首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The use of calcium solutions is a cost-limiting factor for bio-cement production from microbially induced carbonate precipitation (MICP). The aim of this article is to analyse the feasibility of using recycled calcium sources to solidify sand, including oyster shells, scallop shells and eggshells, by comparing the physical and mechanical properties and microstructural characteristics of solidified sand with different recycled calcium sources and chemical calcium nitrate. The results show that oyster shells have the optimal effect on MICP, with values of permeability, dry density, unconfined compressive strength and calcium carbonate precipitation of 1.12?×?10?4 m s?1, 2.09?g cm?3, 1454.6?kPa and 15.28%, respectively. Strength values of bio-cemented sands made from different recycled calcium sources in this article range from 845.1 to 1454.6?kPa. According to the SEM and XRD analysis, calcium carbonates originating from the above recycled calcium sources precipitate as globular vaterite, whereas the precipitation from calcium nitrate is a cluster mixture of vaterite and calcite. Oyster shells, scallop shells and eggshells derived from kitchen waste, which is more economical and environmentally friendly than calcium nitrate, can be applied as recycled calcium solutions in MICP.  相似文献   

2.
选用巴斯德芽孢杆菌,对微生物诱导钙离子、镁离子以及铁离子形成碳酸盐固化松散珊瑚砂颗粒的效果进行对比研究。试验结果表明,在相同试验方法、相同注入次数的条件下,微生物诱导形成的碳酸钙和碳酸镁能将珊瑚砂松散颗粒固化成为整体,加入铁离子的试样因为反应过程的原因没有成功。通过渗透性、干密度变化、无侧限抗压强度及微观结构等方面进行对比分析,钙离子试样相对于镁离子试样,具有固化过程平稳、干密度增量大、强度高、微观颗粒包裹更好的优点。综合试验结果得出,钙离子是现阶段微生物固化珊瑚砂较为理想的金属离子。本试验首次探讨了金属离子种类对珊瑚砂微生物固化效果的影响,为微生物固化技术提供了一定理论基础,对该技术的进一步应用具有一定借鉴意义。  相似文献   

3.
Abstract

Sporosarcina pasteurii (ATCC 11859) is a nitrogen-circulating bacterium capable of precipitating calcium carbonate given a calcium source and urea. This microbially induced carbonate precipitation (MICP) is able to infill inter-granular porosity and act as a biological clogging agent, thus having a wide potential application in strengthening coastal foundations, preventing erosion by seas and rivers and in reducing sand liquefaction potential in coastal areas. A successful MICP application requires the understanding of the primary parameters that influence the microbially mediated process to achieve its engineering goals, such as injection scheme, chemical concentrations, retention times, and injection rates. However, the granular morphology has generally been oversimplified to ideal shape without enough consideration in previous studies. The following explores the critical micro-scale influence of particle morphology on mechanisms of microbially induced clogging. Spherical, non-spherical and angular particles were used as granular aggregates in permeating column experiments with the resulting permeability and calcium carbonate content of the treated aggregates examined. Microscopic examination (SEM) defines the features of the distribution of microbially precipitated calcium carbonate and the forms of clogging. The results show: (1) given a fixed duration of treatment, the calcium carbonate content for the spherical particle aggregate is significantly higher than that for near-spherical and angular particle aggregates; (2) for identical durations of treatment, the maximum permeability reduction occurs for angular particles (rather than for spherical particles with the highest carbonate content). This suggests that the microscopic distribution of calcium carbonate is significantly influenced by particle morphology, exerting a critical control in the effectiveness of clogging. SEM images indicate that the microbial calcium carbonate precipitates encapsulate the spherical particles as a near-uniform shell and occlude the pore space only by increasing the shell thickness. In contrast, the near-spherical and angular particles are only partially coated by a calcium carbonate film with scattered crystals of vaterite and calcite further clogging the void space. The polyhedral nature of the non-spherical particles tends to result in a slot-shaped pore structure which critically defines the hydraulic conductivity of the ensemble medium. As the microbial vaterite and calcite continue to accumulate on the particle surface, these slot-shaped pore structures become increasingly more tortuous – resulting in a noticeable reduction of permeability at a lower calcium carbonate content.  相似文献   

