首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Strengthening soft foundation by vacuum loading from lower position is a new method of ac-celerating the consolidation of dredger fill.This paper presents the mechanism of soft foundation strength-ening by vacuum loading from lower position and evaluates the effectiveness of this method under variousboundary conditions by means of finite element method(FEM)on the basis of Biot's consolidationtheory.  相似文献   

2.
This paper describes a full-scale test on a very soft clay ground around 70,000?m2, which is conducted in Huizhou of Guangdong Province, China, to present a new method of vacuum preloading method. A novel moisture separator was developed, which can automatically regulate the vacuum pressure variation by changing the volume of the gas inside it. A large quantity of water drained by the proposed moisture separators can be directly used as a surcharge loading, which would shorten the ground improvement time and save costs as well. Three levels of silt-prevention prefabricated vertical drains were used in the treating process to accelerate the consolidation. In addition, the vacuum preloading method also included an effective radial drainage device which would strengthen the dredged soft clay fill in a deep layer. In the in situ test, tens of piezometers and settlement plates were installed to measure the variations of excess pore water pressures and settlement of two stages of observation points at different positions in the ground. The results show that the largest average consolidation settlement was 314.1?cm and made a saving of more than 66% in power consumption compared with traditional method. It demonstrates that this adopted method is an efficient, cost-effective, and environmentally friendly method for improving sites with low bearing capacity and high compressibility soils.  相似文献   

3.
The present study focuses on the compressibility and permeability characteristics of a crushed sandstone–mudstone particle mixture (SMPM). Two type of laboratory tests, which are compressibility–permeability test (CPT) and compressibility test only (CTO), are performed. Based on the test data, the effects of the seepage action on the compressibility and ones of the void ratio (e) on the permeability are analyzed. The rate of consolidation of the crushed SMPM is also discussed. The values of compressibility index (Cc) obtained from the CPT are greater about 1.32–4.81% than ones obtained from the CTO, but the values of preconsolidation stress (σp) obtained from the CPT are smaller about 2.34–9.83% than ones obtained from the CTO. The slope of fitting line of e~logK (where K is the coefficient of permeability, and log is the logarithm to base 10), defined as the permeability index (Kc), ranges from 0.146 to 0.337 with an average of 0.226. The value of Cc/Kc, used to evaluate the rate of consolidation, ranges from 0.905 to 1.250 with an average of 1.031. The rate of consolidation of the crushed SMPM may be analyzed by Terzaghi’s theory due to the average value of Cc/Kc very close to 1.0.  相似文献   

4.
由于预载下土体固结,海底浅基础的承载力会随作业时间的增加而改变,其时变效应评估困难。基于修正剑桥模型,采用水土耦合有限元方法研究了预载作用下浅基础在正常固结黏土海床中承载力破坏包络面的时变规律。在验证数值模型准确性后,通过位移探针测试获取复合加载模式下浅基础的破坏包络面,揭示了预载和固结程度对基础承载力和破坏包络面的影响,给出了预载作用下浅基础承载力包络面计算方法。结果表明:随着预载比增加,固结单轴承载力呈现线性增长,固结承载力增幅在水平向最大;部分固结承载力相对增幅与预载比无关,而随固结度变化;破坏包络面形状由预载比控制,而包络面大小由预载比和固结度共同控制。研究结果可为海洋浅基础的时变承载力评估提供参考依据。  相似文献   

5.
Abstract

The construction of a 100-km road network is planned on a land reclamation area in the Oujiang Estuary in China. The embankment had a height of 4 m and a base width of 60 m. The reclamation area is newly filled by a 3-m dredger fill on a 48-m thick layer of marine clay. Estimation of the settlement of the future road network is difficult. To guide the construction of the road network, a 1/100-scale centrifuge model test was performed with a marine clay sample from the construction site to simulate the layered settlements and evaluate the drainage effect of prefabricated vertical drains in the dredger fill in the following 10 years. The results of the centrifuge modeling test are verified by 10-month in situ monitoring, which shows agreement between the centrifuge modeling test results and the in situ results. The test results indicate that additional time is needed to reinforce the newly added dredger fill by the surcharge preloading method to uplift the elevation of the reclamation area with dredger fill.  相似文献   

