首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
More than 150 landslides originated in the eastern part of the Czech Republic (region of the Flysch Outer Western Carpathians—hereinafter, OWC) due to soil saturation caused by antecedent precipitation and long lasting and intensive rainfalls on 16–18 May 2010 (>300 mm as measured by some stations). As a consequence, a multitude of small failures originated 88% of which was smaller than 104 m2. Most landslides are characterised as shallow (<10 m) or middle–deep (10–30 m) incipient (rather short travel) landslides, debris slides and soil slips spatially clustered to a geological domain underlain by rather weak thin-bedded flysch and unconsolidated Quaternary deposits. An exception to this is represented by a kilometre-long rockslide (∼2–3 mil m3) affecting tectonically weakened and weathered claystone/mudstone-dominated flysch on the southern slope of Mt. Girová (the Beskydy Mountains). The rockslide is one of the largest long runout landslides in the territory of the Czech Republic activated over the past few decades as it reaches the dimensions of the largest documented Holocene long runout landslides in the Czech part of the OWC. A majority of the May 2010 landslide events developed inside older (Holocene or historic) landslide terrains, which points to their spatial persistency and recurrent nature. In spite of the fact that the May 2010 landslide event was not as destructive as some previous landslide activisation in the OWC region (e.g. July 1997 event), it left many slope failures at the initial stage of their potential future reactivation.  相似文献   

2.
On November 4, 2007, a large block slide occurred on the south face of the Cerro La Pera at San Juan Grijalva (SJG), northwest Chiapas, Mexico. The SJG landslide has an area of 1.11 km2 and a volume of 50 Mm3, making it one of the largest landslide of its type in the twentieth century. The landslide created a dam over 80 m high and 1,170 m wide across the Grijalva River, backing up the water and forming a 49 km2 lake. Landslide-generated tsunamis up to 15 m high destroyed the village of SJG, and the newly formed lake flooded 21 villages located upstream. The landslide killed 16 people and caused around 3,600 to be evacuated with incalculable economic losses. It was perhaps the most catastrophic landslide in the history of Mexico. The probable trigger of the landslide was cumulative precipitation of about 67% of the average annual rainfall over the preceding 30 days. The associated potentially causative factors include a M4.5 earthquake that occurred 5 days before the landslide and a water-level drawdown at the Grijalva River generated by the release of water from the Pe?itas dam located 14 km downstream.  相似文献   

3.
Panday  Suman  Dong  Jia-Jyun 《Landslides》2021,18(12):3875-3889

Continuous 5-day (August 4–9, 2019) torrential rainfall in the monsoon season triggered more than 90 landslides on northwest-southeast extended mountain range of Mon State, Myanmar. In this study, remote sensing images, DEM, and limited fieldworks were used to create the landslide inventory. The topography features of these landslides are analyzed via ArcGIS. The largest one occurred on 9 August 2019 and caused 75 deaths and 27 buildings were damaged. This landslide occurred on gentle topography (slope angle, 23°) with long run-out, in which the angle of reach was relatively low (10°). The volume was 111,878 m3 was mainly composed of weathered granite and red soil and the sliding depth was approximately 7.5 m. Topographic characteristics including the relative slope height, angle of reach, and slope angle of source area of 35 landslides with areas?>?4000 m2 were analyzed. The spatial distribution characteristics and topographic features of the 35 landslides below are distinguished: (1) the concentration of most of landslides on southwest-facing slopes showing the heterogeneous spatial distribution of landslide; (2) an uncommon landslide distribution in which more than half of landslide originates from upper slope; (3) the range of the angle of the source area (17°–38°) compatible with the internal friction angle of soils in tropical regions (17°–33°); and (4) the tangent of the angle of reach is generally smaller than 0.5 (angle of reach?<?27°) shows a relative high mobility and the relation between landslide mobility and the slope angle of the landslide source area is similar to the one of earthquake-triggered landslides, even though the triggering mechanism, landslide type, and landslide volume are dramatically different.