4.
Abstract

Magnesium carbonate has a cementing character like calcium carbonate, and the addition of magnesium ion enables the microbe cementitious material to have the denser microstructure with the lower porosity. The effects of various factors, such as the concentration of Ca2+ and Mg2+, on the urease activity were studied. Comparison of the productive rates for calcium carbonate and magnesium carbonate were carried out, as well as productive rates for magnesium carbonate with adding different amount of urea to medium. Calcium acetate and magnesium acetate were, respectively, used for sands solidification. Results showed that the increase in urea concentration and magnesium ion enhanced urease activity, while calcium ion significantly impaired urease activity. Sodium chloride and acetate ion had little influence on it. Productive rates for magnesium carbonate were dramatically smaller than its calcium counterpart. However, adding urea to medium allowed for more magnesium precipitation, and the higher the urea concentration, the more the magnesium precipitation. The sand columns with adding urea to medium can have a high strength despite using magnesium acetate. Therefore, the method could solve the problem of insufficient magnesium precipitation. The results will act as a guide for the application of biocementation technology with magnesium carbonate.  相似文献   

5.
Abstract

The continental margin of northern Sinai and Israel, up to Haifa Bay, is the northeastern limb of the submarine Nile Delta Cone. It is made up predominantly of clastics from the Nile and its predecessors. The continental shelf and coastal plain of Israel are built of a series of shore-parallel ridges composed of carbonate-cemented quartz sandstone (locally named kurkar), a lithification product of windblown sands that were piled up into dunes during the Pleistocene. The drop in global sea level and regression during the last glacial period exposed the continental shelf to subaerial erosion and created a widespread regional erosional unconformity which is expressed as a prominent seismic reflector at the top of the kurkar layers. The subsequent Holocene transgression abraded much of the westernmost kurkar ridges, drowned their cores, and covered the previous lowstand deposits with marine sands, which were in turn covered by a sequence of sub-Recent clayey silts.

The Mediterranean coasts of Sinai and Israel are part of the Nile littoral cell. Since the building of the Aswan dams the sand supplied to Israel's coastal system is derived mainly from erosion of the Nile Delta and from sands offshore Egypt that are stirred up by storm waves. The sands are transported by longshore and offshore currents along the coasts of northern Sinai and Israel. Their volume gradually declines northward with distance from their Nile source. The longshore transport terminates in Haifa Bay where some sand is trapped, and the test escapes to deeper water by bottom currents and through submarine canyons, thus denying Nile-derived sand supply to the 40-km-long Akko-Rosh Haniqra shelf.

The sand balance along Israel's coastal zone is a product of natural processes and human intervention. Losses due to the outgoing longshore transport, seaward escape, and landward wind transport exceed the natural gains from the incoming longshore transport and the abrasion of the coastal cliffs. The deficit is aggravated by the construction of (1) seaward-projecting structures that trap sands on the upstream side and (2) offshore detached breakwaters that trap sands between themselves and the coast. The negative sand balance is manifested by the removal of sand from the seabed and the consequent exposure of archaeological remains that were hitherto protected by it.

The sediments that escape seaward from the longshore transport system form a 2.5- to 4-km-wide sandy apron adjacent to the shore that extends to where the water is 30–40 m deep. The apron's slope (0.5–0.8°) is steeper than the theoretical equilibrium slope for the median grain-size diameter in this zone (0.1–0.3 mm).

The beach sands and the apron's surficial sands are well sorted. Their grain size decreases with distance from shore, from 0.2–0.3 mm nearshore to 0.11–0.16 mm by the drowned ridge. The coarse-grained fraction consists of skeletal debris (commonly 5–12% carbonate matter) and wave-milled kurkar grains (locally named zifzif). In deeper water, the basal sands underlying the fine-grained sediment cover consist of 1- to 30-cm layers whose composition ranges from silty sands to various types of sands (fine, medium, coarse, and gravelly) to zifzif. For the most part, they contain large amounts of skeletal debris (20–60%) and small fragments of kurkar.

