首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Free-living marine nematodes at two littoral sites near Vancouver, Canada were studied over a 1-year period. Sixty-four species were found at a Belcarra Park site, with a maximum nematode density of 6·7 × 105 m?2 and 24 species at Iona Island, with a maximum density of 1·6 × 105 m?2. At both sites most of the nematodes occurred in the upper 2 cm of the 6 cm depth of sediment examined, and the vertical distribution of most species remained constant during the year. The distribution of the nematodes in relation to some physical parameters is discussed. The occurrence of certain species suggests that they have a worldwide distribution.  相似文献   

2.
The number and size of bacteria at four depths (0–1, 5–6, 10–11 and 20–21 cm) in a North Carolina salt marsh were minotored by direct counts for 13 months. The number of bacteria reached a maximum of about 1·4 × 1010 cells cm?3 at the sediment surface in October, corresponding to the period of Spartina alterniflora die-back. Cell numbers were lowest and most consistent throughout the year at the 20 cm depth of sediment. Cell volumes averaged 0·2 μm3 at the marsh surface and decreased with depth. Mean standing crop of bacteria to a depth of 20 cm of sediment was about 14 g bacterial carbon m?2. In surface sediments bacteria contribute up to 15% and algae up to 10% of total living microbial biomass as estimated by adenosine triphosphate (ATP). Bacteria were the major biomass component at sediment depths of 5, 10 and 20 cm. At all depths the microbial community contributes < 4% total organic carbon and < 8% of total nitrogen.  相似文献   

3.
The flux of ammonia, phosphate, silica and radon-222 from Potomac tidal river and estuary sediments is controlled by processes occurring at the sediment-water interface and within surficial sediment. Calculated diffusive fluxes range between 0·6 and 6·5 mmol m?2 day?1 for ammonia, 0·020 and 0·30 mmol m?2 day?1 for phosphate, and 1·3 and 3·8 mmol m?2 day?1 for silica. Measured in situ fluxes range between 1 and 21 mmol m?2 day?1 for ammonia, 0·1 and 2·0 mmol m?2 day?1 for phosphate, and 2 and 19 mmol m?2 day?1 for silica. The ratio of in situ fluxes to diffusive fluxes (flux enhancement) varied between 1·6 and 5·2 in the tidal river, between 2·0 and 20 in the transition zone, and from 1·3 to 5·1 in the lower estuary. The large flux enhancements from transition zone sediments are attributed to macrofaunal irrigation. Nutrient flux enhancements are correlated with radon flux enhancements, suggesting that fluxes may originate from a common region and that nutrients are regenerated within the upper 10–20 cm of the sediment column.The low fluxes of phosphate from tidal viver sediments reflect the control benthic sediment exerts on phosphorus through sorption by sedimentary iron oxyhydroxides. In the tidal river, benthic fluxes of ammonia and phosphate equal one-half and one-third of the nutrient input of the Blue Plains sewage treatment plant. In the tidal Potomac River, benthic sediment regeneration supplies a significant fraction of the nutrients utilized by primary producers in the water column during the summer months.  相似文献   

4.
Macrofaunal communities of the Central Indian Basin (CIB) were sampled with a spade before (June 1997), and immediately after (August 1997), and 44 months (April 2001) after a simulated benthic disturbance for polymetallic nodule mining. The average density recorded down to a sediment depth of 40 cm ranged from 89 to 799 ind·m-2 (mean: 373 ± 221 SD; n = 12) and 178-1066 ind·m-2 (mean: 507 ± 489 SD; n = 3) in the test and reference area, respectively. Most of the macrobenthic animals (64%) were concentrated in the upper 0 to 2 cm sediment layers, whereas, sizeable fauna (6%) inhabited the 20-40 cm sediment section and the deepest 5 cm section from 35-40 cm contributed only about 2% to the total population density. The fauna, comprised of 12 groups, were dominated by the nematodes, which constituted 54% of the total population. The macrofaunal density in the test site showed a significant increase (x:400 ind·m-2) in the 44 months postdisturbance sampling (x:320 ind·m-2). The population of nematodes and oligochaetes was nearly restored after 44 months, but the polychaetes and crustaceans did not reach the baseline populations measured in June 1997. The top 0-2 cm sediment layer was severely affected by the disturber, and the study suggests that physically disturbed deep-sea macrofauna may require a longer period for restoration and resettlement than normally believed.  相似文献   

