首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 496 毫秒
1.
The key features in the distribution of geoelectric and velocity heterogeneities in the Earth’s crust and the upper mantle of Kamchatka are considered according to the data of deep magnetotelluric sounding and seismotomography. Their possible origin is discussed based on the combined analysis of electric conductivity and seismic velocity anomalies. The geoelectric model contains a crustal conducting layer at a depth of 15–35 km extending along the middle part of Kamchatka. In the Central Kamchatka volcanic belt, the layer is close to the ground surface to a depth of 15–20 km, where its conductivity considerably increases. Horizontal conducting zones with a width of up to 50 km extending into the Pacific Ocean are revealed in the lithosphere of eastern Kamchatka. The large centers of current volcanism are confined to the projections of the horizontal zones. The upper mantle contains an asthenospheric conducting layer that rises from a depth of 150 km in western Kamchatka to a depth of 70–80 km beneath the zone of current volcanism. According to the seismotographic data, the low- and high-seismic-velocity anomalies of P-waves that reflect lateral stratification, which includes the crust, the rigid part of the upper mantle, the asthenospheric layer in a depth range of ~70–130 km, and a high-velocity layer confined to a seismofocal zone, are identified on the vertical and horizontal cross sections of eastern Kamchatka. The cross sections show low-velocity anomalies, which, in the majority of cases, correspond to the high-conductivity anomalies caused by the increased porosity of rocks saturated with liquid fluids. However, there are also differences that are related to the electric conductivity of rocks depending on pore channels filled with liquid fluids making throughways for electric current. The seismic velocity depends, to a great extent, on the total porosity of the rocks, which also includes isolated and dead-end channels that can be filled with liquid fluids that do not contribute to the electric-current transfer. The data on electric conductivity and seismic velocity are used to estimate the porosity of the rocks in the anomalous zones of the Earth’s crust and the upper mantle that are characterized by high electric conductivity and low seismic velocity. This estimate serves as the basis for identifying the zones of partial melting in the lithosphere and the asthenosphere feeding the active volcanoes.  相似文献   

2.
利用染色法和SF-300树干液流仪分别区分了青海云杉树木的边材与心材的边界, 并用树干液流法研究了青海云杉树干传输水分的空间格局.结果表明: 染色法与树干液流法均能有效区分青海云杉树木的边材与心材, 但染色法更方便、 快捷; 利用染色法测定的青海云杉树木边材宽度与其胸径大小呈指数函数关系.青海云杉树干液流速率从边材外缘向里逐渐增大, 达到最大值后又逐渐减小, 其水分传输格局基本呈对称分布的.  相似文献   

3.
Aeolian sand entrainment, saltation and deposition are important and closely related near surface processes. Determining how grains are sorted by wind requires a detailed understanding of how aerodynamic sand transport processes vary within the saltating layer with height above the bed. Grain‐size distribution of sand throughout the saltation layer and, in particular, how the associated flux of different grain size changes with variation in wind velocity, remain unclear. In the present study, a blowdown wind tunnel with a 50 cm thick boundary layer was used to investigate saltating sand grains by analyzing the weight percentage and transport flux of different grain‐size fractions and the mean grain size at different wind velocities. It was found that mean grain size decreases with height above the sand bed before undergoing a reversal. The height of the reversal point ranges from 4 to 40 cm, and increases with wind velocity following a non‐linear relationship. The content of the finer fractions (very fine and fine sand) initially increases above the sand bed and then decreases slightly with height, whereas that of the coarser fractions (medium and coarse sand) exhibits the opposite trend. The content of coarser grains and the mean grain size of sand in the saltation layer increase with wind velocity, indicating erosional selectivity with respect to grains in multi‐sized sand beds; but this size selectivity decreases with increasing wind velocity. The vertical mass flux structure of fine sand and very fine sand does not obey a general exponential decay pattern under strong wind conditions; and the coarser the sand grain, the greater the decrease rate of their transport mass with height. The results of these experiments suggest that the grain‐size distribution of a saltating sand cloud is governed by both wind velocity and height within the near‐surface boundary layer.  相似文献   