Two types of kurkar rock were encountered offshore: a well-sorted, fine- to medium-grained (0.074–0.300 mm) lithified dune sand with variable amounts of carbonate cement, ranging from hard rock of low permeability to loose sand; and a porous sandstone made up predominantly of algal grains and skeletal debris (calcarenite).  相似文献   

6.
Abstract

This paper presents the results of a laboratory investigation undertaken to study the nature of two submarine carbonate soils from Bombay High off the west coast of India, as well as to study the shear and plasticity behavior of their sand and silt‐clay fractions, respectively. Scanning electron micrographs reveal that the carbonate content in both soils is comprised primarily of nonskeletal particles of various types. X‐ray diffraction and infrared absorption analyses indicate that in one soil the carbonate fraction consists of calcite and aragonite minerals, whereas in the other soil dolomite is also present. The non‐carbonate fraction of both soils is comprised primarily of quartz and feldspar, and also some clay minerals. The nature of the carbonate fraction of the two soils indicates that they were formed by different depositional processes.

During drained triaxial shear the nonskeletal sand grains of both soils exhibit a lower degree of crushing when compared with that of the skeletal carbonate sands, and thus appear to be stronger foundation material.

Although the carbonate contents of the silt‐clay fractions of the two soils are similar, they exhibit markedly different plasticity characteristics . This is probably because of the microlevel cementation produced by carbonate material in one soil.

This study leads one to the conclusion that carbonate content alone should not be treated as a parameter which controls the engineering behavior of submarine soils; the nature and form of carbonate material must also be identified.  相似文献   

7.
Characterization of the hydraulic property of a specific geomaterial is of fundamental importance in engineering design and application. This paper reports an experimental investigation to the hydraulic conductivity of a typical marine sand, i.e., calcareous sand, which becomes increasingly popular as sea-filling material for land reclamation or construction of artificial islands. A series of permeability tests have been performed using the calcareous sand collected from Nansha islands in South China Sea. Using the home-made permeability test apparatus (so-called velocity-controlled pressure-differential acquisition flow apparatus), the relationship between flow velocity and hydraulic gradient was obtained and the hydraulic conductivity of calcareous sand was then determined accordingly. The effects of important parameters, including particle shape and particle size distribution on the hydraulic conductivity of calcareous sand, were assessed. To investigate the effect of particle size distribution on the hydraulic conductivity of calcareous sand, two often-used parameters, i.e., nonuniformity coefficient and curvature coefficient were considered in this study. To quantitatively evaluate the irregularity of soil particle, a particle-shape parameter was introduced and it was able to consider sphericity and circularity of highly irregular particle. Two materials, namely, Fujian quartz sand and glass beads consisting of particles of characteristic shape, were also used in the permeability tests, and they were used to compare with calcareous sand. Through the comparison, the effect of particle shape of calcareous sand on its hydraulic conductivity was examined based on the newly introduced particle shape parameter. The test results indicate that the particle size distribution has a significant influence on the hydraulic conductivity of calcareous sand. The quite irregular particle shape is able to reduce the hydraulic conductivity of the calcareous sand. A comparative study of hydraulic conductivity between the theoretical prediction and experimental measurement was performed, and it is concluded that an improvement of theoretical model for prediction of the hydraulic conductivity of the porous media consisting of particles with highly irregular shapes, such as the calcareous sand, is still required.  相似文献   