6.
This article studies the effect of dynamic cyclic loading and surcharge preloading method on the post-construction settlement of low embankments. Soil samples obtained from the soft ground under an embankment were consolidated by surcharge preloading followed by static and dynamic cyclic loading in the odometer. The results show that the consolidation deformation of the soil samples is independent of the frequency of the dynamic cyclic loading, which was simulated to follow the half-sine wave, and this is consistent with the energy concept. The post-construction settlement increases with increasing amplitude of cyclic load and the effectiveness of surcharge preloading depends on the difference between magnitude of surcharge and amplitude of the cyclic load. Based on the consolidation theory combined with the test results, a formula has been proposed to compute the post-construction settlement of a low embankment under cyclic loading.  相似文献   

7.
Abstract

Compared with traditional vacuum preloading, air booster vacuum preloading is more effective at strengthening dredged slurry and improving the consolidation process. Although many engineering practices have shown that the pressurized duration has a significant effect on the reinforcement effect, there is no standard available for determining the pressurized duration. In this study, five dredged slurry samples were tested to examine the effect of different pressurized durations on the consolidation. An extensive monitoring system was used to measure the vacuum pressure, pore water pressure, settlement, and water discharge during the test, while the water content and shear strength were measured after the test. The collected monitoring data were comprehensively analyzed to evaluate the reinforcement effect. The results revealed that the pressurization system can be used to reinforce deep dredged slurry and make the whole soil layer more homogeneous. If the pressurized duration is too short, the dissipation of pore water pressure is too little to achieve the pressurization effect. If the pressurized duration is too long, too much gas will be in the soil and enter the vacuum system, which will significantly reduce the vacuum pressure and thus the reinforcement effect. Based on these findings, the optimal pressurized duration was obtained.  相似文献   

8.
Abstract

Land reclamation has increased significantly in the eastern coastal areas of China. The increased exploitation of offshore resources has made cast-in-situ piles more preferable in these regions. However, precise prediction of axial forces and shaft resistances of piles is particularly difficult because geological conditions are complex after the foundation is treated by vacuum preloading. In this study, two groups of cast-in-situ piles, each of which consisted of two piles installed in soft soil in Oufei Project, Wenzhou, China, were compared by conducting tests using the slow static loading method to evaluate the influence of applying vacuum preloading to deal with soft soil foundation on the vertical bearing capacities of the piles. Two piles were located in an untreated area, while the other two were located in a vacuum preloading treating area. All the piles had the same length and diameter. In addition, the axial forces and shaft resistances of piles were calculated based on the measured strains. The field tests revealed that the ultimate bearing capacities and shaft resistances of test piles were significantly improved compared to those of the piles in untreated area. The experimental results presented in this study are expected to be highly beneficial for practical engineering.  相似文献   

9.
Although extensive research has been performed on the mechanical properties of cement-stabilized clays, quite a few attempts have been made on the compression behavior of remolded cement-admixed clays. The results from oedometer tests have been discussed to investigate the compressibility of remolded cement-admixed clays, taking into consideration cement amount and curing time. The findings show that the difference in shape and position of compression curves is attributed to cement amount and curing time. Most compression index (Cc) values of remolded cement-admixed clays are greater than those of untreated clay due to the presence of remolded yield stress σ′yr that is closely related to initial water content and clay fabric. Based on the obtained test data, the relationships of Cc vs. e0, Cc vs. w0, Cc vs. e1, Cc vs. eyr, and σ′yr vs. eyr are preliminarily discussed and quantitatively established. Especially, an important divergence of void index Iv at effective stress σ′v less than remolded yield stress σ′yr can be observed at different cement amounts and curing durations. Being independent on cement amount, curing time, and initial state of soil, an excellent convergence occurs at stress σ′v greater than yield stress σ′yr. The normalized compression curves of Iv vs. σ′v at σ′v?>?σ′y can be expressed by a unique line that agrees well with intrinsic compression line (ICL) and extended ICL.  相似文献   