  相似文献   

4.
The Abbotsford Landslide of 8 August 1979 occurred in an urban area of Dunedin, New Zealand, causing much damage to houses and urban infrastructure. Rapid failure occurred after weeks of preliminary movements, resulting in the formation of a approximately 5 million m3 block slide. It caused the loss of 69 houses, with an overall cost of about NZ $10–13 million. After several months of investigations, a commission of inquiry found that unfavorable geology (weak clay layers in a 7°-dip slope) was the underlying cause of the landslide. An old sand quarry at the toe of the slope and a leaking water main above the slide area were found to be man-made factors that contributed to the failure. Slope stability analysis showed that after sand excavation (approximately 300,000 m3), the water table had to rise 0.3 m less for failure to occur. Because the quarry closed 10 years before the landslide occurred, it is concluded that a long-term rise in groundwater levels because of the increased rainfall over the previous decade and leakage from the water main controlled the timing of the failure and, in this sense, are considered to have triggered the landslide.  相似文献   

5.
Very intensive rainfall in August 2005 (>300 mm/3 days) triggered moderately deep (2–10 m) landslides of about 50'000 m3 volume each in two mountain torrent catchments above the village of Brienz (Berner Oberland, Switzerland). These landslides – originating in Trachtbach and Glyssibach catchments – transformed into extremely rapid (>5 m/s) debris flows, which caused significant damage in inhabited areas; two persons lost their lives and about twenty-five families became homeless. The Brienz case was the most damaging one among many landslide disasters occurring during those rainy days in the Swiss Alps. In this paper we study in detail the predisposition and causes of the 2005 landslides in the Brienz area, based on field mapping, analysis of high resolution images and digital terrain models, derived from LIDAR and infrared measurements taken before and after the event. The features of these landslides are compared with past and dormant landslides in the mid-slope portion of the mountain chain north of Brienz, which has been the source of many catastrophic mass wasting events during the last centuries. Detailed field mapping shows that highly weathered series of strongly overconsolidated Mesozoic marls (Diphyoides Limestone & Vitznau Marls of Valanginian age) and their residual soils form the primary source for the sliding materials. The rupture surfaces of the moderately deep landslides often run at the transition from saprolite to weathered bedrock, with a dip angle of about 40o in the landslide depletion area. These landslides transform into debris flows, where debris slides into strongly convergent hillslopes or directly into headwater channels.  相似文献   

6.
The Todagin Creek landslide is located at 57.61° N 129.98° W in Northwest British Columbia. A seismic station 90 km north of the landslide recorded the event at 1643 hours coordinated universal time (UTC; 0943 hours Pacific daylight time (PDT)) on October 3, 2006. The signal verifies the discovery and relative time bounds provided by a hunting party in the valley. The landslide initiated as a translational rock slide on sedimentary rock dipping down slope at 34° and striking parallel to the valley. The landslide transformed into a debris avalanche and had a total volume estimated at 4 Mm3. An elevation drop of 771 m along a planar length of 1,885 m resulted in a travel angle (fahrb?schung) of 21.3°. The narrowest part of the landslide through the transport zone is 345 m. The widest part of the divergent toe of the landslide reaches a width of 1,010 m. Landslide debris impounded a lake of approximately 32 ha and destroyed an additional 67 ha of forest. The impoundment took 7 to 10 days to fill, with muddied waters observed downstream on October 13. No clear linkage exists with precipitation and temperature records preceding the landslide, but strong diurnal temperature cycles occurred in the days prior to the event. The Todagin Creek area appears to have an affinity for large landslides with the deposits of three other landslides >5 Mm3 observed in the valley.  相似文献   

