首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The temporal-spatial geographic distribution of archaeological sites and its feature between 10.0–2.8 ka BP(ka BP= thousands of years before 0 BP, where "0 BP" is defined as the year AD 1950) were determined, based on GIS spatial analysis in the Poyang Lake Basin. The relationship between geographic distribution of sites of different periods under subsistence existence of ancient civilizations, climate and environmental change was investigated. The results revealed numerous archaeological sites of the Neolithic Age(10.0–3.6 ka BP). The sites were mainly located in the northern part of the Poyang Lake Basin, a hilly and mountainous area with many river terraces suitable for the development of human civilization. The number of archaeological sites rapidly increased during the Shang and Zhou dynasties(3.6–2.8 ka BP) and spread widely on the floodplains of the middle and lower reaches of Ganjiang River and onto the west, south, and southeast beach areas of the Poyang Lake. Holocene records of climate change suggested that it was possible that climate fluctuations had a great impact on human evolution in the study area. Before 3.6 ka BP, westward and northward expansion of Neolithic cultures in the Poyang Lake watershed occurred under the background of climate amelioration(becoming warmer and wetter). The ancient people lived in the hilly areas with high elevation. The simple mode of a fishing and gathering economy was mostly suited to this area in the early Neolithic Age. The scope of human activities was expanded and cultural diversity developed in the late Neolithic Age. However, with population growth and increasing survival pressure in a dry-cold climatic stage after 3.6 ka BP, this simple living mode had to be abandoned, and various forms of economy, the majority being agriculture, were developed on flood plains of the lower reaches of numerous rivers around Poyang Lake. This promoted flourishing of the Bronze culture of South China.  相似文献   

2.
Based on the comprehensive analyses of 18 core profiles’sedimentary sequences and lithological characteristics in Jianghan-Dongting Basin of the middle reaches of the Yangtze River and the spatial-temporal distribution of archeological sites in this area,we reconstructed the Holocene hydro-environmental evolution,and its relationship with human occupation.The comparison reveals:11.5–5.5 ka BP,the water level of rivers and lakes in the middle Yangtze River appeared a rising trend,concurrently,under the development of Neolithic culture and rice agricultural activities,human occupation extended from piedmont plain to inner basin plain in the study area.The water level fell in 5.5–4.0 ka BP,meanwhile,the number of human settlements of Qujialing-Shijiahe culture rapidly increased,especially in the inner basin plain.The water level rose again around 4.0 ka BP,floods spread massively in this period,which led to the decline of Shijiahe culture.The main causes for hydro-environmental evolution in the study area are the fluctuation of sea level and the aggradation of fluvio-lacustrine sediments.  相似文献   

3.
Radar remote sensing can acquire information of sub-surface covered by sand in arid area,detect surface roughness and vegetation coronet‘s layer and linear feature such as linear structure and channel sensitively. With sediment facies analysis, this paper studies the features of environmental evolution in mid-late Epipleistocene (60 ka BP-20 ka BP) in northeastem Ejin Banner. The conclusions are listed as follows: (1) The evolution of the three lakes, i.e. Gaxunnur, Sugunur and Tian‘e lakes, are dominated by faults and regional climate. (2) By analyzing sedimentary section of old Juyanze Lake,the three lakes used to be a large outflow lake before 50 ka BP in northeastem Ejin Banner, and at 50 ka BP, temperature declined rapidly in northwestem China. The event caused the lake‘s shrinkage. (3)By fault activity uplift in the northem part of old Juyan Lake and depression in the southem part, the lake‘s water followed fi‘om north to south at around 35 ka BP, old Juyanze fluvial fan was formed. At the same time, Juyan lake separated fi‘om Sugunur Lake and Wentugunr old channel was abandoned.(4) In recent 2000 years, Ruoshui River is a wandering river, sometimes it flows into Juyan lake and sometimes Sugunur and Gaxunnur lakes. Due to human activities and over exploitation, the oasis ecosystem is rapidly degenerated in 15 years (1986-2000).  相似文献   