10.
This article presents a case history of the performance of a full-scale test embankment constructed on a marine soft clay deposit improved by prefabricated vertical drains (PVDs) in the east of China. For analyzing the subsoil behavior, a 2D FEM model is established, in which the PVD-improved effect is considered by a simplified method of equivalent vertical hydraulic conductivity. The calculated results can predict the settlement behavior well; however, the FEM gives an underestimate for the value of excess pore pressures and it predicts similar values for the dissipation rate of excess pore pressures. The measured undrained shear strength of subsoil, Cu, is compared with the predicted value based on Ladd’s empirical equation and the Modified Cam-Clay model (MCC). The shear strength predicted by Ladd’s equation agrees well with the measured value, whereas the MCC overestimates the ability to improve subsoil shear strength during consolidation. The undrained shear strength of subsoil, Cu, increased as the construction progressed, and the shear strength incremental ratio, ΔCup′, decreased slightly with the degree of consolidation, U.  相似文献   

11.
Abstract

First, this article presents a simulation experiment of hydraulic reclamation, and then a vacuum preloading (VP) test using the sedimentary soil obtained by the first experiment. In the VP test, the distribution and variation of different physico-mechanical parameters before and after the treatment were tested. According to the test results, the concept “non-Terzaghi soil” is proposed to explain the inhomogeneity and its mechanism rendered by “seepage separation.” And then a staged VP (SVP) drainage consolidation method has been introduced to improve the inhomogeneity and seepage curtain phenomena around prefabricated vertical drains (PVDs) during the consolidation. The test results demonstrate that the clogging problem around PVDs has been prevented and the consolidation efficiency has been promoted after the SVP test. It has been noticed that the cumulative drainage volume and the settlement displacement of SVP test were 27% and 24%, respectively, greater than that of VP test, and the soil tends to be more homogeneous. Moreover, it has been shown that the inhomogeneity degree of the permeability coefficient, unit weight, void ratio, water content, cohesion, internal friction angle, compression modulus, and the soil surface settlement in slurry after the SVP test were 3.10, 1.02, 1.03, 1.09, 2.30, 1.92, 1.19, and 1.02, whereas that after VP test was 397.27, 1.07, 1.40, 1.40, 4.74, 3.00, 1.76, and 1.22. Finally, the mechanism of SVP method has been discussed.  相似文献   

12.
Vacuum loading has been examined as a way of preparing uniformly consolidated soft claysamples.The facility and loading procedure are described in this paper.An analytical solution to the threedimensional consolidation equation is derived for estimating the degree of consolidation of the soil samplewith vacuum loading.The given example shows that the predicted degree of consolidation of a soft claybulk with vacuum loading is close to that measured in the consolidation process.  相似文献   

13.
Size-fractionated seawater samples were collected from the Gulf of Maine to determine the fraction (fc/d) of total dissolved (< 1 μm) Cd, Cu, Ni and 234Th in the colloidal size range (1,000 nominal molecular weight, NMW, to 1 μm) using cross-flow filtration. Colloidal Cd, Cu and Ni represents < 1–7% of the total dissolved concentration in these shelf waters and increases with an increase in particle concentration. By comparison, results obtained for particle-reactive 234Th indicate that < 1–47% of total dissolved is associated with the colloidal size fraction. A revised relationship between the concentration of colloids (Cc) and suspended particles (Cp) is reported (log Cc = 0.66 log Cp −2.01 kg L−1) and used to examine the dependence of fc/d for these metals on the concentration of suspended particles for Cp = 0.01–100 mg L−1. Results indicate that a significant fraction (˜ 10–30%) of Cd, Cu, Ni and 234Th in the traditionally defined ‘dissolved’ fraction may exist in the colloidal size range in regions characterized by high particle concentrations (Cp > 1–10 mg L−1), such as in near-shore and estuarine waters.  相似文献   

14.
Plastic vertical drainage is widely used in vacuum preloading for soft soil treatment. However, plastic vertical drainage has a number of disadvantages such as it only provides drainage paths in vertical directions and the distribution of soil strength is not uniform. A new technique, prefabricated vertical–horizontal drainage, was developed in this study to shorten the consolidation time of ultrasoft soil. Using one vertical drainage tube and four horizontal drainage tubes, prefabricated vertical–horizontal drainage provides drainage paths not only in vertical but also in horizontal directions. An analytical solution was derived to calculate the degree of soil consolidation when using the prefabricated vertical–horizontal drainage technique. Field tests were conducted to evaluate the effectiveness of prefabricated vertical–horizontal drainage and to verify the proposed analytical solution. It was found that consolidation time of soft clays using prefabricated vertical–horizontal drainage was 50% lower than plastic vertical drainage. Moreover, the average undrained shear strength of soil treated by the prefabricated vertical–horizontal drainage technique was approximately 30% larger than that treated by the plastic vertical drainage technique. The degree of soil consolidation estimated from the proposed analytical solution showed good agreement with field measurements. This implies that the proposed analytical solution can be used to directly estimate the degree of consolidation when the soil is treated by prefabricated vertical–horizontal drainage.  相似文献   

