首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on mesh regeneration and stress interpolation from an old mesh to a new one, a large deformation finite element model is developed for the study of the behaviour of circular plate anchors subjected to uplift loading. For the deterruination of the distributions of stress components across a clay foundation, the Recovery by Equilibrium in Patches is extended to plastic analyses. ABAQUS, a commercial finite element package, is customized and linked into our program so as to keep automatic and efficient running of large deformation calculation. The quality of stress interpolation is testified by evaluations of Tresca stress and nodal reaction forces. The complete pulling-up processes of plate anchors buried in homogeneous clay arc simulated, and typical pulling force-displacement responses of a deep anchor and a shallow anchor are compared. Different from the results of previous studies, large deformation analysis is of the capability of estimating the breakaway between the anchor bottom and soils. For deep anchors, the variation of mobilized uplift resistance with anchor settlement is composed of three stages, and the initial buried depths of anchors affect the separation embedment slightly. The uplift bearing capacity of deep anchors is usually higher than that of shallow anchors.  相似文献   

2.
The problem of static three-dimensional, nonlinear, large deformation response of a marine riser is formulated within small strain theory and solved numerically. This type of analysis is necessary, for the new generation of drilling and production risers. The mathematical model takes properly into account the effects of internal and external pressure and the complete nonlinear boundary conditions, without linearizing the follower forces. The extensibility or inextensibility condition is used as the constitutive relation in the tangential direction. Torsion and bending are coupled. The external load and the boundary conditions are deformation dependent. A solution method is developed based on an incremental finite element algorithm, which involves a prediction-correction scheme. In the correction phase deformation dependent quantities are updated. The extensibility or inextensibility condition is used to reduce the degrees of freedom of the system. The numerical results of the developed computer code compare very well with available semi-analytical and numerical solutions. Three numerical applications are used to demonstrate the importance of large deformation, nonlinear and three-dimensional analyses.  相似文献   

3.
Abstract

Helical piles have emerged as an attractive foundation system for offshore applications with renewed interest from the offshore community. Significant research gap currently exists in transferring this technology offshore and this paper discusses how existing and emerging knowledge can be successfully used to bridge some of the gaps. We focus on the Coupled Eulerian Lagrangian (CEL) large deformation finite element (LDFE) modelling technique that is commercially available and can be used to model the three-dimensional installation process with consideration of strain rate and softening effects in soft offshore clays. A helical pile of L?=?7.5?m long is modelled with one or two large-diameter helices (D?=?2?m) attached to a central shaft of d?=?0.5?m in diameter.The net effect of strain rate and softening is to increase the installation torque. The measured torque is within the range of 200–400?kN.m for the offshore clay and the pile geometry studied. Additional helices increase the uplift force but to a lesser degree than that of the measured torque. Remoulding induced strength reduction is found to be within the range of 25–33% of the intact clay strength. Issues of extracting and reusing offshore helical pile foundations are discussed.  相似文献   

4.
ABSTRACT

The uplift capacity of a group of circular plate anchors buried horizontally in sand along a line has been determined. The uplift capacity of an interfering anchor is presented in terms of nondimensional uplift factors, Fγi and Fqi, due to components of soil unit weight and surcharge pressure acting on the ground surface, respectively. Theoretical solutions have been developed by applying the upper bound theorem of limit analysis based on a simple rigid wedge collapse mechanism. In the case of two and infinite number of anchors, closed-form solutions have been developed for computing the factor Fqi, whereas the factor Fγi is determined using a semianalytical approach. As expected, the interference of the anchors leads to a continuous reduction in the uplift resistance with a decrease in the spacing between the anchors, and the uplift resistance decreases with the increasing number of anchors at a given spacing. The results compare reasonably well with the available theoretical and experimental data from the literature.  相似文献   

