首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The study on the interrelation between sea-level changes and biodiversity with its evolution has great significance for understanding the impact of global changes on organic evolution and exploring the inherent laws of life-environment coevolution in geological history. In this paper, the stratigraphic distribution of fusulinacean fauna in the Carboniferous-Permian boundary section at Xikou, Zhen’an County, Shaanxi Province, is analyzed quantitatively, and the relationship between the species diversity of fusulinaceans and relative sea-level changes is discussed. As a whole, the species numbers of fusulinacean fauna experience a rapid increase and an obvious decline in Xikou, Zhen’an County, from the Late Carboniferous to the Early Permian. There is a significant increase in species diversity around the Carboniferous-Permian boundary, which is one of the biggest bio-events of the fusulinacean fauna, and represents the radiation of Pseudoschwagerininae subfamily in the studied area. Integrated fusulinacean species diversity into sequence stratigraphic framework, detailed study suggests that the species diversity of the fusulinaceans is closely related to its relative stratigraphic location, and is essentially controlled by the sea-level changes, especially by the high-frequency sea-level changes. Generally, the species diversity of fusulinaceans is low, and the number of first and last appearance datum is small in the lower unit of high-frequency depositional cycle formed during the quick rise of the sea level; whereas the species diversity of fusulinaceans is high, and the number of first and last appearance datum is large in the upper unit of high-frequency cycle formed during the slow fall of the sea level. Within the third-order depositional sequence, the species diversity of the fusulinaceans at the first flooding surfaces and the maximum flooding surfaces is low, and it increases upward. The fusulinacean species diversity is low within the transgressive systems track, and it is high within the highstand systems track. The second-order rise and fall in sea level coincide with the bloom and decline of high order taxa of fusulinaceans.  相似文献   

2.
Analyses of the extinction process of fusulinacean in the Maokouan (Middle Permian) biotic crisis have revealed remarkable differences between taxa with various morphological features. Nankinellinids suffered a heavy loss of species in the early stage of the Maokouan event. Schwagerinids and neoschwagerinids both showed a stepwise decrease in species diversity, but the pulses of species extinction occurred in different stages of the extinction process. The species extinction of verbeekinids happened primarily in the Late Maokouan.  相似文献   

3.
鄂尔多斯地块构造演化的古地磁学研究   总被引:15,自引:0,他引:15       下载免费PDF全文
鄂尔多斯地块与中朝地台其它地区相同时代地层的古地磁结果基本一致表明:晚二叠世以来,中朝地台经历了从低纬度(19°左右)向中纬度的北移过程,并伴有50°左右的逆时针旋转;晚二叠世—中三叠世地台北移10°(1000km)左右,而方位基本未变;中三叠世—中侏罗世主要发生50°左右的逆时针旋转,而北向位移不明显,这一旋转可能与杨子地台和中朝地台碰撞拼合有关,或者说是印支运动在该地区的反应,中侏罗世—早白垩世地块已基本和现代位置一致  相似文献   

4.
Patterns of brachiopod paleobiogeographic regionalization in Central Asia reveal a coevolution between brachiopod paleobiogeography and tectonopaleogeography during the Early Devonian,Early Carboniferous,Late Carboniferous,Early Permian,and Middle Permian.The coevolutionary relationship reasonably accounts for the formation mechanisms of brachiopod paleobiogeography in this region,and also provides a basis for studies on the location and configuration of oceans and plates(blocks)during the late Paleozoic in Central Asia.  相似文献   

5.
A composite standard section (CSS) has been established for the Maokouan (≈ Guadalupian) in Guizhou Province, southwestern China, which includes stratigraphical ranges of 179 fusulinacean species from five sections of the Maokou Formation in this area. Based on statistical results of the first and last appearances of fusulinacean species in the CSS, three evolutionary radiations and four pulses of extinction, characterized by high rates of species origination and extinction significantly different from the rates of background evolution, are recognized in the Maokouan fusulinacean fauna. The evolutionary pattern of fusulinacean foraminifer suggests that the Maokouan mass extinction probably started at the middle Maokouan and dramatically intensified in the late Maokouan. Project supported by the National Natural Science Foundation of China (Grant No. 49572075) and the Ministry of Education of China (Grant No. 9528417).  相似文献   

6.
Three regions can easily be identified in the study area according to the Middle Permian palaeobiogeographic distribution of biota, they are the southern slope of East Kunlun, A'nyêmaqên and Bayan Har. Biotic constitution and ecology in the southern slope of East Kunlun and Bayan Har are very similar. Both the diversity and abundance of organisms in these two areas are very high and reefs are widely developed. However, biotic diversity and abundance in A'nyêmaqên which is between the above two areas are obviously low. Differentiation of palaeobiogeographic distribution in these areas should be due to the baring of A'nyêmaqên ocean in the time of Middle Permian. Middle Permian radiolarian chert and thick abyssal red ooze are widely spread in A'nyêmaqên, implying that the A'nyêmaqên ocean had a great scale in size. Vast scale of deep ocean basin became an impassable gulf for some of the benthos, and as a result, only part of the organisms could have the chance to get to the isolated islands situated in ocean basin. Small living space and hard conditions in the islands further limited the abundance and diversity of biota. Tectonic background reflected by the geochemical study of basalt in the three areas is coupling well enough with the palaeobiogeographic division.  相似文献   