4.
The existence of gas-hydrates in marine sediments increases the seismic velocity, whereas even a small amount of underlying free-gas reduces the velocity considerably. The change in velocities against the background (without gas-hydrates and free-gas) velocity can be used for identification and assessment of gas-hydrates. Traveltime inversion of identifiable reflections from large offset multi channel seismic (MCS) experiment is an effective method to derive the 2-D velocity structure in an area. We apply this method along a seismic line in the Kerala-Konkan (KK) offshore basin for delineating the gas-hydrates and free-gas bearing sediments across a bottom simulating reflector (BSR). The result reveals a four layer 2-D shallow velocity model with the topmost sedimentary layer having velocity of 1,680–1,740 m/s and thickness of 140–190 m. The velocity of the second layer of uniform thickness (110 m) varies from 1,890 to 1,950 m/s. The third layer, exhibiting higher velocity of 2,100–2,180 m/s, is interpreted as the gas-hydrates bearing sediment, the thickness of which is estimated as 100 to 150 m. The underlying sedimentary layer shows a reduction in seismic velocity between 1,620 to 1,720 m/s. This low-velocity layer with 160–200 m thickness may be due to the presence of free-gas below the gas-hydrates layer.  相似文献   

5.
东西构造带形成机制和有关问题的讨论   总被引:1,自引:0,他引:1  
<正> 早在二十年代初期,李四光教授在研究中国和东亚各种类型构造体系的时候,就明确指出地壳表面存在着沿一定纬度分布的东西向构造带。以后又进一步讨论了它们长期发展的历史和它们在全球的规模。他从不同类型构造体系在地壳上分布和排列的规律,探索构造运动的起源,认为这些构造体系所表现的方向性显然与地球的旋转轴有一定的联系,它们的成生与地球自转角速度的变化密切相关,当地球自转角速度发生变化时,它的离心惯性力也随着发生变化,离心惯性力的水平分力推动着地壳的定向水平运动——经向和纬向水平运动。  相似文献   

6.
为了调查羌塘盆地中部壳内低速层分布特征,对布设在羌塘盆地的TITAN-I宽频带地震台站所记录的远震波形数据进行接收函数分析,并引入时频域相位滤波技术改善接收函数信噪比,反演得到各台站下方100 km深度范围内的一维S波速度结构.结果表明,时频域相位滤波方法能够显著提高信噪比;羌塘盆地Moho深度为58±6 km,具有较高的泊松比值;中下地壳壳内低速层广泛分布,横向不连续,埋深在20~30 km,层厚6~12 km,剪切波速度为3.4±0.1 km/s;部分地区在埋深为10 km的中上地壳存在一层厚约4 km的低速薄层.羌塘盆地中下地壳壳内低速层是由于上涌的深部软流圈物质与下地壳发生大范围的接触,造成壳内及上地幔部分熔融引起的.  相似文献   

7.
The problems of poor data quality and statics in seismic surveys have been attributed to lack of proper understanding of the low velocity layer characteristics of the area from which such data was acquired. Downhole seismic refraction survey was therefore conducted at twenty (20) borehole locations within parts of Niger Delta, Nigeria to determine the low velocity layer characteristics of the area using the Geometrics Stratavisor NZ11 instrument. The data was processed using Udysys software with spatial representation of the results presented. Static corrections were carried out on reflection seismic data acquired from the study area using Geoscribe II software to determine the effects of the low velocity layer on reflection seismic data in the area. Results of the study revealed that the velocity of the low velocity layer ranged between 144 and 996m/s with a regional average of 407m/s. The thickness of the low velocity layer varied between 3.0 and 9.6m with a mean value of 5.0m. Similarly, the velocity of the consolidated layer ranged between 1449 and 1812m/s with a mean value of 1738m/s. Results of the static correction carried out on the seismic reflection data revealed a substantial improvement in the resolution of the data after static correction. Based on these findings, it is therefore, recommended that shots for reflection seismic survey should be located at a minimum depth of 9.6m in the area to eliminate the effects associated with the low velocity layer.  相似文献   