5.
ABSTRACT

Miniature submersible linear variable differential transformer (LVDT) is commonly used for small strain stiffness measurement. However, it has not been widely used on cement-treated clays. This paper proposes a method of installing and setting up submersible LVDT to minimize testing problems and errors for cement-treated clays. In soft clay testing, the LVDT mount can be anchored to the specimen by pressed-in anchor pins or rods. However, this cannot be done on cement-treated clay due to the latter’s hardness. Preliminary trials also indicate that direct attachment of the LVDT mounts to the membrane without anchor pins is not feasible owing to the tendency of the LVDT to tilt and detach from the specimen. The system adopted involves pre-casting holes for the insertion of anchor pins during placement of the admixture into the moulds. The diameter of the anchors pins was found to have significant effect on the results; smaller diameter pins give more consistent results with those of resonant column and bender element tests. This can be attributed to the effect of stress concentration around the anchor pins. The results showed that, used appropriately, submersible LVDTs can give small strain measurements which have a high degree of inner consistency with results from resonant column and bender element tests.  相似文献   

6.
The paper presents a constitutive model to describe undrained cyclic stress-strain responses of soft clays based on the equivalent visco-elastic and creep theories. The hysteretic and nonlinear stress-strain responses of soft clays are described using the equivalent visco-elastic relationship and variations of the cyclic modulus and the damping ratio with the octahedral shear strain, respectively in the model. The cyclic accumulative strain is described using the Mises creeping potential function and the associated flow rule. The method determining the model parameters is given by static and cyclic triaxial tests. The finite element method to analyze deformation of anchor foundation in soft clay under static and cyclic loads is developed based on the model. For the method, a cyclic loading time history is divided into a series of incremental loading sub-processes which include one load cycle at least. The cyclic stress-strain responses of soil elements at any time are not tracked in detail and determined by the equivalent visco-elastic calculations for every loading sub-process. The accumulative deformation of anchor foundations is calculated using the initial strain algorithm. The method has been implemented in ABAQUS Software by developing interface programs. Model tests of the suction anchors are conducted and predicted using the method. Comparisons of predicted and model test results show that the method can be used to evaluate cyclic stability and reveal the failure process and mechanism of anchor foundations by analyzing deformation time-histories.  相似文献   

7.
This paper presents a model formulation for static and dynamic analysis of three-dimensional extensible marine riser transporting fluid. A variational model formulation is developed based on the principle of virtual work-energy and the extensible elastica theory. The virtual work-energy functional is composed of the virtual strain energy due to axial stretching, bending, and torsion and the virtual work done by the external and internal fluid. The governing dynamic equilibrium equations are derived in the Cartesian coordinate. The finite element method is used to obtain the numerical solutions. The numerical examples are provided to demonstrate interesting effects of fluid transportation and axial deformation on large displacements and dynamic properties of the three-dimensional extensible marine riser.  相似文献   

8.
Abstract

This study describes an analytical solution for determining the ultimate vertical uplift resistance of a group of two and multiple number of close-spaced shallow rectangular anchor plates embedded horizontally in sand. The analysis was performed by using an upper bound theorem of limit analysis with the employment of the kinematically admissible three-dimensional (3D) rigid wedge collapse mechanisms. Results are obtained in terms of dimensionless uplift factors Fγ and Fq due to the components of soil self-weight and surcharge pressure acting on the ground surface for a wide range of parameters. It was found that the magnitude of uplift factors decreases substantially with a decrease in the clear spacing between the anchors, soil friction angle, and embedment ratio, and an increase in the aspect ratio of anchors. Further, it was noticed that when the clear spacing between the anchors is greater than or equal to the certain critical value, the interaction effect of anchors vanishes and the magnitude of uplift factors associated with a group of anchors becomes equal to that of single isolated anchors. The present solutions are found to compare reasonably well with those theoretical, numerical, and experimental results available in the literature.  相似文献   

9.
ABSTRACT

The strain wedge model effectively performs nonlinear analyses of the lateral response of piles by using a nonlinear stress-strain relationship to describe soil behavior in the strain wedge. In this study, a state-dependent plasticity model has been implemented in the strain wedge model to calculate the stress-strain relationship for sand in the strain wedge. To complement this implementation, the effect of dilatancy on the shear strain is considered in the strain wedge. A full-scale test and a 45 g centrifuge model test on laterally loaded piles are used to validate the proposed method. The results show that the deflections and moments predicted by the proposed method accord well with those measured from full-scale and centrifugal model pile tests. Moreover, the combination of the state-dependent plasticity model and the strain wedge model allows for analyzing the lateral response of single piles using a unique set of model parameters for different relative densities of sands. In addtion, the stress-strain response in the strain wedge, not the dilatancy, dominates the soil resistance in the strain wedge and thus the lateral response of piles.  相似文献   