8.
The continental margin of northern Sinai and Israel, up to Haifa Bay, is the northeastern limb of the submarine Nile Delta Cone. It is made up predominantly of clastics from the Nile and its predecessors. The continental shelf and coastal plain of Israel are built of a series of shore-parallel ridges composed of carbonate-cemented quartz sandstone (locally named kurkar), a lithification product of windblown sands that were piled up into dunes during the Pleistocene. The drop in global sea level and regression during the last glacial period exposed the continental shelf to subaerial erosion and created a widespread regional erosional unconformity which is expressed as a prominent seismic reflector at the top of the kurkar layers. The subsequent Holocene transgression abraded much of the westernmost kurkar ridges, drowned their cores, and covered the previous lowstand deposits with marine sands, which were in turn covered by a sequence of sub-Recent clayey silts. The Mediterranean coasts of Sinai and Israel are part of the Nile littoral cell. Since the building of the Aswan dams the sand supplied to Israel's coastal system is derived mainly from erosion of the Nile Delta and from sands offshore Egypt that are stirred up by storm waves. The sands are transported by longshore and offshore currents along the coasts of northern Sinai and Israel. Their volume gradually declines northward with distance from their Nile source. The longshore transport terminates in Haifa Bay where some sand is trapped, and the test escapes to deeper water by bottom currents and through submarine canyons, thus denying Nile-derived sand supply to the 40-km-long 'Akko-Rosh Haniqra shelf. The sand balance along Israel's coastal zone is a product of natural processes and human intervention. Losses due to the outgoing longshore transport, seaward escape, and landward wind transport exceed the natural gains from the incoming longshore transport and the abrasion of the coastal cliffs. The deficit is aggravated by the construction of (1) seaward-projecting structures that trap sands on the upstream side and (2) offshore detached breakwaters that trap sands between themselves and the coast. The negative sand balance is manifested by the removal of sand from the seabed and the consequent exposure of archaeological remains that were hitherto protected by it. The sediments that escape seaward from the longshore transport system form a 2.5- to 4-km-wide sandy apron adjacent to the shore that extends to where the water is 30 - 40 m deep. The apron's slope (0.5 - 0.8) is steeper than the theoretical equilibrium slope for the median grain-size diameter in this zone (0.1 - 0.3 mm). The beach sands and the apron's surficial sands are well sorted. Their grain size decreases with distance from shore, from 0.2 - 0.3 mm nearshore to 0.11 - 0.16 mm by the drowned ridge. The coarse-grained fraction consists of skeletal debris (commonly 5 - 12% carbonate matter) and wave-milled kurkar grains (locally named zifzif). In deeper water, the basal sands underlying the fine-grained sediment cover consist of 1- to 30-cm layers whose composition ranges from silty sands to various types of sands (fine, medium, coarse, and gravelly) to zifzif. For the most part, they contain large amounts of skeletal debris (20 - 60%) and small fragments of kurkar. Two types of kurkar rock were encountered offshore: a well-sorted, fine- to medium-grained (0.074 - 0.300 mm) lithified dune sand with variable amounts of carbonate cement, ranging from hard rock of low permeability to loose sand; and a porous sandstone made up predominantly of algal grains and skeletal debris (calcarenite).  相似文献   

9.
In the present research, effect of silica fume as an additive and oil polluted sands as aggregates on compressive strength of concrete were investigated experimentally. The amount of oil in the designed mixtures was assumed to be constant and equal to 2% of the sand weight. Silica fume accounting for 10%, 15% and 20% of the weight is added to the designed mixture. After preparation and curing, concrete specimens were placed into the three different conditions: fresh, brackish and saltwater environments (submerged in fresh water, alternation of exposed in air & submerged in sea water and submerged in sea water). The result of compressive strength tests shows that the compressive strength of the specimens consisting of silica fume increases significantly in comparison with the control specimens in all three environments. The compressive strength of the concrete with 15% silica fume content was about 30% to 50% higher than that of control specimens in all tested environments under the condition of using polluted aggregates in the designed mixture.  相似文献   

10.
长江南京段末次盛冰期以来的古河谷沉积   总被引:3,自引:0,他引:3  
末次冰期盛冰期海平面大幅度下降,长江发育古深槽。根据沉积物的颗粒状况,南京段古河谷的充填可以分为3期明显的由粗到细的沉积韵律:末次盛冰期深切古河谷,河床窄陡,沉积物颗粒粗,为卵砾石到中砂、粗砂;冰后期河床较宽,沉积物为砾石、粗砂到中砂、细砂;全新世,河流进一步展宽,沉积物为粗砂、中砂到细砂、粉砂,细砂沉积厚度很大。全新世中期河床有数次左右摆动,两侧形成了细砂—砂质黏土互层的沉积。根据不同时期沉积物的颗粒级配情况,推算出各时期河流的起动流速和平均流速,验证不同时期的沉积环境,认为剖面的深切河槽是局部深切的结果。各期河床形态和沉积物的特征,反映了末次盛冰期、冰后期、全新世的气候变化和环境演变。  相似文献   