8.
The 1982–1983 surge of Variegated Glacier involved the development, growth and downglacier propagation of a velocity peak associated with rapid basal sliding facilitated by high subglacial water pressures. Passage of the velocity peak through the glacier was preceded by an episode of longitudinal shortening and followed by an episode of elongation. The deformation history of the glacier ice was dependent upon location relative to the surge nucleus and the final position reached by the propagating velocity peak. Ice above the surge nucleus experienced continuous and cumulative elongation; ice below the final position of the velocity peak experienced continuous and cumulative shortening; ice between these two points experienced shortening followed by elongation and low cumulative strain. The large-scale pattern of ice structure development reflects these deformation histories. Surging is equivalent to thrust sheet emplacement by a combination of gravity gliding over a weakened basal layer and ‘push from behind’, with the gravity-driven motion of the surging part of the glacier providing the push which allows the surge front to propagate. The relationships established between the deformation history of surging glaciers and the development of ice structures may facilitate the interpretation of structures in thrust sheets.  相似文献   

9.
中国及全球大陆不同构造域广泛存在壳内低速层。壳内低速层不仅与地壳表层金属、非金属矿床、油气资源及地壳变形密切相关, 而且也是一些重大地震和活动断裂的发育场所。一般认为,地壳低速层反映了地壳物质的含水、热状态和部分熔融等信息, 其研究对探讨地壳结构及其动力学演化有重要意义。本文总结了利用深地震测深资料的震相走时、振幅、相位信息识别壳内低速层的5种典型方法: 1)Pg震相走时中断;2)低速层顶、底界面反射波走时曲线近似平行;3)30°~60°入射角范围内低速层顶界面反射转换波强于反射纵波;4)低速层底界面反射波强于顶界面;5)低速层顶界面反射波极性反转等。研究实例表明, 以上方法为利用深地震测深资料揭示壳内低速层提供了有效途径。  相似文献   

10.
Effects of weak layers on particle velocity measurements   总被引:1,自引:0,他引:1  
Summary Results are presented from a testing program to study the effect weak layers embedded in a strong rock strata have on particle velocity when subjected to explosive loading. A similar computational study had been conducted earlier with WONDY — a finite difference Langrangian code developed at Sandia National Laboratory. The experiments were conducted using models fabricated from Hydrocal containing a single dry sand layer or clay layer through which the stress wave traveled. Particle velocity was measured in front of and past the weak layer to determine attenuation, pulse shape changes, and displacement loss. The results from the model testing indicated that particle velocity amplitude decreased significantly when the stress wave passed through the weak layer. The velocity pulse width on the other hand was found to remain relatively constant when passing through the weak layer. The computational results from WONDY predicted similar behavior and hence were in good agreement with the tests. In the experiments, the velocity loss across a sand layer was found to be much larger than the loss across a clay layer. The stress wave velocity in the sand layer was found to be significantly smaller than in the Hydrocal while the experimentally determined wave velocity in the clay was nearly equal to the wave velocity in the Hydrocal.  相似文献   

11.
对二维无限大多孔介质内单向均匀水平流垂直绕过“固体小圆柱-多孔介质环-水环-多孔介质”复杂四层结构下的流场进行了解析求解。内、外多孔介质区域均采用Brinkman模型,纯流体水环采用Stokes模型,通过耦合界面间的质量、动量守恒关系得到了各区域流函数的通用表达式。在此基础上分析了不同几何参数,不同内、外多孔介质渗透系数情况下,圆柱外绕流的流型变化;着重研究了水环间隙以及内、外多孔介质渗透系数的变化对流型及横向、纵向速度分布的影响。结果表明:外部多孔区流型主要受控于外部渗透系数;水环间隙宽度对水环内速度峰值影响较大;内部渗透系数增加到某一临界值情况下,横截面速度分布从阶梯形变为抛物形,即“穿透”现象。研究结果对有类似结构的地埋管换热器、地下水污染物吸收装置、地下水测速装置等的设计研发有理论指导意义。  相似文献   