4.
Lake water level is an essential indicator of environmental changes caused by natural and human factors. The water level of Poyang Lake, the largest freshwater lake in China,has exhibited a dramatic variation for the past few years, especially after the completion of the Three Gorges Dam(TGD). However, there is a lack of more accurate assessment of the effect of the TGD on the Poyang Lake water level(PLWL) at finer temporal scales(e.g., the daily scale). Here, we used three machine learning models, namely, an Artificial Neural Network(ANN), a Nonlinear Autoregressive model with eXogenous input(NARX), and a Gated Recurrent Unit(GRU), to simulate the daily lake level during 2003–2016. We found that machine learning models with historical memory(i.e., the GRU model) are more suitable for simulating the PLWL under the influence of the TGD. The GRU-based results show that the lake level is significantly affected by the TGD regulation in the different operation stages and in different periods. Although the TGD has had a slight but not very significant impact on the yearly decline of the PLWL, the blocking or releasing of water at the TGD at certain moments has caused large changes in the lake level. This machine-learning-based study sheds light on the interactions between Poyang Lake and the Yangtze River regulated by the TGD.  相似文献   

5.
The operation of large-scale reservoirs have modified water and sediment transport processes, resulting in adjustments to the river topography and water levels. The polynomial fitting method was applied to analyze the variation characteristics of water levels under different water discharge values in the Jingjiang reach of the Yangtze River from 1991–2016. The segregation variable method was used to estimate the contributions of the varied riverbed evaluation, the downstream-controlled water level, and the comprehensive roughness on the altered water level at an identical flow. We find that low water levels in the Jingjiang reach of the Yangtze River from 1991–2016 are characterized by a significant downward trend, which has intensified since 2009. Riverbed scouring has been the dominate factor causing the reduced low water level while increased roughness alleviated this reduction. From 1991–2016, there was first a decrease followed by an increase in the high water level. The variation characteristic in terms of the "high flood discharge at a high water level" before 2003 transformed into a "middle flood discharge at a high water level" since 2009. The increased comprehensive roughness was the main reason for the increased high water level, where river scouring alleviated this rise. For navigation conditions and flood control, intensified riverbed scouring of the sandy reaches downstream from dams enhanced the effects that the downstream water level has on the upstream water level. This has led to an insufficient water depth in the reaches below the dams, which should receive immediate attention. The alteredvariation characteristics of the high water level have also increased the flood pressure in the middle reaches of the Yangtze River.  相似文献   

6.
Yangshao culture is the most important mid-Holocene Neolithic culture in the Yellow River catchment,and thus,a study on the impact of human activities on the environment is important.In the current study,the distribution pattern of the cultivated land in late Yangshao culture is reconstructed using GIS tool and site domain analysis(SDA).The results show that the cultivated land during 5.5-5.0 ka BP was mainly distributed in the Weihe River valley,Luohe River valley,northwestern Henan Plain,Fenhe River valley and eastern Gansu region,especially concentrated in the Xi’an-Baoji line of the Weihe River valley.At that time,at least 37,000 km 2 of lands were reclaimed in the middle and lower reaches of the Yellow River,and 132,000 km 2 of lands were affected by agricultural activities.Human activities had become the driving force of land use/land coverage.Charcoal records indicate that the ancestors of Yangshao culture burnt forests for reclamation,leading to the decrease of arbor pollen at 5 ka BP in core areas of the Yangshao culture.The areas that were significantly affected by human activities accounted for 3.2% of the Yangshao culture influenced area,while the moderately affected areas accounted for 20.1% of Yangshao culture influenced area.Meanwhile,92% of the land areas on the edge and outside of the Yangshao culture influenced area were not affected by human activities.The arbor pollen in these areas did not decrease until 4.0 ka BP.  相似文献   