7.
Strong earthquakes are among the prime triggering factors of landslides. The 2008 Wenchuan earthquake (M w = 7.9) triggered tens of thousands of landslides. Among them, the Daguangbao landslide is the largest one, which covered an area of 7.8 km2 with a maximum width of 2.2 km and an estimated volume of 7.5 × 108 m3. The landslide is located on the hanging wall of the seismogenic fault, the Yingxiu–Beichuan fault in Anxian town, Sichuan Province. The sliding mass travelled about 4.5 km and blocked the Huangdongzi valley, forming a landslide dam nearly 600 m high. Compared to other coseismic landslides in the study area, the Daguangbao landslide attained phenomenal kinetic energy, intense cracking, and deformation, exposing a 1-km long head scarp in the rear of the landslide. Based on the field investigation, we conclude that the occurrence of the landslide is controlled mainly by the seismic, terrain, and geological factors. The special location of the landslide and the possible topographic amplification of ground motions due to the terrain features governed the landslide failure. The effects of earthquakes on the stability of slopes were considered in two aspects: First, the ground shaking may reduce the frictional strength of the substrate by shattering of rock mass. Second, the seismic acceleration may result in short-lived and episodic changes of the normal (tensile) and shear stresses in the hillshopes during earthquakes. According to the failure mechanism, the dynamic process of the landslide might contain four stages: (a) the cracking of rock mass in the rear of the slope mainly due to the tensile stress generated by the ground shaking; (b) the shattering of the substrate due to the ground shaking, which reduced the frictional strength of the substrate; (c) the shearing failure of the toe of the landslide due to the large shear stress caused by the landslide gravity; and (d) the deposition stage.  相似文献   

8.
Green Lake Landslide is an ancient giant rock slide in gneiss and granodiorite located in the deeply glaciated Fiordland region of New Zealand. The landslide covers an area of 45 km2 and has a volume of about 27 km3. It is believed to be New Zealand's largest landslide, and possibly the largest landslide of its type on Earth. It is one of 39 known very large (106–107 m3) and giant (≥108 m3) postglacial landslides in Fiordland discussed in the paper. Green Lake Landslide resulted in the collapse of a 9 km segment of the southern Hunter Mountains. Slide debris moved up to 2.5 km laterally and 700 m vertically, and formed a landslide dam about 800 m high, impounding a lake about 11 km long that was eventually infilled with sediments. Geomorphic evidence supported by radiocarbon dating indicates that Green Lake Landslide probably occurred 12 000–13 000 years ago, near the end of the last (Otira) glaciation. The landslide is described, and its geomorphic significance, age, failure mechanism, cause, and relevance in the region are discussed, in relation to other large landslides and recent earthquake-induced landslides in Fiordland. The slope failure occurred on a low-angle fault zone undercut by glacial erosion, and was probably triggered by strong shaking (MM IX–X) associated with a large (≥ M 7.5–8) earthquake, on the Alpine Fault c. 80 km to the northwest. Geology was a major factor that controlled the style and size of Green Lake landslide, and in that respect it is significantly different from most other gigantic landslides. Future large earthquakes on the Alpine Fault in Fiordland are likely to trigger more very large and giant landslides across the region, causing ground damage and devastation on a scale that has not occurred during the last 160 years, with potentially disastrous effects on towns, tourist centres, roads, and infrastructure. The probability of such an event occurring within the next 50 years may be as high as 45%.  相似文献   

9.
At Lake Coleridge, Canterbury, New Zealand, at least three rock avalanches have been released from a single source area during the Holocene. The first of these was of 107 m3 volume and dates to about 9,750 BP, and two with volumes 5 × 105 and 4 × 104 m3 occurred about 700 BP. All three crossed the course of the Ryton River; the latter two were emplaced within the part of the first that had subsequently been eroded by the Ryton River. All three were most likely triggered by, or related to, seismicity. The first rock avalanche formed a long-lived landslide dam, and no evidence remains to indicate whether its eventual failure was catastrophic. The second formed a correspondingly smaller dam, but there is no evidence that its lake was long-lived; however, a set of anomalously steep outwash terraces downstream of the landslide deposits show that it failed catastrophically. A camping ground is sited about 1 km downstream of the landslide deposits, and proposals to develop it further risk potentially severe hazards from future rock avalanche activity at the site.  相似文献   