12.
Toward a model for airflow on the lee side of aeolian dunes   总被引:8,自引:0,他引:8  
The interaction between dunes and the primary wind results in a complex pattern of secondary airflow on the lee side of dunes. From 15 dunes studied during transverse flow conditions at Padre Island in Texas, White Sands in New Mexico, and the Algodones in California, distinct flow regions can generally be recognized, with the overall flow structure comparing favourably to that proposed for subaqueous bedforms. Downwind of dunes with flow separation is a back-flow eddy that extends about four dune-brink heights downwind from the brink of the dune. Beyond the separation cell, the velocity profiles can be divided into regions based upon segments separated by ‘kinks’ in the velocity profiles. The interior is an area above the dunes of relative high wind speed but low velocity gradient. Beneath the interior is the wake, which consists of two layers. The upper wake exhibits an uppermost portion where the flow decelerates while the remainder exhibits accelerating flow, so that the overall velocity gradient decreases downwind. The lower wake exhibits low velocity gradients and wind speeds that accelerate downwind at all heights, but primarily near the top of the layer, thereby causing the velocity gradient to increase downwind. At about eight dune heights downwind, the upper and lower wakes equilibrate to a single profile with the kink between them no longer apparent. The lowest recognizable region is the internal boundary layer. It is recognized by a relatively steep velocity gradient below the wake, and never exceeds a few tens of centimetres in height for our data set. Because of acceleration and increasing shear stress within this layer, interdune flats are at least potentially erosional. Overall, the wake and internal boundary layer show a downward transfer of momentum from upper regions so that the flow recovers. Where flow separation does not occur, simple flow expansion down the lee-face causes flow deceleration.  相似文献   

13.
高速层成因的争议限制了对南海深部结构、构造演化以及南海完整演化历史的认识.运用Oasis Montaj软件对穿越南沙西南部的最新地震测线进行重震联合反演,分析莫霍面起伏、地壳厚度及高速层的分布,计算全壳伸展因子和现今高速层的温度、识别火山时代,并探讨高速层的成因.南薇西盆地和礼乐盆地区伸展因子为1.5~4.0,未达到蛇纹石发育条件;南沙海槽区伸展因子大,最大为11.2,海水可通过深大断裂下渗与橄榄岩反应生成蛇纹石,高速层处温度低于蛇纹石稳定温度;通过地震剖面确定火山在南海停止扩张之后形成.研究结果表明,南沙西南部高速层按成因分为两类,南薇西盆地和礼乐盆地区为南海扩张停止后火山喷发残余的岩浆,而南沙海槽盆地区为早期橄榄岩的蛇纹石化与南海停止扩张后岩浆的混合体.   相似文献   

14.
常规频散曲线反演过程中需要不停地改变分层数、层厚度和层速度等参数,实现过程相对繁琐,而采用细化分层法对反演参数进行简化则避免了上述缺点。具体思路为:根据目的层探测深度(如20m)将地下介质分为若干个(20个)厚度为1m的薄层和1个均匀半空间层(共21层),这样在反演中分层数和层厚度均为已知参量,反演过程只需修改速度参数即可,避免了改变分层数和层厚度等参数,显著简化了反演计算过程。正演计算和反演结果均表明:细化分层与实际分层计算出的频散曲线是等效的,细化分层反演结果的总体效果与真实模型非常接近,这说明细化分层方法用于频散曲线反演是切实可行且有效的;将地下介质划分为1m厚的薄层,反演后每层均可得到1个横波速度,能满足反演分辨率的要求;由于实际地下介质的速度是随深度渐变的,细化分层后比按频散曲线拐点分层(每分层的厚度可能是几米或几十米,同一分层内介质的横波速度相等)更接近实际情况。  相似文献   

15.
系统介绍了地核的形成时间、地核的物理特性、化学成分和物质存在相态.利用W-Hf同位素系测年方法厘定地核与地幔分异的年龄是在地球形成的最初30 Ma.但是,内核的结晶年龄还是未知的.地核声波速度的各向异性可能是六面体紧密堆积(hcp)相铁的C轴方向沿地球轴线优选定向排列引起的.利用地球物理资料估算的地核密度与响应温压条件...  相似文献   

16.
中国大陆主要成矿域地壳速度结构与成矿作用   总被引:10,自引:1,他引:10       下载免费PDF全文
文章汇集了中国11条地球科学断面和数十条人工地震剖面,对中国大陆的地壳结构进行了综合研究。获得了主要成矿域的地壳分层结构模型。根据各层的厚度和地震波速度差异,揭示出主要成矿域地壳速度结构的横向变化,勾绘出壳内低速层的分布特征。文中还探讨了中国大陆主要成矿域岩石圈的现今活动性,以及地壳厚度、壳内低速层、“墙式”地震剪切波垂向低速带和下地壳底部高速层(体)的分布特征以及与成矿作用的关系。  相似文献   