15.
A salient feature of sea level records from the Adriatic Sea is the frequent occurrence of energetic seiches of period about 21 h. Once excited by a sudden wind event, such seiches often persist for days. They lose energy either to friction within the Adriatic, or by radiation through Otranto Strait into the Mediterranean.The free decay time of the dominant (lowest mode) seiche was determined from envelopes of handpassed sea level residuals from three locations (Bakar, Split and Dubrovnik) along the Croatian coast during twelve seiche episodes between 1963 and 1986 by taking into consideration only time intervals when the envelopes decreased exponentially in time, when the modelled effects of along-basin winds were smaller than the error of estimation of decay time from the envelopes and when across-basin winds were small. The free decay time thus obtained was 3.2±0.5 d. This value is consonant with the observed width of the spectral peak.The decay caused by both bottom friction and radiation was included in a one dimensional variable cross section shallow water model of the Adriatic. Bottom friction is parameterized by the coefficient k appearing in the linearized bottom stress term ρ0u (where u is the along-basin velocity and ρ0 the fluid density). The coefficient k is constrained by values obtained from linearization of the quadratic bottom stress law using estimates of near bottom currents associated with the seiche, with wind driven currents, with tides and with wind waves. Radiation is parameterized by the coefficient f appearing in the open strait boundary condition ζ =auh/c (where ζ is sea level, h is depth and c is phase speed). This parameterization of radiation provides results comparable to allowing the Adriatic to radiate into an unbounded half plane ocean. Repeated runs of the model delineate the dependence of model free seiche decay time on k and a, and these plus the estimates of k allow estimation of a.The principle conclusions of this work are as follows.
1. (1) Exponential decay of seiche amplitude with time does not necessarily guarantee that the observed decay is free of wind influence.
2. (2) Winds blowing across the Adriatic may be of comparable importance to winds blowing along the Adriatic in influencing apparent decay of seiches; across-basin winds are probably coupled to the longitudinal seiche on account of the strong along-basin variability of across-basin winds forced by Croatian coastal orography.
3. (3) The free decay time of the 21.2 h Adriatic seiche is 3.2±0.5 d.
4. (4) A one dimensional shallow water model of the seiche damped by bottom stress represented by Godin's (1988) approximation to the quadratic bottom friction law ρ0CDu|u| using the commonly accepted drag coefficient CD = 0.0015 and quantitative estimates of bottom currents associated with wind driven currents, tides and wind waves, as well as with the seiche itself with no radiation gives a damping time of 9.46 d; radiation sufficient to give the observed damping time must then account for 66% of the energy loss per period. But independent estimates of bottom friction for Adriatic wind driven currents and inertial oscillations, as well as comparisons between quadratic law bottom stress and directly measured bottom stress, all suggest that the quadratic law with CD=0.0015 substantially underestimates the bottom stress. Based on these studies, a more appropriate value of the drag coefficient is at least CD=0. In this case, bottom friction with no radiation leads to a damping time of 4.73 d, radiation sufficient to give the observed damping time then accounts for 32% of the energy loss per period.
  相似文献   

16.
Reuse of dredged marine sediments for land reclamation is a sustainable method for disposing the large quantities of dredged spoil, accumulating every year worldwide. However, due to their high water content and low permeability, dewatering and self-sedimentation of the material takes a long time to be completed. Therefore, different methods, such as prefabricated vertical drains and vacuum preloading, are used to improve the consolidation properties of the dredged mud at the port of Brisbane. Among these stabilization methods, vacuum preloading is determined as the most effective method to increase the consolidation of the dredged mud. However, clogging during vacuum consolidation is undesirable. Therefore, electrokinetic stabilization draws attention since it is an environmentally friendly and time efficient method to dewater and consolidate dredged mud significantly. The effectiveness of the electrokinetic stabilization depends on the properties of the soil and the electrode configurations. One-dimensional and two-dimensional electrode configurations are the most popular configurations. In this study, the effect of one-dimensional electrode configuration, which is installation of electrodes in arrays of anodes and cathodes on consolidation parameters of dredged mud, is investigated. Based on this study, the dredged mud sediments can be stabilized using one-dimensional electrokinetic stabilization which resulted in improving compression index and coefficient of volume compressibility and reduction of soil plasticity index.  相似文献   