10.
Evidences of landslide earthquake triggering due to self-excitation process   总被引:2,自引:0,他引:2  
The basin-like setting of stiff bedrock combined with pre-existing landslide masses can contribute to seismic amplifications in a wide frequency range (0–10 Hz) and induce a self-excitation process responsible for earthquake-triggered landsliding. Here, the self-excitation process is proposed to justify the far-field seismic trigger of the Cerda landslide (Sicily, Italy) which was reactivated by the 6th September 2002 Palermo earthquake (M s = 5.4), about 50 km far from the epicentre. The landslide caused damage to farm houses, roads and aqueducts, close to the village of Cerda, and involved about 40 × 106 m3 of clay shales; the first ground cracks due to the landslide movement formed about 30 min after the main shock. A stress–strain dynamic numerical modelling, performed by FDM code FLAC 5.0, supports the notion that the combination of local geological setting and earthquake frequency content played a fundamental role in the landslide reactivation. Since accelerometric records of the triggering event are not available, dynamic equivalent inputs have been used for the numerical modelling. These inputs can be regarded as representative for the local ground shaking, having a PGA value up to 0.2 m/s2, which is the maximum expected in 475 years, according to the Italian seismic hazard maps. A 2D numerical modelling of the seismic wave propagation in the Cerda landslide area was also performed; it pointed out amplification effects due to both the structural setting of the stiff bedrock (at about 1 Hz) and the pre-existing landslide mass (in the range 3–6 Hz). The frequency peaks of the resulting amplification functions (A(f)) fit well the H/V spectral ratios from ambient noise and the H/H spectral ratios to a reference station from earthquake records, obtained by in situ velocimetric measurements. Moreover, the Fourier spectra of earthquake accelerometric records, whose source and magnitude are consistent with the triggering event, show a main peak at about 1 Hz. This frequency value well fits the one amplified by the geological setting of the bedrock in correspondence with the landslide area, which is constituted of marly limestones and characterised by a basin-like geometry.  相似文献   

11.
This work aims to understand the process of potential landslide damming using slope failure mechanism,dam dimension and dam stability evaluation. The Urni landslide, situated on the right bank of the Satluj River, Himachal Pradesh(India) is taken as the case study. The Urni landslide has evolved into a complex landslide in the last two decade(2000-2016) and has dammed the Satluj River partially since year 2013,damaging ~200 m stretch of the National Highway(NH-05). The crown of the landslide exists at an altitude of ~2180-2190 m above msl, close to the Urni village that has a human population of about 500.The high resolution imagery shows ~50 m long landslide scarp and ~100 m long transverse cracks in the detached mass that implies potential for further slope failure movement. Further analysis shows that the landslide has attained an areal increase of 103,900 ± 1142 m^2 during year 2004-2016. About 86% of this areal increase occurred since year 2013. Abrupt increase in the annual mean rainfall is also observed since the year 2013. The extreme rainfall in the June, 2013; 11 June(~100 mm) and 16 June(~115 mm),are considered to be responsible for the slope failure in the Urni landslide that has partially dammed the river. The finite element modelling(FEM) based slope stability analysis revealed the shear strain in the order of 0.0-0.16 with 0.0-0.6 m total displacement in the detachment zone. Further, kinematic analysis indicated planar and wedge failure condition in the jointed rockmass. The debris flow runout simulation of the detached mass in the landslide showed a velocity of ~25 m/s with a flow height of ~15 m while it(debris flow) reaches the valley floor. Finally, it is also estimated that further slope failure may detach as much as 0.80 ±0.32 million m^3 mass that will completely dam the river to a height of 76±30 m above the river bed.  相似文献   