7.
近60年黄河水沙变化及其对三角洲沉积的影响   总被引:1,自引:1,他引:0  
In order to find out the variation process of water-sediment and its effect on the Yellow River Delta, the water discharge and sediment load at Lijin from 1950 to 2007 and the decrease of water discharge and sediment load in the Yellow River Basin caused by human disturbances were analyzed by means of statistics. It was shown that the water discharge and sediment load into the sea were decreasing from 1950 to 2007 with serious fluctuation. The human activities were the main cause for decrease of water discharge and sediment load into the sea. From 1950 to 2005, the average annual reduction of water discharge and sediment load by means of water-soil conservation practices were 2.02×109 m3 and 3.41×108 t respectively, and the average annual volume by water abstraction for industry and agriculture were 2.52×1010 m3 and 2.42×108 t respectively. The average sediment trapped by Sanmenxia Reservoir was 1.45×108 t from 1960 to 2007, and the average sediment retention of Xiaolangdi Reservoir was 2.398×108 t from 1997 to 2007. Compared to the data records at Huanyuankou, the water discharge and sediment load into the sea decreased with siltation in the lower reaches and increased with scouring in the lower reaches. The coastline near river mouth extended and the delta area increased when the ratio of accumulative sediment load and accumulative water discharge into the sea (SSCT) is 25.4–26.0 kg/m3 in different time periods. However, the sharp decrease of water discharge and sediment load into the sea in recent years, especially the Yellow River into the sea at Qing 8, the entire Yellow River Delta has turned into erosion from siltation, and the time for a reversal of the state was about 1997.  相似文献   

8.
Seasonal water-level fluctuations(WLF) play a dominate role in lacustrine ecosystems. River-lake interaction is a direct factor in changes of seasonal lake WLF, especially for those lakes naturally connected to upstream and downstream rivers. During the past decade, the modification of WLF in the Poyang Lake(the largest freshwater lake in China) has caused intensified flood and irrigation crises, reduced water availability, compromised water quality and extensive degradation of the lake ecosystem. There has been a conjecture as to whether the modification was caused by its interactions with Yangtze River. In this study, we investigated the variations of seasonal WLF in China’s Poyang Lake by comparing the water levels during the four distinct seasons(the dry season, the rising season, the flood season, and the retreating season) before and after 2003 when the Three Gorge Dam operated. The Water Surface Slope(WSS) was used as a representative parameter to measure the changes in river-lake interaction and its impacts on seasonal WLF. The results showed that the magnitude of seasonal WLF has changed considerably since 2003; the seasonal WLF of the Poyang Lake have been significantly altered by the fact that the water levels both rise and retreat earlier in the season and lowered water levels in general. The fluctuations of river-lake interactions, in particular the changes during the retreating season, are mainly responsible for these variations in magnitude of seasonal WLF. This study demonstrates that WSS is a representative parameter to denote river-lake interactions, and the results indicate that more emphasis should be placed on the decrease of the Poyang Lake caused by the lowered water levels of the Yangtze River, especially in the retreating season.  相似文献   

9.
Wu  Li  Sun  Xiaoling  Sun  Wei  Zhu  Cheng  Zhu  Tongxin  Lu  Shuguang  Zhou  Hui  Guo  Qingchun  Guan  Houchun  Xie  Wei  Ke  Rui  Lin  Guiping 《地理学报(英文版)》2020,30(9):1451-1466
Based on archaeological surveys of Neolithic cultural development and GIS spatial analysis,this study reproduced the main characteristics of temporal distribution and settlement selection of the sites from the Neolithic Age in Anhui and identified a relationship between environmental evolution and human activity.The results show that altitude,slope direction,and slope gradient were consistent among the settlements at different stages of the Neolithic Age in Anhui,and the sites were mostly distributed in hilly and plain areas on southeast-or south-facing slopes of low gradients close to rivers.We determined that early Neolithic Age(9.0–7.0 ka BP) sites were scattered in small numbers and likely had little cultural exchange with communities of other provinces.The environmental characteristics of various regions in Anhui indicated that the climate was warm and humid with extensive water distribution.The sites of the mid Neolithic Age(7.0–5.0 ka BP) increased rapidly with wide distribution.They were mainly distributed in the plain area north of the Huaihe River and the southwestern areas of Anhui.In the mid Neolithic Age,the warm and humid climate gradually dried,and our ancestors slowly developed cultural exchanges.The largest number of sites existed during the late Neolithic Age(5.0–4.0 ka BP),and were distributed throughout the province.During this period,the overall climate was relatively dry,but humans could still obtain water and other resources through migration.The relatively benign climate facilitated cultural interaction and exchange,which increased during this time,and the Wanjiang culture matured.We also determined that as early civilization evolved,cultures in different regions responded differently to environmental changes.In humid subtropical regions,especially in low-lying plains and areas beside lakes,rivers,and coastal areas,the relatively dry climate in the late period of the middle Holocene,prefaced by a period of high humidity,was conducive to the development of human culture.The evidence from the Neolithic settlements in Anhui therefore reflects this subtropical man-land relationship between cultural development and environmental conditions.  相似文献   

