there is a provocative detection of the light reflected off of the giant planet tau Bootis b. Including the effects of stellar irradiation, we estimate the general behavior of radius/age trajectories for such planets and interpret the large measured radii of HD 209458b and tau Boo b in that context. We find that HD 209458b must be a hydrogen-rich gas giant. Furthermore, the large radius of a close-in gas giant is not due to the thermal expansion of its atmosphere but to the high residual entropy that remains throughout its bulk by dint of its early proximity to a luminous primary. The large stellar flux does not inflate the planet but retards its otherwise inexorable contraction from a more extended configuration at birth. This implies either that such a planet was formed near its current orbital distance or that it migrated in from larger distances (>/=0.5 AU), no later than a few times 107 yr of birth.  相似文献   

12.
Ultraviolet radiation is known to inhibit photosynthesis, induce DNA destruction and cause damage to a wide variety of proteins and lipids. In particular, UV radiation between 200 and 300 nm becomes energetically very damaging to most of the terrestrial biological systems. On the other hand, UV radiation is usually considered one of the most important energy source on the primitive Earth for the synthesis of many biochemical compounds and, therefore, essential for several biogenesis processes. In this work, we use these properties of the UV radiation to define the boundaries of an ultraviolet habitable zone. We also analyze the evolution of the UV habitable zone during the main sequence stage of the star. We apply these criteria to study the UV habitable zone for those extrasolar planetary systems that were observed by the International Ultraviolet Explorer (IUE). We analyze the possibility that extrasolar planets and moons could be suitable for life, according to the UV constrains presented in this work and other accepted criteria of habitability (liquid water, orbital stability, etc.).  相似文献   

13.
Analysis of the data obtained during transits of low-orbit extrasolar planets across the stellar disk yields different estimates of their atmospheric loss rates. Experimental data point to the probable existence of several distinct subtypes of extrasolar giant planets, including “hot Jupiters” of low density (HD 209458b), with massive cores composed of heavy elements (HD 149026b), and others. We show that the expected hot-Jupiter mass losses due to atmospheric escape on a cosmogonic time scale do not exceed a few percent, while the losses through Jeans dissipation are negligible. We also argue that low-orbit giant planets should have a strong magnetic field that interacts with circumstellar plasma with the planet’s supersonic orbital velocity. The magnetic field properties can be used to search for extrasolar planets.  相似文献   

14.
In this paper, we consider the physical properties and characteristic features of extrasolar planets and planetary systems, those, for which the passage of low-orbit giant planets across the stellar disk (transits) are observed. The paper is mostly a review. The peculiarities of the search for transits are briefly considered. The main attention in this paper is given to the difference in the physical properties of low-orbit giant planets. A comparison of the data obtained during the transits of “hot Jupiters” points to the probable existence of several distinct subtypes of low-orbit extrasolar planets. “Hot Jupiters” of low density (HD 209458b), “hot Jupiters” with massive cores composed of heavy elements (HD 149026b), and “very hot Jupiters” (HD 189733b) are bodies that probably fall into different categories of exoplanets. Dissipation of the atmospheres of low-orbit giant planets estimated from the experimental data is compared with the calculated Jeans atmospheric losses. For “hot Jupiters”, the expected Jeans mass losses due to atmospheric escape on a cosmogonic time scale hardly exceed a few percent. Low-orbit giant planets should have a strong magnetic field. Since the orbital velocity of “hot Jupiters” is close to the magnetosonic velocity (or can even exceed it), the moving planet should actively interact with the “stellar wind” plasma. The possession of a magnetic field by extrasolar planets and the effects of their interaction with plasma can be used to search for extrasolar planets.  相似文献   

15.
Radio emission from extrasolar giant planets in close orbits around their host star is an active field of research, including both observational efforts and theoretical work aiming at reasonable predictions for different target planets. So far, most theoretical work assumed a distance-independent, constant stellar wind velocity. This approach is improved and expanded in two respects: first, from stellar wind models, it is known that at close distances the stellar wind is still slow and has not yet reached the velocity it has at larger distances. For this reason, less energy is available for the generation of planetary radio emission than predicted by simplified models. This correspondingly reduces the intensity of stellar wind-driven planetary radio emission, which is calculated taking into account the stellar age. Second, it can be shown that under certain conditions the steady stellar wind has to be replaced by stellar coronal mass ejections. In those cases, the planetary radio flux is strongly increased. The different flux levels expected for planets subject to different stellar wind conditions are analyzed and compared. In addition, different uncertainties in this radio flux estimation are calculated and discussed.  相似文献   