12.
Limbe town and surrounding areas, on the SE foot slopes of the active Mt Cameroon Volcano, have experienced numerous small-scale shallow landslides within the last 20 years. These resulted in the loss of ~30 lives and significant damage to farmland and properties. Landslides and their scars are identified in the field, and their geometry systematically measured to construct a landslide inventory map for the study area. Specific landslides are investigated in detail to identify site-specific controlling and triggering factors. This is to constrain key input parameters and their variability for subsequent susceptibility and risk modeling, for immediate local and regional applications in land-use planning. It will also enable a rapid exploration of remediation strategies that are currently lacking in the SW and NW regions of Cameroon. Typical slides within the study area are small-scale, shallow, translational earth, and debris slides though some rotational earth slides were also documented. The depletion zones have mean widths of 22 m ± 16.7 m and lengths of 25 ± 23 standard deviation. Estimated aerial extents of landslide scars and volume of generated debris range from 101 to 104 m2 and 2 to 5 × 104 m3, respectively. A key finding is that most slope instabilities within the study area are associated with and appear to be exacerbated by man-made factors such as excavation, anarchical construction, and deforestation of steep slopes. High intensity rainfall notably during localized storms is the principal triggering factor identified so far. The findings from this case study have relevance to understanding some key aspects of locally devastating slope instabilities that commonly occur on intensely weathered steep terrains across subtropical Africa and in the subtropics worldwide and affecting an ever denser and most vulnerable population.  相似文献   

13.
贵州省六盘水水城高位远程滑坡流态化运动过程分析   总被引:1,自引:0,他引:1  
高位远程滑坡是中国西南山区常见的一类灾难性地质灾害,其发生往往伴随有碰撞解体效应,导致滑体碎裂化,转化为碎屑流或泥石流,具有流化运动堆积的特征。2019年7月23日发生于中国贵州省六盘水市水城县的鸡场镇滑坡是典型的高位远程流态化滑坡,滑坡前后缘高差430 m,水平运动距离1340 m,堆积体体积200×104 m3,导致21幢房屋被掩埋,51人遇难。基于野外详细调查和滑前滑后地形对比,采用DAN-W软件对水城滑坡的整个运动堆积过程进行了模拟,结果显示:水城滑坡在滑源区残留堆积体厚度最大为27 m,堆积区最大堆积厚度为15 m,滑坡碎屑流前缘最大运动速度为27 m/s,最大动能为6.57×106 J;滑坡高位剪出,由于势能转化为动能,滑坡快速达到速度峰值,并铲刮地表松散土层;由于强降雨,滑体高速运动使基底孔隙水来不及排出,导致基底摩擦力下降,降低能量损耗,滑体解体促进颗粒流化运动,减少了摩擦,也是滑坡远程运动的重要原因。   相似文献   

14.
Large-scale ancient landslides of the area of more than 5 km2 and volume exceeding 200 × 106 m3 are characteristic features of the valleys incised in the northern periphery of the Crimean Mountains (Ukraine). The largely affected area is located in the outermost cuesta range of the Crimean Mountains which consists of rigid Sarmatian limestones overlying weak Middle Miocene and Upper Palaeogene deposits. A giant landslide arose in the Alma water gap as a reflection of several coincident preparatory factors such as suitable bedrock stratification, smectite-rich bedrock exposed to swelling activity, presence of faults parallel to the valley trend, and river capture event which preceded the landslide event. The occurrence of such ancient megaslides is particularly interesting in the area which is characterized by low precipitation (<500 mm/year) and weak contemporary seismicity. It probably reflects a more dynamic environment in humid phases of the Holocene; however, seismic triggering along the Mesozoic suture zone cannot be rejected. Compressional features such as gravitational folds in the central and distal parts of the landslide, which probably correlate with the whole landslide genesis or its significant reactivation, arose, according to the radiocarbon dating, during the Holocene climatic optimum in the Atlantic period. The slope deformation has been relatively quiescent since that time, except minor historic reactivization which took place in the frontal part of the landslide. We suppose that the studied landslide could be classified as a transitional type of slope deformation with some signs of spreading and translational block slides.  相似文献   