17.
煤炭三维地震勘探对煤层作时深转换时常用的方法是:首先利用钻孔处的目的层铅垂深度除以钻孔处目的层的反射时间值的一半,算出各个钻孔处煤层的大平均速度,然后利用内插法绘制测区速度分布平面图。之后,把速度平面上各点的速度乘以时间平面图上反射时间的一半,得出深度平面图。该时深转换易产生误差,有些情况其误差甚至超过了规范要求。针对测区的实际情况,列举了在二层速度情况下用大平均速度作时深转换时误差分析的一些例子,并提出了如何消除误差的对策。  相似文献   

18.
The crustal structure of the Matsushiro area, Central Japan, was studied in two profiles, A and B, with the explosion seismic method to obtain a better understanding of the physical processes of the Matsushiro Swarm Earthquakes. The layer with a velocity of 6.0 km/sec is extremely shallow and becomes deeper west of Chikuma River and around the southeastern end of profile B; there exists a faultlike structure in the most active area. The comparison of hypocenter distributions with the crustal structure shows that almost all swarm earthquakes have their hypocenters below the 6.0 km/sec layer and are confined to the region where this 6.0 km/sec layer is shallow. The velocity gradient in the 6.0 km/ sec layer is determined with certainty by the time-term analysis.

In the seismically most active region the anomalous structure is derived not only from the traveltime analysis but also from the amplitude studies; that is, the velocity and the Q-value are smaller than in other regions.  相似文献   


19.
Underway current velocity profiles were combined with temperature and salinity profiles at fixed stations to describe tidal and subtidal flow patterns in the middle of the northernmost Chilean fjord, Estuario Reloncaví. This is the first study involving current velocity measurements in this fjord. Reloncaví fjord is 55 km long, 2 km wide, and on average is 170 m deep. Measurements concentrated around a marked bend of the coastline, where an 8-km along-fjord transect was sampled during a semidiurnal tidal cycle in March 2002 and a 2-km cross-fjord transect was occupied, also during a semidiurnal cycle, in May 2004. The fjord hydrography showed a relatively thin (<5 m deep), continuously stratified, buoyant layer with stratification values >4 kg m−3 per meter of depth. Below this thin layer, the water was relatively homogeneous. Semidiurnal tidal currents had low amplitudes (<10 cm s−1) that allowed the persistence of a surface front throughout the tidal cycle. The front oscillated with a period of ca. 2.5 h and showed excursions of 2 km. The front oscillations could have been produced by a lateral seiche that corresponds to the natural period of oscillation across the fjord. This front could have also caused large (2 h) phase lags in the semidiurnal tidal currents, from one end of the transect to the other, within the buoyant layer. Tidal phases were relatively uniform underneath this buoyant layer. Subtidal flows showed a 3-layer pattern consisting of a surface layer (8 m thick, of 5 cm s−1 surface outflow), an intermediate layer (70 m thick, of 3 cm s−1 net inflow), and a bottom layer (below 80 m depth, of 3 cm s−1 net outflow). The surface outflow and, to a certain extent, the inflow layer were related to the buoyant water interacting with the ambient oceanic water. The inflowing layer and the bottom outflow were attributed to nonlinear effects associated with a tidal wave that reflects at the fjord's head. The weak subtidal currents followed the morphology of the bend and caused downwelling on the inside and upwelling on the outside part of the bend.  相似文献   

20.
分析了复杂地表地区复杂地震波场的形成原因,探讨了基于高角度时空域单程波动方程适用于起伏地表之下构造成像的逆时叠前深度偏移方法。从声波方程有限差分法合成起伏地表上的炮集记录知,当激发点位于低速层中,共炮点道集中低速层表面和高速层表面接收到的信号强度相差较大:低速层表面的信号很强,而高速层表面的信号很弱,低速层中产生了较强的槽波。将该逆时叠前深度偏移方法应用于起伏地表地震波场的偏移处理。虽然在偏移成像前既没有压制与低速层有关的槽波,又没有压制随机噪声,但偏移剖面上界面清晰、位置正确,断层面也得到了很好的聚焦。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号