11.
In the present research, effect of silica fume as an additive and oil polluted sands as aggregates on compressive strength of concrete were investigated experimentally. The amount of oil in the designed mixtures was assumed to be constant and equal to 2% of the sand weight. Silica fume accounting for 10%, 15% and 20% of the weight is added to the designed mixture. After preparation and curing, concrete specimens were placed into the three different conditions: fresh, brackish and saltwater environments (submerged in fresh water, alternation of exposed in air & submerged in sea water and submerged in sea water). The result of compressive strength tests shows that the compressive strength of the specimens consisting of silica fume increases significantly in comparison with the control specimens in all three environments. The compressive strength of the concrete with 15% silica fume content was about 30% to 50% higher than that of control specimens in all tested environments under the condition of using polluted aggregates in the designed mixture.  相似文献   

12.
Installation of offshore pipelines in the seabed can be efficiently achieved using pipeline ploughs. Increased efficiency may be achievable through incorporating a smaller forecutter in advance of the main plough share. Currently guidance is limited and conflicting as to the advantages or disadvantages of incorporating a forecutter. To investigate the effect of forecutter inclusion model tests were undertaken at 1/50th scale under laboratory conditions in sand beds prepared at different relative densities in both dry and saturated conditions. Dry sand tests were used to determine the effect of the forecutter on the static or passive components of plough tow force. The currently adopted passive pressure coefficient (Cs) did not appear to vary with relative density to the same degree as previously suggested and the forecutter increased the magnitude of the passive or static resistance to ploughing. Saturated tests were used to determine the effects of the forecutter on the rate dependant component of ploughing resistance and allow verification of a dimensionless form of rate effect representation. The forecutter acts to reduce the rate effect component of plough tow force in both fine sand (low permeability) and to a lesser extent in medium sand (higher permeability). In fine and silty sands, however, incorporating a forecutter would seem highly beneficial at all ploughing depths and soil densities but in medium sand (higher permeability) the benefits of incorporation are limited to an operating window at shallower trench depths and lower relative density.  相似文献   

13.
The west-central Florida inner shelf represents a transition between the quartz-dominated barrier-island system and the carbonate-dominated mid-outer shelf. Surface sediments exhibit a complex distribution pattern that can be attributed to multiple sediment sources and the ineffectiveness of physical processes for large-scale sediment redistribution. The west Florida shelf is the submerged extension of the Florida carbonate platform, consisting of a limestone karst surface veneered with a thin unconsolidated sediment cover. A total of 498 surface sediment samples were collected on the inner shelf and analyzed for texture and composition. Results show that sediment consists of a combination of fine quartz sand and coarse, biogenic carbonate sand and gravel, with variable but subordinate amounts of black, phosphorite-rich sand. The carbonate component consists primarily of molluskan fragments. The distribution is patchy and discontinuous with no discernible pattern, and the transition between sediment types is generally abrupt. Quartz-rich sediment dominates the inner 15 km north of the entrance into Tampa Bay, but south of the Bay is common only along the inner 3 km. Elsewhere, carbonate-rich sediment is the predominate sediment type, except where there is little sediment cover, in which cases black, phosphorite-rich sand dominates. Sediment sources are likely within, or around the periphery of the basin. Fine quartz sand is likely reworked from coastal units deposited during Pleistocene sea-level high stands. Carbonate sand and gravel is produced by marine organisms within the depositional basin. The black, phosphorite-rich sand likely originates from the bioerosion and reworking of the underlying strata that irregularly crop out within the study area. The distribution pattern contains elements of both storm- and tide-dominated siliciclastic shelves, but it is dictated primarily by the sediment source, similar to some carbonate systems. Other systems with similar sediment attributes include cool-water carbonate, sediment-starved, and mixed carbonate/siliciclastic systems. This study suggests a possible genetic link among the three systems.  相似文献   