15.
Zhao  Bo  Wang  Yunsheng  Wu  Junfeng  Su  Lijun  Liu  Jiangwei  Jin  Gang 《Natural Hazards》2021,106(1):459-485

A good understanding of seismic giant landslides could provide favourable guidance for seismic stability evaluation of nearby slopes. Here, an excellent example of a catastrophic seismic landslide named the Mogangling giant landslide (MGL), located upstream along the Dadu River and triggered by the 1786 Moxi M 7.75 earthquake, is analysed for its deposit characteristics, failure mechanism and dammed lake. The MGL, with a volume of approximately 4500?×?104 m3, 450 m long and 1000 m wide, blocked the Dadu River completely and caused over 100 000 deaths when the landslide dam broke. The MGL occurred on the upper part of a narrow granite ridge; a potentially unstable wedge-shaped rock mass was separated from the remaining massif by unloading fissures and an active fault (Detuo fault) that just crossed the slope foot. The Moxi earthquake coupled with strong site amplification triggered the MGL, which blocked the Dadu River; the elevation of the dam crest was approximately 130 m higher than the present river level. The dammed lake had a volume of approximately 9.504?×?108 m3, an area of 19.91 km2 and a length of approximately 31 km; the peak flow of the outburst flood was larger than 7100 m3/s. After hundreds of years of concave bank erosion, the deposit is divided into the right bank deposit (main deposit) and left bank deposit (residual deposit).

  相似文献   

16.
The prehistoric Mt Wilberg rock avalanche, Westland, New Zealand   总被引:1,自引:0,他引:1  
The Mt Wilberg rock avalanche in Westland, New Zealand occurred before 1300 AD and may have occurred as a consequence of an Alpine fault earthquake in ca. 1220 AD or earlier. Its ∼40 × 106 m3 deposit may have briefly obstructed the Wanganui River, but only about 25% of its surface morphology still survives, on terraces isolated from river erosion. The landslide appears to have moved initially as a block, in a direction controlled by a strong rock mass at the base of the source area, before disintegrating and spreading across terraces, fans, and floodplains. Rock avalanche deposits in Westland have relatively short expected lifetimes in the rugged terrain and high rainfall of the area; hence, the hazard from such events is under-represented by their current remnants.  相似文献   

17.
In the framework of a regional landslide susceptibility study in southern Sicily, a test has been carried out in the Tumarrano river basin (about 80 km2) aimed at characterizing its landslide susceptibility conditions by exporting a “source model”, defined and trained inside a limited (about 20 km2) representative sector (the “source area”). Also, the possibility of exploiting Google Earth software and photo-images databank to produce the landslide archives has been checked. The susceptibility model was defined, according to a multivariate geostatistic approach based on the conditional analysis, using unique condition units (UCUs), which were obtained by combining four selected controlling factors: outcropping lithology, steepness, plan curvature and topographic wetness index. The prediction skill of the exported model, trained with 206 landslides, is compared with the one estimated for the whole studied area, by using a complete landslide archive (703 landslides), to see to what extent the largest time/money costs needed are accounted for. The investigated area stretches in the fore-deep sector of southern Sicily, where clayey rocks, mainly referring to the Numidian Flysch and the Terravecchia Formations, largely crop out. The results of the study confirm both the exploitability of Google Earth to produce landslide archive and possibility to adopt in assessing the landslide susceptibility for large basin, a strategy based on the exportation of models trained in limited representative sectors.  相似文献   

18.
Li  Yanyan  Feng  Xuyang  Yao  Aijun  Zhang  Zhihong  Li  Kun  Wang  Qiusheng  Song  Shengyuan 《Landslides》2022,19(5):1069-1086