5.
Abstract. The nematode fauna of the phytal region of a stand of the Mediterranean seagrass Posidonia oceanica (L.) Delile was studied in a shallow subtidal location (5 m) at the island of Ischia (Gulf of Naples, Italy). During a one year's growth-cycle of the seagrass, abundance and faunal composition of the nematode community were investigated in a stratified sampling survey. Ninety seven species of nematodes were found. Nematode density and biomass ranged from 1.3 · 105 indiv. · m-2 (0.02g dwt · m-2) in winter to 5.5 · 105 indiv. · m-2 (0.08 g dwt · m-2) in early autumn. Density and biomass of nematodes were much lower and showed more marked seasonal fluctuations in the leaf strata than in the stem stratum of the seagrass. Diversity and seasonal homogeneity (expressed with Riedl 's index) were much lower in the two leaf strata (25–36 species, 29.6 ho%) than in the stem stratum (60–70 species, 42.5 ho%). The nematode community of the leaf stratum can be characterized as a Chromadora nudicapitata – Monhystrella sp. –Symplocostoma tenuicolle– community and is clearly set off from the stem stratum community (9.2% Riedl 's ho%), which is characterized as a Molgolaimus sp. 1 –Epsilonema sp. 1 –Chromadora nudicapitata– community. In the seasonal succession, the leaf stratum fauna shifts from a chromadorid-dominated community (from winter to summer) to a monhysterid-dominated community in early autumn. The stem stratum fauna shifts from a epsilonematid-dominated fauna in winter to a molgolaimid-dominated fauna in summer and early autumn. The distribution of nematode size classes showed a clear selection toward small animals (< 1 mm lenght), although marked seasonal fluctuations in size class distribution were observed. A modified approach for describing the trophic structure of the nematode fauna is presented. The observed abundance patterns and changes of community composition are discussed in relation to the development of habitat complexity and in relation to trophic conditions in the scagrass stand according to the seasonal growth rhythm of the plants and their aufwuchs-community.  相似文献   

6.
Measurements were made of chlorophyll-a and phaeophytin-a in calcareous sediments along transects off the east coast of Florida (75–190 m) and the west coast of Grand Bahama Island (170–300 m). Solvent partitioning showed that chlorophyll-a concentrations never exceeded 0·1 mg m?2 at either location, most as degradation products. Total pigment concentrations (chlorophyll and phaeopigments) ranged from 0·18–1·83 mg m?2 in sediments off Grand Bahama Island and 2·50 to 20·65 mg m?2 off West Palm Beach. Pigments, expressed per gram dry weight of sediments, increased with depth across the Florida Continental Shelf. This is probably due to differences in sediment character between near-shore and off-shore sediments.  相似文献   

7.
Volumes of seawater filtered through the intertidal zone were measured on three modally reflective microtidal beaches in Western Australia. The filtered volumes were large, 19 m3 m?1 day?1 and 73 m3 m?1 day?1 on two ‘clean’ beaches but only 0·4 m3 m?1 per tidal cycle on a beach covered in kelp and seagrass wrack. The mean residence times of this water in the interstitial system and its percolation paths were both short, 1–7 h and 2–5 m respectively. Water input was greater across a beach cusp horn than across a cusp embayment. Most input occurred in the upper swash zone where the water table was less than 20 cm deep. Tidal variations in input volumes were evident even with tide ranges of only 20 cm. The inshore zone off these beaches filters on average 0·07 m3 m?2 day?1 at an average depth of 5·5 m under 0·4 m waves of 6·5 s duration. The importance of these procedures in the mineralization of organic materials and the regeneration of nutrients for an inshore ‘lagoon ecosystem’ is estimated and discused.  相似文献   

8.
The annual flux of biologically produced organic carbon from surface waters is equivalent to annual net community production (NCP) at a steady state and equals the export of particulate and dissolved organic carbon (POC and DOC, respectively) to the ocean interior. NCP was estimated from carbon budgets of salinity-normalized dissolved inorganic carbon (nDIC) inventories at two time-series stations in the western subarctic (K2) and subtropical (S1) North Pacific Ocean. By using quasi-monthly biogeochemical observations from 2004 to 2013, monthly mean nDIC inventories were integrated from the surface to the annual maximum mixed layer depth and corrected for changes due to net air–sea CO2 exchange, net CaCO3 production, vertical diffusion from the upper thermocline, and horizontal advection. The annual organic carbon flux at K2 (1.49 ± 0.42 mol m?2 year?1) was lower than S1 (2.81 ± 0.53 mol m?2 year?1) (p < 0.001 based on t test). These fluxes consist of three components: vertically exported POC fluxes (K2: 1.43 mol m?2 year?1; S1: 2.49 mol m?2 year?1), vertical diffusive DOC fluxes (K2: 0.03 mol m?2 year?1; S1: 0.25 mol m?2 year?1), and suspended POC fluxes (K2: 0.03 mol m?2 year?1; S1: 0.07 mol m?2 year?1). The estimated POC export flux at K2 was comparable to the sum of the POC flux observed with drifting sediment traps and active carbon flux exported by migrating zooplankton. The export fluxes at both stations were higher than those reported at other time-series sites (ALOHA, the Bermuda Atlantic Time-series Study, and Ocean Station Papa).  相似文献   