14.
Abstract

Evaluation of the strength of cement-treated clay with a broad range of mix ratios and curing periods was conducted using unconfined compression tests (UCTs). The influence of cement content, total water content, and curing period on the unconfined compressive strength of cemented clay are investigated. It is found that, at constant total water content, higher cement content results in higher unconfined compressive strength, while the total water content has an opposite effect. A power function can be used to correlate the unconfined compressive strength with the cement content or the total water content. For a fixed mix ratio, the unconfined compressive strength of cement-stabilized clay increases with the curing period, the effect of which can be characterized by a semi-log formula. Also, a strength-prediction model that considers both mix ratios and curing periods for cement-admixed marine clay is developed and validated; the model can capture the effect of clay type by considering the plastic index of untreated soils. It is also proved that the proposed framework for strength development is also applicable for other cement types.  相似文献   

15.
Abstract

Durability of cement-based materials for marine/coastal structures is an increasingly challenging problem. Sulfate ions in seawater can react with aluminate in cement to form erosion products, causing cracks and spalling. When cement is used to stabilize loose erodible sand in coastal areas, the resistance to sulfate attack is questionable. In this study, four cements with different aluminate contents were used to stabilize sand. Cement stabilized sands were immersed in 5% Na2SO4 solution for 300-days to simulate long-term sulfate attack process. The deterioration of engineering performance was evaluated based on expansion ratio, mass change, uniaxial compressive strength, and ultrasonic velocity. The deterioration mechanisms were analyzed through mineralogical and microstructural observations including X-ray diffraction, EDS, scanning electronic microscopy, and nuclear magnetic resonance. The results showed that the development of macro-scale mechanical performances could be divided into two stages (initial stage and erosion stage) when subjected to 300-days immersion in 5% Na2SO4 solution. Sand stabilized by low-aluminate-content cement displayed better engineering performance especially at the erosion stage. Mechanistically, more ettringite was formed in high-aluminate-content cement stabilized sand, leading to swelling and cracking. The formation of ettringite and gypsum were accompanied with the consumption of portlandite, leading to further strength loss.  相似文献   

16.
A very soft ground constructed by dredging and hydraulic fill has characteristics such as high water content, high initial void ratio, and very little effective stress. Estimating, with thorough considerations about consolidation properties and the initial stress associated with each layer's distinctive stress history, is essential in order to predict a reasonable consolidation settlement of soft ground. By investigating a construction project for national industrial complexes at a coastal area in southern Korea that experienced reclamation and ground improvement adapting PVD, various laboratory tests to find consolidation properties were performed with undisturbed samples collected from the entire depth of the marine clay fill layer and original clay layer. Through the investigation, this report suggests relationships of heterogeneity of permeability in both vertical and horizontal directions, void ratio-effective stress, and void ratio-permeability. Considering the fact that the original clay layer was under the process of consolidation by load due to hydraulic fill from the top, estimating the appropriate initial stress of each layer is critical to predict the future process of consolidation settlement determined by time. In order to obtain the initial stresses of two layers with different stress histories related to consolidation, cone penetration and dissipation tests were conducted.  相似文献   

17.
Abstract

The suction anchor becomes more popular for offshore oil and gas industry in deeper water. For suction anchor–soil interaction, the prediction of hydraulic conductivity of porous materials is a long-standing problem in offshore engineering. To investigate the hydraulic characteristics, an upward seepage flow through saturated sands is considered in this study. A numerical approach, which is able to describe the fluid–particle interaction at particle scale, has been employed to analyse fluid flow in sands. This approach is constructed by adopting a coupled discrete element method and computational fluid dynamic approach (CFD-DEM numerical model). The coupled CFD-DEM approach is first benchmarked by a classic geomechanics problem where analytical solutions are available, and then employed to investigate the characteristics of upward seepage flow in coarse sand columns. Through numerical modelling, the predicted relation between hydraulic gradient and flow velocity is obtained and it is compared with the classical analytical correlation. The effect of several bulk and micromechanical parameters including packing porosity, particle size combination and inter-particle rolling resistance on the flow characteristics is numerically examined. The results show that the particle polydispersity and packing porosity have significant effect on the hydraulic conductivity in the seepage flow. The introduction of inter-particle rolling resistance can change initial packing structure of particle assembly in some extent rather than the hydraulic conductivity from the particle shape effect perspective. A further development of numerical model, in which the effect of non-spherical particles on the seepage flow, will be carried out later.  相似文献   