17.
Marine fine-grained soils are well known for their compressibility, which is typically measured and reported in terms of compression index, Cc. The difficulties associated with measuring Cc have resulted in growing research interest in statistics-based estimates (i.e., correlation equations). Although many empirical and semiempirical correlations exist for estimating Cc, most available correlations are based on either data from nonmarine soils or data collected from Japanese and Korean marine clays. Thus, there are few correlations for marine clays from other parts of the world. In the present study, two independent databases which contain a total of 1,000 data points from 170 different sites worldwide are used to build and validate statistically significant correlations for estimating compression index of marine soils. The results of this study suggest that (1) the proposed correlation equations provide quite good estimates of Cc for marine soils with different stress histories and sensitivities and (2) most of the existing models have unacceptable performance when they are applied to marine soils.  相似文献   

18.
The particulate beam attenuation coefficient (cp) is proportional to the concentration of suspended particles in a size domain overlapping that of the phytoplankton assemblage. cp is largely insensitive to changes in intracellular chlorophyll concentration, which varies with growth irradiance (a process termed ‘photoacclimation’). Earlier studies have shown that the ratio of cp:chlorophyll (i.e., cp*) exhibits depth-dependent changes that are consistent with photoacclimation. Similar relationships may likewise be expected in the horizontal and temporal dimensions, reflecting changes in mixing depth, incident irradiance, and light attenuation. A link between cp* and more robust photoadaptive variables has never been explicitly tested in the field. Here we use five historical field data sets to directly compare spatial and temporal variability in cp* with two independent indices of photoacclimation: the light-saturated, chlorophyll-normalized photosynthetic rate, Pbopt, and the light-saturation index, Ek. For the variety of oceanographic conditions considered, a first-order correlation emerged between cp* and Pbopt or Ek. These simple empirical results suggest that a relationship exists between a bio-optical variable that can potentially be retrieved remotely (cp*) and physiological variables crucial for estimating primary productivity in the sea.  相似文献   

19.
As a rapid and effective ground improvement method is urgently required for the booming land reclamation in China's coastal area, this study proposes a new combined method of electroosmosis, vacuum preloading and surcharge preloading. A new type of electrical prefabricated vertical drain (ePVD) and a new electroosmotic drainage system are suggested to allow the application of the new method. This combined method is then field-tested and compared with the conventional vacuum combined with surcharge preloading method. The monitoring and foundation test results show that the new method induces a settlement 20% larger than that of the conventional vacuum combined with surcharge preloading method in the same treatment period, and saves approximately half of the treatment time compared with the vacuum combined with surcharge preloading method according to the finite element prediction of the settlement. The proposed method also increases the vane shear strength of the soil significantly. The bearing capacity of the ground improved by use of the new proposed method raises 118%. In comparison, there is only a 75% rise when using the vacuum combined with surcharge preloading method during the same reinforcement period. All results indicate that the proposed combined method is effective and suitable for reinforcing the soft clay ground. Besides, the voltage applied between the anode and cathode increases exponentially versus treatment time when the output current of power supplies is kept constant. Most of the voltage potential in electroosmosis is lost at electrodes, leaving smaller than 50% of the voltage to be effectively transmitted into the soil.  相似文献   

20.
Abstract

Cone resistance and laboratory strength measurements have been compared for stiff overconsolidated clays from five oil and gas fields in the North Sea. The clays considered are glacial in origin. The best agreement between cone resistance and laboratory strength is found by using an Nk factor equal to 17 in the formula

qc = Nk . Su + γZ.

The study shows that the cone gives highly reproducible results, whereas there is a considerable scatter in the laboratory strength determinations. When making use of CPTs for preliminary design, the authors recommend assuming an Nk of 15–20, depending on the type of problem under consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号