9.
The rocky intertidal zone around the city of Mar del Plata (SW Atlantic, 38° S–57° W) is characterized by dense mussel beds of Brachidontes rodriguezii. This intertidal community develops on natural and artificial hard substrates, including abrasion platforms in sewage‐impacted areas. A monitoring program, designed to assess the effect of sewage discharge on intertidal macrobenthic communities, has been conducted since 1997. During the spring season of 2008, a new spionid polychaete (Boccardia proboscidea) was found near the sewage outfall, forming large biogenic reefs. This is the first report of biogenic reefs being built by a non reef‐forming spionid polychaete in areas organically impacted by sewage discharges. The aim of this work was to evaluate the spatial–temporal dynamics (% cover and density of B. proboscidea) of these reefs. These biogenic reefs covered almost the entire impacted site, reaching a density of 650,000 ind·m?2. This phenomenon is unique in that there is no other record available worldwide of any other biogenic polychaete reefs that could be sewage‐induced. The presence and stability of these biogenic reefs is discussed in relation to increased organic contamination as a structuring factor.  相似文献   

10.
In January 1982, sediment microbial N transformations and inorganic N fluxes across the sediment/water interface were studied at nine sites off the South Island West Coast, New Zealand. The sediments showed a great variety in physical, chemical and biological properties. The sediment organic matter had a molar CN ratio of 5.9–10.9, and the total NP ratio was 1.2–4.0. The denitrification capacity in the top 7.5 cm of sediment was 0.1–77.2 mmol N m?2 day?1 and generally declined with increasing sediment depth. The in situ denitrification rate was 0.02–1.84 mmol N m?2 day?1 and highest activities were generally found in surface sediments and at 6–7.5 cm depth. Denitrification accounted for 82–100% of total nitrate reduction. Net N mineralization was indirectly estimated at 0.6–2.4 mmol N m?2 day?1, and the experimental determination of this N transformation gave 0.6–3.2 mmol N m?2 day?1. Denitrification accounted for 3–75% of net N mineralization. The diffusive flux of ammonium and nitrate across the sediment/water interface was 0.1–0.7 and 0.1–0.6 mmol N m?2 day?1, respectively.  相似文献   

11.
The invasive ctenophore Mnemiopsis leidyi (Agassiz), which was transported from the Black Sea into the Caspian Sea at the end of the 1990s, has negatively affected the ecosystem of the Caspian Sea. Zooplankton abundance, biomass and species composition were evaluated on the Iranian coast of the Caspian Sea during 2001–2006. A total of 18 merozooplankton (13 species composed of larvae of benthic animals) and holozooplankton (four Copepoda and one Cladocera) species were identified. The total number of zooplankton species found here was 50% less than in a previous investigation performed in the same region in 1996 before the introduction of Mnemiopsis leidyi into the Caspian Sea. Cladocera species seemed to be highly affected by the invasion of Mnemiopsis leidyi; only one species, Podon polyphemoides, remained in the study area, whereas 24 Cladocera species were found in the study carried out in 1996. Whereas among the Copepoda Eurytemora minor, Eurytemora grimmi, Calanipeda aquae dulcis and Acartia tonsa that were abundant before the Mnemiopsis leidyi invasion, only A. tonsa (copepodites and adults) dominated the inshore and offshore waters after the invasion. The maximum in zooplankton abundance (22,088 ± 24,840 ind·m?3) and biomass (64.1 ± 56.8 mg·m?3) were recorded in December 2001 and August 2004, respectively. The annual mean zooplankton abundance during 2001–2006 was in the range of 3361–8940 ind·m?3; this was two‐ to five‐fold less than the zooplankton abundance in 1996. During 2001–2006, the highest abundance and biomass of Mnemiopsis leidyi were observed during summer‐autumn months coincident with warm temperatures and generally when the abundance of other zooplankton organisms was low.  相似文献   