18.
Benthic photosynthesis in submerged Wadden Sea intertidal flats   总被引:3,自引:1,他引:3  
In this study we compare benthic photosynthesis during inundation in coarse sand, fine sand, and mixed sediment (sand/mud) intertidal flats in the German Wadden Sea. In situ determinations of oxygen-, DIC- and nutrient fluxes in stirred benthic chamber incubations were combined with measurements of sedimentary chlorophyll, incident light intensity at the sediment surface and scalar irradiance within the sediment. During submergence, microphytobenthos was light limited at all study sites as indicated by rapid response of gross photosynthesis to increasing incident light at the sea floor. However, depth integrated scalar irradiance was 2 to 3 times higher in the sands than in the mud. Consequently, gross photosynthesis in the net autotrophic fine sand and coarse sand flats during inundation was on average 4 and 11 times higher than in the net heterotrophic mud flat, despite higher total chlorophyll concentration in mud. Benthic photosynthesis may be enhanced in intertidal sands during inundation due to: (1) higher light availability to the microphytobenthos in the sands compared to muds, (2) more efficient transport of photosynthesis-limiting solutes to the microalgae with pore water flows in the permeable sands, and (3) more active metabolic state and different life strategies of microphytobenthos inhabiting sands.  相似文献   

19.
Abstract

For land reclamation using the conventional surcharge preloading method, a sand cap layer is often fully placed at the ground surface of ultra-soft compressible estuary or marine clays. A novel strategy of distributed sand caps is proposed to save cost associated with sand materials. At an early stage of consolidation, the drainage capacity of distributed sand caps is less than the drainage demand, whereas at a later stage, the capacity exceeds the demand. Hence, the overall drainage capacity of distributed sand caps is equivalent to the drainage demand. A numerical model is developed to study the effectiveness of the proposed technique, and calculations are compared against theoretical solutions. A parametric study is conducted to optimize design parameters. It has been found that distributed sand caps should be uniformly placed with a size of 3% of the total width and a spacing of 1 times the size, such that sand materials can be saved by up to 50% without compromising the consolidation efficiency (an increase of consolidation time by less than 5%). The use of distributed sand caps will be effective regardless of soil properties, including hydraulic conductivity, elastic modulus and Poisson’s ratio.  相似文献   

20.
Abstract

The problem of radioactive waste containment, the modeling of hydrocarbon formation processes, and the proposed laying of fiber‐optic communication cables on the seafloor have recently focused attention on the thermal and fluid flow properties of porous media. Both properties are difficult to determine accurately for large volumes of material, particularly where disturbance is inevitable either on sampling or penetration of the measuring device. Both properties, however, have been tentatively identified as bearing some form of analogy with electrical flow, and evaluation of these relationships with electrical measurements may provide practical means of obtaining rapid coverage of the sediment from a semi‐remote position. Using a variety of laboratory cells, an attempt has been made to evaluate useful relationships between electrical formation factor and thermal conductivity and/or permeability for both sands and clays. Formation factor exhibits a close relationship with permeability, and the capability of predicting permeability to within an order of magnitude is shown providing the grade of sediment is identified (e.g., sand or clay). Formation factor is related to porosity and while any one sample is best represented by Archie's (sands) or Winsauer's (clays) empirical law, the overall trend is a third‐degree polynomial; particle shape appears to dominate both porosity and permeability relationships with electrical formation factor. Thermal conductivity shows a clear dependence on the porosity of a saturated sediment. The successful prediction of thermal conductivity using a geometrical model requiring volume and thermal conductivity values for the components has been demonstrated for a variety of particle shapes and sizes. Thermal conductivity may be related to formation factor through the porosity of the sample for both sands and clays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号