10.
Lakes in China have undergone considerable environmental changes during the past 50 years, e.g. lake level, water area changes, as did in the past several thousands years. The enhanced human activities, such as land reclamation, application of chemical fertilizer, land use and cover, irrigation and industrialization in the catchment etc., have played an important role on the recent decades' changes of these lakes, although constrained to a great extent by the natural impact. Comparative study on variations of lake volume (water level, depth and area) in the eastern and western lake regions of China during 1950-2000 indicated that, lake volume in the eastern region had approximately undergone a two-stage change, i.e. a dramatic decrease from the 1950s to 1970s, and a continuous increase between the 1980s and 1990s; while, in the western region, lake volume had been decreasing nearly all the time. Further studies on some typical lakes concluded that, climatic change was a primary factor for the variations of lake volume during the past 50 years, although human activities showed important effect.  相似文献   

11.
As the largest inland lake of China, along with its unique landscape and geographical location, Qinghai Lake has got much attention of the scientists for a long time. The precursors have done substantive researches by using the lake sediment, which deepen our understanding of the climate changes in this region. Although sand dunes and loess sediment are widely distributed around the lake, so far the researches on geochemical elements from aeolian sediment have been less reported. In this paper, we selected a typical aeolian profile on the east of Qinghai Lake. Based on systematic sampling and analysis of seven major geochemical elements, combined with OSL dating and previous researches, this paper discusses climate changes in the Qinghai Lake area since 12.5 ka B.P.. Our conclusions are: (1) Before 12.5 ka B.P., the climate in this region was dry, cold, and accompanied by strong wind-sand activities. (2) During 12.5–11.9 ka B.P., the climate became warm and wet. However, there was an abrupt climate cooling event during 12.2–11.9 ka B.P., which likely corresponded to the Younger Dryas event. (3) During 11.9–8.0 ka B.P., the climate fluctuated greatly and frequently from warm to cold, and three cooling events occurred. (4) During 8.0–2.6 ka B.P., the climate was warm and humid. (5) Since 2.6 ka B.P., similar to the modern climate, the climate was mainly dry and cold.  相似文献   

12.
The blocking or reversing effect of the downstream trunk river on its tributary lakes is an essential aspect of river-lake hydraulics.To measure how and the extent to which a trunk river can influence its tributary lakes,we made a case study in Changjiang River and one of its tributary lakes,Lake East Dongting(Lake ED)during a 35-year study period(1980–2014).Specifically,we investigated Lake ED’s discharge ability into Changjiang River using stage-discharge relationship curves,and hence the changes of the lake discharge ability under different hydrologic conditions of the Changjiang River.The results show that (1) the Changjiang River does exert a huge impact on the water regimes of Lake ED.And this impact varies seasonally.A variation of 3000in Changjiang River’s runoff would change the lake water level by about 1.1 min dry seasons,by 0.4 min wet seasons,and by 0.6 m during severe summer floods.(2)Changes in the Changjiang River runoff triggered by the Three Gorges Dam since 2003 have led to dramatic water regime variations in Lake ED.Other factors,including reduction of lake inflow and the lake bed erosion,also exacerbated the water regime variations in Lake ED.  相似文献   

13.
Lake area information in the Badain Jaran Desert in 1973, 1990, 2000, and 2010 was obtained by visual interpretation and water index analysis of remote sensing images, based on the spatial and temporal characteristics of lake area changes during 37 years. Results indicated that the number of lakes declined from 94 to 82 and the total surface area was reduced by 3.69 km2 during 1973–2010. The desert lake area reduced by different degrees in different periods, but this occurred most rapidly during 1973–1990. According to the statistics of lake area changes, lake area decreases mainly occurred in the lakes with areas less than 0.2 km2, while the areas of lakes greater than 0.9 km2 only fluctuated. The changes of lake areas were probably due to changes in the quantity of underground water supplies rather than the effects of local climate change or human factors.  相似文献   