12.
Application of a simple model describing regional variations in the contents of manganese and associated minor metals in deep-sea sediments suggests that solid manganese phases are being removed from the <0.5 μm fraction of seawater at ~1–7 · 1012g yr?1 in excess of the rate of stream-supplied manganese. This flux is consistent with: (1) the relative rates of sediment accumulation in the Atlantic and Pacific Oceans; (2) the contrast between the oceanic residence time of manganese calculated from stream-supply data (14 · 103 yr) and from the flux of manganese precipitating in marine sediments or as manganese nodules (0.38–2.4 · 103 yr); (3) the surplus mass of manganese revealed by geochemical balance calculations (22.9 · 102g). On this basis excess manganese is accumulating in deep-sea sediments at 0.2–2.0 · 10?6 g cm?2yr?1. Manganese supplied to the upper layers of marine sediments by diagenesis has been evaluated with the aid of vertical advection—diffusion—reaction models. The calculated diagenetic flux of manganese at the sediment surface in a near-shore environment is in agreement with the known accretion rate of manganese deposits (1.7 · 10?2 g cm?2 10?3 yr?1) and the regionally variable flux over the area assessed is consistent with the presence or absence of manganese nodules at or near the water-sediment interface. The diagenetic flux at the surface of deep-sea sediments has been calculated at 0.7 · 10?4 g cm?2 10?3 yr?1 when the upper, oxic, zone of the sediment is ~20 cm thick. A limiting factor on the in situ production flux of dissolved manganese in deep-sea sediments appears to be the availability of reducing agents for manganese dissolution rather than the rate of downward transport of manganese-rich sediment to a reaction boundary where dissolution takes place. Various estimates of the rate of upward-migrating manganese suggest that manganese precipitates in the oxic zone with a rate constant of ~10?7 sec?1 with the result that diagenetic processes cannot supply the flux of excess manganese through more than ~0.25 m of oxic sediment. However, estimates of the flux of manganese to the oceans by submarine volcanic processes (0.79–1.1 · 1012g yr?1) are similar to the surplus mass of manganese detected by geochemical balance calculations (0.7 · 1012g yr?1). If submarine hydrothermal solutions provide only 10% of this excess then their computed discharge rate (39 g cm?2 yr?1) and residence time in the upper layer of oceanic crust (130,000 yr) agree well with these parameters for continental thermal springs.  相似文献   

13.
Radioactivity has been monitored in seafloor sediments off Fukushima and nearby prefectures regularly. During the initial monitoring period (May–September 2011), 137Cs concentrations in the surface sediments (0–3 cm) generally increased to 8–580 Bq/kg. Subsequently, concentrations decreased at variable rates. In the latest data, from February 2016, concentrations were still higher at 0.8–141 Bq/kg than the pre-accident level. The geometric mean concentration declined steadily from 47 Bq/kg in September 2011 to 13 Bq/kg in February 2016. The 137Cs abundance (Bq/m2) in the surface sediment at each station decreased similarly. The rate of decrease of surface abundance varied spatially by almost one order of magnitude, ranging from 1.1 × 10?4 to 1.7 × 10?3/day, equivalent to halving times of 16–1.1 years, respectively. The rate of decrease was related to the median sediment grain size at each station. In addition, bottom-water dynamics, through the redistribution of bottom sediments, may have caused spatial variability in the rate of decrease, whereas vertical profiles of 137Cs concentrations in the sediment suggest that vertical migration of 137Cs was not a major mechanism reducing the surface 137Cs concentration. From September 2011 to February 2016, the overall halving time of 137Cs in the surface sediment in the monitoring area, excluding the area inside a 30-km radius from the Fukushima Dai-ichi Nuclear Power Plant, was 2.3 years. Thus, 76% of the originally deposited 137Cs (46 × 1012 Bq) in the surface sediment was transported out of the area during that period.  相似文献   