This paper presents a study on an ancient river-damming landslide in the SE Tibet Plateau, China, with a focus on time-dependent gravitational creep leading to slope failure associated with progressive fragmentation during motion. Field investigation shows that the landslide, with an estimated volume of 4.9?×?107 m3, is a translational toe buckling slide. Outcrops of landslide deposits, buckling, toe shear, residual landslide dam, and lacustrine sediments are distributed at the slope base. The landslide deposits formed a landslide dam over 60 m high and at one time blocked the Jinsha River. Optically stimulated luminescence dating for the lacustrine sediments indicates that the landslide occurred at least 2,600 years ago. To investigate the progressive evolution and failure behavior of the landslide, numerical simulations using the distinct element method are conducted. The results show that the evolution of the landslide could be divided into three stages: a time-dependent gravitational creep process, rapid failure, and granular flow deposition. It probably began as a long-term gravitationally induced buckling of amphibolite rock slabs along a weak interlayer composed of mica schist which was followed by progressive fragmentation during flow-like motion, evolving into a flow-like movement, which deposited sediments in the river valley. According to numerical modeling results, the rapid failure stage lasted 35 s from the onset of sudden failure to final deposition, with an estimated maximum movement rate of 26.8 m/s. The simulated topography is close to the post-landslide topography. Based on field investigation and numerical simulation, it can be found that the mica schist interlayer and bedding planes are responsible for the slope instability, while strong toe erosion caused by the Jinsha River caused the layered rock mass to buckle intensively. Rainfall or an earthquake cannot be ruled out as a potential trigger of the landslide, considering the climate condition and the seismic activity on centennial to millennial timescales in the study area.

  相似文献   

19.
An extraordinarily large-scale landslide with a volume of about 200 million m3, a width of about 1,600 m, and a height of about 750 m occurred on 2004 March 26, 13:45 local time, on a steep caldera wall on the northwest flank of Mt. Bawakaraeng (2,830 m) at the headwater of the Jeneberang River in South Sulawesi, Indonesia. The debris avalanche extended about 7 km from the headwater and buried the river valley, causing devastating damage. There are a great many calderas in the world, notably Japan. If a large-scale sector collapse were to occur in a heavily populated area, it would be a devastating disaster for the people living in the area. The aim of this paper is to outline such a landslide and explain its mechanism of occurrence. We evaluated the stability of the original slope before the landslide using the limit equilibrium method and the finite-element-based shear strength reduction method (SSRFEM) with the strength reduction factor. The limit equilibrium method showed that a rise in the groundwater level caused the landslide. Although the critical slip surface predicted by the SSRFEM was shallower than that of the actual slip surface, the end positions of the actual and predicted slip surfaces were almost the same. Moreover, the end position of the critical slip surface before the landslide—the headwater of the Jeneberang River—was a knick point at which the slope inclination became steeper. SSRFEM analysis may be useful for evaluating the slope stability of large-scale landslides, because the critical slip surface predicted by it was close to the actual surface, even though we assumed homogenous conditions without information on the degree of weathering or ground properties. As the knick point formed at the end of the critical slip surface and is equivalent to the end of the actual slip surface, we assume such topographic features to be a primary geomorphologic cause of the landslide.  相似文献   

20.
Formation and failure of the Tsatichhu landslide dam, Bhutan   总被引:1,自引:1,他引:1  
At 00:30 (local time) on the 10th September 2003 a joint and foliation defined wedge of material with an estimated volume of 7–12×106 m3 slid into the narrow Tsatichhu River Valley, in Jarrey Geog, Lhuentse, eastern Bhutan. The Tsatichhu River, a north–easterly flowing tributary of the Kurichuu River, was completely blocked by the landslide. During its movement, the landslide transitioned into a rock avalanche that travelled 580 m across the valley before colliding with the opposite valley wall. The flow then moved down valley, travelling a total distance of some 700 m. The rock avalanche was accompanied by an intense wind blast that caused substantial damage to the heavily forested valley slopes. The resulting geomorphologically-typical rock-avalanche dam deposit created a dam that impounded a water volume of 4–7×106 m3 at lake full level. This lake was released by catastrophic collapse of the landslide, which occurred at 16:20 (local time) on 10th July 2004, after reported smaller failures of the saturated downstream face. The dam failure released a flood wave that had a peak discharge of 5900 m3 s−1 at the Kurichhu Hydropower Plant 35 km downstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号