10.
In the field of ocean engineering, a beginning has been made in the use of large‐sized suction anchors for safe anchoring of large compliant structures. Suction anchors derive most of their uplift resistance from passive suction developed during the pullout movement. This article describes a set of laboratory tests on model suction anchors of three different embedment ratios to estimate the pullout behavior of suction anchors in soft clays typical of Indian marine clays. Tests were conducted on model anchors installed in soil beds prepared at four different consistencies in a test tank. This study shows the influence of soil consistency and embedment ratio (L/D) on the pullout behavior of suction anchors and on the variation of suction pressure at the top of the soil plug. The test results reveal that the behavior of suction anchors is much better than the behavior of open‐ended anchors from the considerations of both capacity and deformation. The consistent development of suction inside the anchor top confirms the plug formation and significant breakout resistance in the form of suction‐induced reversed end bearing. The results are further analyzed in terms of suction breakout factors. Further, the effect of burial depth of suction anchor on pullout behavior is shown.  相似文献   

11.
The dynamic instability of laminated sandwich plates subjected to in-plane partial edge loading is studied for the first time using an efficient finite element plate model. The plate model is based on a refined higher order shear deformation plate theory, where the transverse shear stresses are continuous at the layer interfaces with stress free conditions at plate top and bottom surfaces. Interestingly the plate model having all these refined features requires unknowns at the reference plane only. However, this theory requires C1 continuity of transverse displacement, which is difficult to satisfy arbitrarily in any existing finite element. To deal with this, a new triangular element developed by the authors is used in the present paper.  相似文献   

12.
ABSTRACT

The OMNI-Max anchors are newly developed dynamically installed anchors for deep water mooring systems. After installation, the anchor is keyed to a new orientation and position by tensing the attached mooring chain, which is known as the “keying process”. This study conducted 1g model tests to study the trajectories and capacity developments of OMNI-Max anchors in homogeneous and lightly overconsolidated (LOC) clays. A testing arrangement was designed to simulate the anchor keying process with a constant pullout angle at the mudline. A half model anchor which could move against the box glass was used to determine the anchor trajectory in the soil. The effects of padeye offset angle, uplift angle at the mudline, anchor fluke thickness, anchor initial embedment depth, and soil strength on the anchor trajectory and capacity were systematically investigated. Moreover, the critical uplift angle at the padeye and the anchor critical initial embedment depth were discussed. The results indicate that the anchor can dive both in homogeneous and LOC clays under certain conditions. A padeye offset angle of 24–30° is recommended for the OMNI-Max anchor to maintain high capacity and diving trend simultaneously. Besides, the anchor diving trend can be improved with small uplift angles at the mudline and with thick anchor flukes. A critical initial embedment depth of 1.3 times the anchor length is recommended to preclude the anchor from being pulled out.  相似文献   

13.
This paper reports the results from three-dimensional dynamic finite element analysis undertaken to provide insight into the behaviour of the fish and OMNI-max dynamically installed anchors during loading in crust-over-soft clay sediments. Particular attention was focused on the situations where the anchor is embedded to a shallow depth during dynamic installation due to the strong crust layer. Large deformation finite element analyses were carried out using the coupled Eulerian-Lagrangian approach, incoporating the anchor chain effect. Parametric analyses were undertaken varying the initial embedment depth, anchor shape, loading angle, strength ratio between the top and bottom layers. The tracked anchor trajectory confirmed that the diving potential of the fish and OMNI-Max anchors were enhanced by the presence of the crust layer as that somewhat restircted the upward movement. This will be beneficial for many hydrocarbon active regions with layered seabed sediments where the anchor embedment depths during dynamic installation are expected to be low.  相似文献   