16.
The gravity due to a multiple-mass system has a remarkable gravitational effect: the extreme magnification of background light sources along extended so-called caustic lines. This property has been the channel for some remarkable astrophysical discoveries over the past decade, including the detection and characterization of extrasolar planets, the routine analysis of limb darkening, and, in one case, limits set on the apparent shape of a star several kiloparsec distant. In this paper, we investigate the properties of the microlensing of close binary star systems. We show that in some cases it is possible to detect flux from the Roche lobes of close binary stars. Such observations could constrain models of close binary stellar systems.  相似文献   

17.
In long-term stability studies of terrestrial planets moving in the habitable zone (HZ) of a sun-like star, we distinguish four different configurations: (i) planets moving in binary star systems, (ii) the inner type (where the gas giant moves outside the HZ), (iii) the outer type (where the gas giant is closer to the star, than the HZ) and (iv) the Trojan type (where the gas giant moves in the HZ). Since earlier calculations indicated, that the stability of the motion in the HZ also depends on the inclination of the terrestrial planet orbits, we present a detailed numerical investigation to show correlations between the eccentricity, the mass and the distance of the giant planet for various inclinations of the terrestrial planets. The orbital stability of the HZ was examined for all four configurations stated above. While we could find hardly any stable orbits for the first three types for inclinations higher than 40°, the Trojan planets can be stable up to an inclination of 60°. Additionally, we could also find some stabilizing effects of the inclination for the first three types. As dynamical model we used the elliptic restricted three-body problem, which consists of two massive and one mass-less body. This allows an application to all detected and future extrasolar single planet systems.  相似文献   

18.
We present the high angular resolution technique of colour-differential interferometry for direct detection of extrasolar giant planets (EGPs). The measurement of differential phase with long-baseline ground-based interferometers in the near-infrared could allow the observation of several hot giant extrasolar planets in tight orbit around the nearby stars, and thus yield their low- or mid-resolution spectroscopy, complete orbital data set and mass. Estimates of potentially achievable signal-to-noise ratios are presented for a number of planets already discovered by indirect methods. The limits from the instrumental and atmospheric instability are discussed, and a subsequent observational strategy is proposed.  相似文献   

19.
We give an overview of our current understanding of the structure of gas giant planets, from Jupiter and Saturn to extrasolar giant planets. We focus on addressing what high-pressure laboratory experiments on hydrogen and helium can help to elucidate about the structure of these planets.  相似文献   

20.
The stars that populate the solar neighbourhood were formed in stellar clusters. Through N -body simulations of these clusters, we measure the rate of close encounters between stars. By monitoring the interaction histories of each star, we investigate the singleton fraction in the solar neighbourhood. A singleton is a star which formed as a single star, has never experienced any close encounters with other stars or binaries, or undergone an exchange encounter with a binary. We find that, of the stars which formed as single stars, a significant fraction is not singletons once the clusters have dispersed. If some of these stars had planetary systems, with properties similar to those of the Solar System, the planets' orbits may have been perturbed by the effects of close encounters with other stars or the effects of a companion star within a binary. Such perturbations can lead to strong planet–planet interactions which eject several planets, leaving the remaining planets on eccentric orbits. Some of the single stars exchange into binaries. Most of these binaries are broken up via subsequent interactions within the cluster, but some remain intact beyond the lifetime of the cluster. The properties of these binaries are similar to those of the observed binary systems containing extrasolar planets. Thus, dynamical processes in young stellar clusters will alter significantly any population of Solar System-like planetary systems. In addition, beginning with a population of planetary systems exactly resembling the Solar System around single stars, dynamical encounters in young stellar clusters may produce at least some of the extrasolar planetary systems observed in the solar neighbourhood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号