14.
Abstract. The secondary production and population dynamics of the mole crab Emerita brasiliensis Schmitt, 1935 (Decapoda: Hippidae) were studied by taking monthly samples from June 1993 to May 1995 at each of three intertidal transects at Prainha beach, Brazil. The lifespan was ca. 8 months for males and females, but females showed higher growth, mortality, secondary production, and turnover rate. The higher production in spring versus autumn and winter was related to intense recruitment during that period. The population production was estimated at between 39.86 and 46.88 g (AFDW) · m?2 · a?1 for the first year (June 93–May 94) and between 150.95 and 156.07 g (AFDW) · m?2 · a?1 for the second year (June 94–May 95); the mean annual biomass was 4.91 and 23.09 g (AFDW) · m?2, respectively. High P/B rates, between ca. 6 and 9 · a?1, reflected the fast growth, high mortality, and low lifespan of the population, characterized by a high percentage of recently recruited individuals.  相似文献   

15.
A sediment budget for the Choptank River, one of the three largest estuaries on the eastern shore of Chesapeake Bay, was developed from measurements of sediment carried in upland runoff, shore erosion, sedimentation, and levels of suspended sediments in estuarine waters. Shore erosion was the major source of sediment (340 × 106 kg y?1), contributing seven times more sediment than upland runoff. Low relief, the rural character of the Coastal Plain drainage basin, and the susceptibility of poorly consolidated shoreline materials to erosion contributed to the dominance of shore erosion over runoff as a sediment source. Box modelling indicated a net annual flux (14–44 × 106 kg y?1) of sediment from the Choptank River to Chesapeake Bay. A mass balance estimate of sedimentation, calculated as the difference between total inputs and loss at the mouth of the estuary, (350 × 106 kg y?1) agreed well with an estimate based on 210Pb profiles (340 × 106 kg y?1) measured along the longitudinal axis of the estuary. Lead-210 sedimentation rates correspond to accumulation rates of 1·5–7·9 mm y?1.  相似文献   

16.
The vertical distributions of excess 210Pb and fall out 239, 240Pu imply a uniform sedimentation rate of 1·4–1·6 cm year?1 from 0 to 105–110 cm. This sediment accumulation rate is compatible with sulfate reduction rate data from this location. Below 70 cm only ‘aged’ refractory carbon is present (CR = 1·8% C) with an age of approximately 2400 years. This phase is present in a number of locations across Long Island Sound. Planktonic carbon (CP) is present above the 60–67 cm horizon. A value of 1·0 for AP (14C activity) at 32–37 cm was taken, AP = 1·285 was used for contemporary plankton. This was obtained by correcting the measured AP of a plankton tow sample for admixed refractory carbon. These values were then used to calculate CR, CP and CF (fossil carbon) at 32–37 cm and 6–12 cm. The only values compatible with the known sulfate reduction rate data are CR equal to pre 60–67 cm levels (1·6–1·8% C), CF being 0·3% C at both depths, and CP decreasing with depth from 0·3 to 0·4% C at 6–12 cm to close to zero at 32–37 cm.  相似文献   

17.
Total, chemical and biological oxygen demand of intertidal sediment cores from 12 stations in a mangrove swamp in southern Africa were measured under mean temperature and salinity conditions. In addition to measuring oxygen removed from water overlying cores, the uptake of oxygen from air overlying sealed cores was also determined. Total oxygen consumption ranged from 2·9 to 37·0 ml O2 m?2 h?1 in water and from 22·1 to 81·6 ml O2 m?2 h?1 in air. Chemical oxygen demand usually equalled or exceeded the total, underlining problems in the measurement of this parameter. Since oxygen is not present below a few millimeters in the sediment, it is concluded that oxygen diffusing from the overlying water or air is rapidly utilized at the surface and its uptake rate does not give any measure of metabolic activity deeper down. The oxygen content of the overlying water present during high tide may drop to relatively low levels due to this demand.  相似文献   

18.
Available data on phytoplankton and bacterial abundance and production off the coasts of southern Africa (to the 500 m depth contour) have been assembled and analysed for a network analysis of carbon flow in the Benguela ecosystem. Phytoplankton carbon biomass (from measurements of chlorophyll a) in the northern Benguela (2 558 300 tons) was considerably higher than in the southern Benguela (671 420 and 516 400 tons for the West and South coasts respectively). However, overall annual production (from C14-uptake measurements) was similar, 77 416 608, 76 399 973 and 78 988 020 tons C·year?1 respectively. Phytoplankton respiration and sedimentation losses were calculated as functions of primary production and therefore followed similar trends. From the most conservative estimates (mean bacterial biomass of 10 mg C·m?3 and average P:B of 0,2·day?1) bacterial biomass is 2–7 per cent of phytoplankton biomass in the northern and southern Benguela, and bacterial production is 3–5 per cent of primary production. Assuming a net growth yield of 30 per cent, bacteria would need to consume 9–15 per cent of the total primary production in order to meet their requirements for carbon consumption. Calculations based on a mean bacterial biomass of 40 mg C·m?3 and a mean growth rate of 0,5·day?1 in the upper 30 m of the water column show bacterial biomass to be 8–27 per cent of phytoplankton biomass and bacterial production to be 26–44 per cent of phytoplankton production. Bacterial carbon consumption requirements at these rates amount to 86–147 per cent of total primary production.  相似文献   