14.
Modern climate research has shown that the Asian summer monsoon water vapor transport is limited to the eastern part of the Qilian Mountains. On the Holocene millennial-scale, whether the northwest boundary of the summer monsoon varies according to climate change is a key scientific issue. Yanchi Lake is located in the northern Qilian Mountains and the middle of the Hexi Corridor, where the modern climate is less affected by the Asian summer monsoon. It is a key research area for examining the long-term variations of the Asian summer monsoon. Paleoclimatic data, including AMS ^14C dates of pollen concentrates and bulk organic carbon, lithology, grain-size, mineral composition and geochemical proxies were acquired from sediments of Yanchi Lake. The chronological results show that the lower part of the lacustrine section is formed mainly in the Late Glacial and early Holocene period, while the proxies' data indicate the lake expansion is associated with high content of mineral salts. The middle part of this section is formed during the transitional period of the early and middle Holocene. Affected by the reworking effect, the pollen concentrates AMS^14C dates from the middle part of the section are generally older than those from the lower part. Since the mid-Holocene, Yanchi Lake retreated significantly and the deposition rate dropped obvi- ously. The Yanchi Lake record is consistent with the Late Glacial and Holocene lake records in the Qinghai-Tibet Plateau and the climatic records in typical monsoon domain, which indicate the lake expansion and the strong Asian summer monsoon during the Late Glacial and early Holocene. The long-term monsoonal pattern is different from the lake evolution in Central Asia on the Holocene millennial-scale. This study proves the monsoon impacts on the northwestern margin of the summer monsoon, and also proves the fact that the northern boundary of the summer monsoon moves according to millennial-scale climate change.  相似文献   

15.
Based on the analysis of suspended sediment elements at estuaries,influence of human activities and estuarine regulation projects on the turbidity maximum zone was studied according to the measurement data between 1959 and 2011.It was found that human activities had little effect on the seaward water while the sharp decrease of sediment volume and concentration in runoff led to the sharp decrease of turbidity maximum zone in the estuary.The concentration at outside sea and Hangzhou Bay did not change,and that along the Subei coast also decreased a little,which had no influence on the turbidity maximum zone.Compared with the concentration between 1959 and 1999,the peak of concentration moved upstream in the estuary,and the concentration in 2000–2009 decreased by about 24.73% with a narrower variation range along the river to the sea.The suspended sediment concentration in North Passage was low in upstream and downstream because of the decrease of seaward sediment and coarsening of bed material,while it was relatively high in the middle due to the influence of sediment cross the north jetty.  相似文献   

16.
Palaeoflood hydrology study is a leading subject in global change study. Through field investigation in the upper reaches of Hanjiang River, palaeoflood slackwater deposits(SWD) were found in the bedrock gorges of the Yunxi reach. The results of field observation, laboratory analysis including particle-size distribution and magnetic susceptibility, and comparison with modern flood deposits, the SWD were identified as the most typical Holocene palaeoflood deposits of the Hanjiang River. By using stratigraphic correlation and OSL dating method, the palaeoflood event was dated to be 3200–2800 a BP at the turn from the middle to late Holocene. According to the palaeoflood peak stage and hydraulic parameters, the peak discharges of the palaeoflood were reconstructed as 48,830–51,710 m3/s by using the slope-area method. At same time, the flood peak discharges of 1983, 2005 and 2010 severe floods were reconstructed with the same method and hydraulic parameters in the same cross section. The error between the reconstructed and gauged discharges was 1.99%–4.21%. This showed that the reconstructed palaeoflood peak discharges were reliable. The flood peak discharge-frequency relationship at 10,000-year time scale was established by a combination of the gauged flood, historical flood and palaeoflood hydrological data. These results are very important for hydraulic engineering and flood mitigation on the Hanjiang River.  相似文献   

17.
We present the first quantitative estimation of monsoon precipitation during the late glacial–Holocene in the sandy land of northern China, based on organic carbon isotopic composition data from a loess-sand sequence at margin of the Mu Us sandy land. We use the relationship between monsoon precipitation and the carbon isotopic composition of modern soils as an analogue, with a minor modification, to reconstruct precipitation back to c. 47 ka ago. The preliminary results indicate that annual monsoon precipitation was high after 8 ka, with an average of 435 mm; and it decreased during 18 and 8 ka with a mean value of 194 mm. The precipitation value of 47-18 ka varied between the two. We compare the reconstructed precipitation with other records and paleoclimatic modeling results, showing that our record agrees with reconstructions of the monsoon precipitation from other sources, even capturing short climatic events such as the Younger Dryas. We suggest that solar irradiance, high-latitude temperature/ice volume and local evaporation have together modified moistures in the sandy land.  相似文献   