14.
Although the uplift behavior of offshore plate anchors under undrained conditions has been investigated well in the past, studies on the behavior of anchors under long-term sustained loading are in relatively few numbers. The time required for consolidation under sustained load is important because the shear strength of soil changes after dissipation of excess pore pressure. In this paper, small strain finite-element analyses have been performed to investigate the consolidation time history above and beneath strip anchors. The modified cam clay plasticity constitutive model is used for modeling coupled pore fluid stress analysis. The effects of magnitude of preloading with embedment level have been studied. As expected, the FE results have shown that excess pore pressure dissipation time for soil above the anchor increased with the increase in embedment depth and the magnitude of preload. Rapid dissipation of negative excess pore pressure beneath the anchor was observed with increasing embedment depth, if the preload magnitude is equal to or more than 60% of the undrained capacity. Observed consolidation responses are presented as nondimensional design charts and simplified equations for ease of practice.  相似文献   

15.
Abstract

In this article, the dilatancy of calcareous soil is studied systematically based on triaxial consolidation drainage shear tests, and the difference in dilatancy between calcareous soil and siliceous soil is also investigated. It was found that: ① Calcareous soil experience obvious dilated deformation. Dilatancy tendency increases with increasing related density and decreases with increasing confining pressure. ② The volumetric strain rate initially increases from negative to positive. After it reaches a maximum, there is a small decrease in the volumetric strain rate, but it is still greater than zero, and the stress-strain curves are of softening type. ③ For the same condition, the dilatancy deformation of calcareous sand begins later than that of siliceous sand, and the volume compression before dilatancy is also larger for calcareous sand. ④ The critical state alone cannot accurately describe the entire deformation process of soil, and it is proposed that the phase transformation state be added to the standard method used to assess soil dilatation and contraction. ⑤ Based on the statistical analysis of experimental data, mathematical relationships were established between void ratio, relative density, and effective confining pressure of phase transformation state and critical state, respectively.
  • Highlights
  • Reports results from a well-designed experiment that includes a good amount of samples and data.

  • Effects of relative density and effective confining pressure on deformation mode and mechanical properties of calcareous sand are evaluated.

  • The difference in dilatancy between calcareous sand and siliceous sand was compared

  • The phase-transformation state and critical state were compared with the axial strain, volumetric strain and deviatoric stress.

  • Using phase-transformation void ratio and critical void ratio to describe the whole deformation process of calcareous sand is proposed.

  • The mathematical expressions of phase-transformation void ratio and critical void ration were given, respectively.

  相似文献   

16.
Many numerical analyses of New Orleans levee and floodwall sections adopted mostly isotropic soil models partly due to the inherent simplicity of isotropic models. However, the isotropic models may not be sufficient to properly address the anisotropic behavior of soils. To overcome this imperfection, this study incorporated an anisotropic Modified Cam Clay model in a commercially available finite difference code, FLAC3D, and analyzed a floodwall and levee section in the 17th St. Canal in New Orleans. The analysis showed that the anisotropic model resulted in a similar overall deformation to the Mohr-Coulomb isotropic model. However, the anisotropic model showed more widely spread yielded elements and higher shear strain gradient in the Lacustrine clay layer, reconfirming that the Lacustrine clay layer played a major role for the failure in the 17th St. Canal. This result also signified that the isotropic Mohr-Coulomb model might be good for evaluating overall behavior in moderate deformation problems, while the anisotropic Modified Cam Clay model was good even for large strain problems where more accurate evaluation of yielding is needed.  相似文献   