19.
The Cape rock lobster Jasus lalandii is a major predator in the inshore Benguela system. The mean density and biomass at Oudekraal is 0,48 individuals ·m?2 or 49,75 g dry mass ·m?2. The main component of its diet is Aulacomya ater, the ribbed mussel, which has a mean biomass of 1,15 kg dry mass ·m?2. Daily consumption of carbon and nitrogen from this source reaches a maximum in summer and, when J. lalandii feed on mussels, 14,1 per cent of the flesh is lost to the environment as a result of "messy feeding". The absorption efficiency of ingested nitrogen is 86,2 per cent. Ammonia and urea excreted in the first 12 h after feeding represent 6,7 and 1,6 per cent respectively of the nitrogen ingested. Endogenous nitrogen excretion has a mean rate of 1,9 μg N·g (dry mass)?1·h?1 The range of estimates for combined figures of kelp and phytoplankton nitrogen requirements are 76,4 – 86,7 g N·m?2·year?1 J. lalandii returns 6,3 g N·m?2·year?1 to the system, accounting for 7,2 – 8,2 per cent of annual kelp and phytoplankton requirements. This could be of particular importance during downwelling when the supply of new nitrogen is limited.  相似文献   

20.
Håkon Mosby mud volcano (HMMV) is one of the most active and most studied seep sites in European waters. Many authors have described its thermal activity, dynamic of mud flows, and geochemical and microbial processes. It is characterised by a concentric zonation of successive biogenic habitats related to an activity and geochemical gradient from its centre to its periphery. Around the central area covered by mud flows, white and grey microbial mats occur among areas of bare sediment, whereas siboglinid tubeworm fields of Sclerolinum contortum and/or Oligobrachia haakonmosbiensis colonise the peripheral areas. The meiofaunal community is known to be structured among habitats, but the macrofauna has rarely been investigated and has never been sampled in situ. As part of the European project HERMES, using the ROVs Victor 6000 and Quest 4000, we sampled quantitatively the different habitats of the volcano for macrofauna sensus lato, retained on a 250‐ or 500‐μm sieve. We also sampled a newly discovered pockmark on Storegga slide (cne 5.6) and two pockmarks (G11, G12) in the Nyegga area. Macrofauna was identified and counted from phylum to family level. Our results on HMMV showed a gradient of increasing density and diversity from the volcano centre (1–3 taxa; 260 ind·m?2) to the peripheral siboglinid fields (8–14 taxa, 93,000 ind·m?2), with an intermediate situation for microbial mats. For macrofauna ≥500 μm, non‐siboglinid polychaetes dominated the communities of the central mud volcano area, white mats and S. contortum fields (83, 89 and 37% of the total, respectively), whereas gastropods dominated grey mats and O. haakonmosbiensis fields (89 and 44% of the total, respectively). Polychaete families followed the same pattern of diversity according to habitats within HMMV. Of 23 polychaete families identified, only one occurred in the centre, and three in the microbial mats. Capitellidae and Dorvilleidae (typical of organically and sulphide‐enriched areas) occurred at remarkably high densities in white microbial mats and in O. haakonmosbiensis fields. The S. contortum fields were the most diverse habitat with 12 polychaete families. The 250‐μm fraction showed similar taxa dominating the habitats, but taking meiofauna into account, nematodes became the major taxon in white mats and in S. contortum fields, where they were particularly large in size, whereas copepods dominated in other habitats. Meiofauna and macrofauna did not show the same patterns of density according to habitats. Using principal components analysis the habitats at HMMV were clearly distinct, and clustered according to dominant species of siboglinids and type of microbial mats. Pockmarks at Nyegga showed a similar concentric pattern of habitats around fluid sources as on the volcano, which seemed similarly to influence macrofauna composition, but at a much smaller scale. Total taxa and polychaete diversity are high in the S. contortum fields in these pockmarks as well. Regional‐scale comparisons including HMMV and Storegga suggested a higher influence of habitat‐type than seep‐site on the community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号