18.
In this paper, the spatial and temporal distribution of the settlement sites of six periods from the Neolithic Age to the Shang and Zhou dynasties in northern Shandong was investigated using the ArcGIS program, and the relationship between settlement distribution and environmental changes was discussed, based on the proxy records of climatic and environmental change contained in the sediments from three sections at the Shuangwangcheng site and the previous work. The results show that the climate was warm and humid and the sea level was relatively high during the period of 8000-5000 a BP in the study area, and the ancient people lived in the relatively flat (slope of 〈2°) areas at high elevation (20-300 m above sea level), such as diluvial tableland and alluvial plain. On the other hand, few archaeological sites in the low-lying plain in the west of the study area indicate that few people lived there during that period. This might be attributed to frequent flooding in the area. After 5000 years ago, the scope of human activity extended to the area close to the sea because the relatively colder and drier climate results in sea-level fall, meanwhile the low-lying plain in the west was occupied by the ancient people. The study area of this period was characterized by the rapid development of prehistoric culture, the intensified social stratification and the emergence of early city-states. However, around 4000 a BP, the abrupt change in climate and the increase in frequency and intensity of floods severely disrupted human activities, and eventually led to the decline of the Yueshi culture. During the Shang and Zhou dynasties, the climatic conditions gradually stabilized in a mild-dry state, which promoted the redevelopment and flourish of the Bronze Culture. The previous situation, which was characteristic of sparse human settlements due to freshwater shortage and unfitted conditions for sedentary agriculture, changed during the Shang and Zhou dynasties in northern coastal wetlands.Local residents effectively adapted themselves to the tough environmental conditions by producing sea-salt, which led to the rapid growth of human activities.  相似文献   

19.
Gu  Zhenkui  Fan  Hui  Yang  Kun 《地理学报(英文版)》2020,30(9):1495-1506
River incision and drainage reorganization have an important impact on the site selection of many major projects including city,road and others,and are the key issues of Quaternary environmental changes.Studies of river incision and river-network adjustment have traditionally been based on extensive field evidence,such as sediment age and beheaded river system.The Buyuan River basin is a large sub-basin of the upper Lancang-Mekong,with high mountains and extremely active erosion.The latter affects the preservation of the Quaternary period sediments leading to difficulties in understanding the main evolution characteristics of the basin.This study investigates differences in the equilibrium state of the longitudinal profile,infers incision rates,and evaluates drainage divide migration timelines using the stream-power incision model,the latest morphological dating,and Chi-plots(χ–z) based on digital elevation models(DEMs) on the GIS software platform.The final results show that two significant erosion base-level decreases occurred in the Late Pleistocene at least.The incision rate of the mainstream might have been 0–2.99 mm/yr since 100 ka BP and 0–3.28 mm/yr since 46 ka BP.The Chi-values across the divides suggest that space limited(or constrained) river reorganization and that there is no severe reorganization in the basin;the imbalance of traceable erosion only exists in local areas.The main driving force for the geomorphologic evolution of the Buyuan River basin is likely climate fluctuations rather than strong tectonic uplift since the Late Pleistocene.  相似文献   

20.
The equilibrium and kinetic adsorption of phosphate (P) from the Yellow River water onto desert particles taken from the Ulan Buh and Kubuqi deserts were investigated. Effect of the initial concentration of P and particulate matter on the sorption was explored. The kinetic studies show that adsorption rate was faster within the 0–8th hour period, then gradually decreased at 8th–48th hour period and basically tended to a dynamic equilibrium at the 48th hour, but there exists an adsorption difference of P onto different desert particles. The uptake process of P followed the pseudo-second-order rate model and the Morris-Weber diffusion equation which indicates that the adsorption process was mainly controlled by P diffusion inside the particles. The equilibrium investigation obtained an adsorption-desorption equilibrium mass concentration (EPC0) of P from the Yellow River water on desert particles with the range of 0.010–0.042 mg/L, which is higher than present P concentration in the Yellow River. This study indicates that desert particles entering the river might release P to the Yellow River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号