17.
Gravity installed anchors (GIAs) are the most recent generation of anchoring solutions to moor floating facilities for deepwater oil and gas developments. Challenges associated with GIAs include predicting the initial embedment depth and evaluating the keying performance of the anchor. The former involves high soil strain rate due to large anchor penetration velocity, while the later influences the subsequent behavior and pullout capacity of the anchor. With the coupled Eulerian–Lagrangian method, three-dimensional large deformation finite element models are established to investigate the penetration and keying of GIAs in non-homogeneous clay. In the penetration model, a modified Tresca soil model is adopted to allow the effects of soil strain rate and strain softening, and user-defined hydrodynamic drag force and frictional resistance are introduced via concentrated forces. In the keying model, the anchor line effects are incorporated through a chain equation, and the keying, diving and pulling out behaviors of the anchor can all be replicated. Parametric studies are undertaken at first to quantify the effects of various factors on the performance of GIAs, especially on the penetration and keying behaviors. Based on the results of parametric studies, fitted formulae are proposed to give a quick evaluation of the anchor embedment depth after the installation, and the shackle horizontal displacement, shackle embedment loss and anchor inclination at the end of the keying. Comparative studies are also performed to verify the effectiveness of the fitted formulae.  相似文献   

18.
Abstract

In the field of ocean engineering, anchors are used for several purposes. This article studies the behavior of a helical anchor embedded in soft marine clay under vertical repetitive loading. Helical anchors are simple steel shafts to which one or more helical plates are attached at regular intervals. The tests are conducted on a model helical anchor installed in a soft marine clay bed prepared in a test tank. Repetitive loading is applied using a pneumatic loading arrangement. Different cyclic load ratios and time periods are adopted. In each test, after the application of repetitive loading, poststatic‐pullout tests are conducted to observe the effect of repetitive loading on anchor behavior. From the test results, it is found that, up to a cyclic load ratio of 55%, there is no reduction in capacity. Instead, there seems to be a marginal increase in capacity and reduction in displacement. The reasons for this behavior are explained in terms of induced changes in strength and deformation behavior of marine clay under repetitive load. However, at higher cyclic load ratios, there seems to be reduction in pullout capacity of the anchor, and the reason for this is explained in terms of strain criteria. From this investigation, it can be concluded that the deep anchor is more suitable to a marine environment than a shallow anchor.  相似文献   

19.
With the application of innovative anchor concepts and advanced technologies in deepwater moorings, anchor behaviors in the seabed are becoming more complicated and pose a great challenge to the analytical methods. In the present work, a large deformation finite element (FE) analysis employing the coupled Eulerian–Lagrangian technique is performed to simulate the installation/mooring line, and then is applied to analyzing comprehensive anchor behaviors in the seabed. By connecting cylindrical units with each other using connector elements, the installation/mooring line is constructed. With the constructed installation/mooring line, FE simulations are carried out to investigate comprehensive anchor behaviors in the seabed, including long-distance penetration of drag anchors, keying of suction embedded plate anchors and non-catastrophic behavior of gravity-installed anchors. Through comparative studies, the accuracy of the proposed method is well examined. A parametric study is also undertaken to quantify the effects of the frictional coefficient, initial embedment depth, and soil weight on the profile of the embedded anchor line and the shackle load. The present work demonstrates that the proposed FE model, which incorporates the installation/mooring line and the anchor, is effective in analyzing the comprehensive anchor behaviors in the seabed.  相似文献   

20.
One of the potential solutions to steel-corrosion-related problems is the usage of fiber reinforced polymer (FRP) as a replacement of steel bars. In the past few decades, researchers have conducted a large number of experimental and theoretical studies on the behavior of small size glass fiber reinforce polymer (GFRP) bars (diameter smaller than 20 mm). However, the behavior of large size GFRP bar is still not well understood. Particularly, few studies were conducted on the stress relaxation of grouted entirely large diameter GFRP soil nail. This paper investigates the effect of stress levels on the relaxation behavior of GFRP soil nail under sustained deformation ranging from 30% to 60% of its ultimate strain. In order to study the behavior of stress relaxation, two B-GFRP soil nail element specimens were developed and instrumented with fiber Bragg grating (FBG) strain sensors which were used to measure strains along the B-GFRP bars. The test results reveal that the behavior of stress relaxation of B-GFRP soil nail element subjected to pre-stress is significantly related to the elapsed time and the initial stress of relaxation procedure. The newly proposed model for evaluating stress relaxation ratio can substantially reflect the influences of the nature of B-GFRP bar and the property of grip body. The strain on the nail body can be redistributed automatically. Modulus reduction is not the single reason for the stress degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号