7.
JUN-ICHI  TAZAWA 《Island Arc》2002,11(4):287-301
Abstract    Late Paleozoic (Middle Devonian, Early Carboniferous and Middle Permian) brachiopod faunas of the South Kitakami Belt, northeast Japan, are closely related paleobiogeographically to those of the Xinjiang–Inner Mongolia–Jilin region, northwest–northeast China. This relationship suggests that the South Kitakami Belt was part of the trench or continental shelf bordering the northern and eastern margins of North China (Sino-Korea) during the Middle Devonian to Middle Permian times. Among the three models on the origin and tectonic development of the South Kitakami Belt, the strike–slip model is most consistent, but both the microcontinent model and the nappe model have considerable inconsistencies with the above paleobiogeographic and paleogeographic evidence.  相似文献   

8.
It is now generally accepted that Southeast Asia is composed of continental blocks which separated from Gondwana with the formation of oceanic crust during the Paleozoic, and were accreted to Asia in the Late Paleozoic or Early Mesozoic, with the subduction of the intervening oceanic crust. From east to west the Malay peninsula and Sumatra are composed of three continental blocks: East Malaya with a Cathaysian Permian flora and fauna; Sibumasu, including the western part of the Malay peninsula and East Sumatra, with Late Carboniferous–Early Permian 'pebbly mudstones' interpreted as glaciogenic diamictites; and West Sumatra, again with Cathaysian fauna and flora. A further unit, the Woyla nappe, is interpreted as an intraoceanic arc thrust over the West Sumatra block in the mid Cretaceous. There are varied opinions concerning the age of collision of Sibumasu with East Malaya and the destruction of Paleotethys. In Thailand, radiolarites have been used as evidence that Paleotethys survived until after the Middle Triassic. In the Malay peninsula, structural evidence and the ages of granitic intrusions are used to support a Middle Permian to Early Triassic age for the destruction of Paleotethys. It is suggested that the West Sumatra block was derived from Cathaysia and emplaced against the western margin of Sibumasu by dextral transcurrent faulting along a zone of high deformation, the Medial Sumatra Tectonic Zone. These structural units can be traced northwards in Southeast Asia. The East Malaya block is considered to be part of the Indochina block, Sibumasu can be traced through Thailand into southern China, the Medial Sumatra Tectonic Zone is correlated with the Mogok Belt of Myanmar, the West Burma block is the extension of the West Sumatra block, from which it was separated by the formation of the Andaman Sea in the Miocene, and the Woyla nappe is correlated with the Mawgyi nappe of Myanmar.  相似文献   

9.
The stratigraphy and radiolarian age of the Mizuyagadani Formation in the Fukuji area of the Hida‐gaien terrane, central Japan, represent those of Lower Permian clastic‐rock sequences of the Paleozoic non‐accretionary‐wedge terranes of Southwest Japan that formed in island arc–forearc/back‐arc basin settings. The Mizuyagadani Formation consists of calcareous clastic rocks, felsic tuff, tuffaceous sandstone, tuffaceous mudstone, sandstone, mudstone, conglomerate, and lenticular limestone. Two distinctive radiolarian faunas that are newly reported from the Lower Member correspond to the zonal faunas of the Pseudoalbaillella u‐forma morphotype I assemblage zone to the Pseudoalbaillella lomentaria range zone (Asselian to Sakmarian) and the Albaillella sinuata range zone (Kungurian). In spite of a previous interpretation that the Mizuyagadani Formation is of late Middle Permian age, it consists of Asselian to Kungurian tuffaceous clastic strata in its lower part and is conformably overlain by the Middle Permian Sorayama Formation. An inter‐terrane correlation of the Mizuyagadani Formation with Lower Permian tuffaceous clastic strata in the Kurosegawa terrane and the Nagato tectonic zone of Southwest Japan indicates the presence of an extensive Early Permian magmatic arc(s) that involved almost all of the Paleozoic non‐accretionary‐wedge terranes in Japan. These new biostratigraphic data provide the key to understanding the original relationships among highly disrupted Paleozoic terranes in Japan and northeast Asia.  相似文献   

10.
Statistical analysis based on global data indicated that the planktonic graptolites presented a distinguished pattern from that of benthic communities during the great Ordovician biodiversification. The graptolites started to diversify from the beginning of Ordovician and reached an acme in the early Middle Ordovician, but subsequently underwent a steady decline to the end of Ordovician. During the Ordovician, many clades of the graptolites made their originations, flourishing and replacements. However, in different regions and distinct environments across the world, graptolites may presumably display distinct patterns of radiation and evolution, a hypothesis to be tested. Herein a study of the graptolite diversity in the Early to Middle Ordovician in the Upper Yangtze Region (Platform) and Jiangnan Region (Slope), South China, is conducted. The results indicate that graptolites underwent a remarkable increase in both regions, but with distinct magnitude, scope, process and patterns. The diversification of graptolites in the Upper Yangtze Region, though less prominent, is divided into four stages and includes two peaks. In the Jiangnan Region, the graptolite diversification is far more prominent and includes three stages and one peak. Based on the distinct diversity histories and composition of graptolites in the two representative regions, a 'deep-water origin and shallow-water dispersal' model is proposed for the Ordovician graptolite faunas. According to the model, the major graptolite faunas of Ordovician originated in the deep-water region on the continental slope, the source of the graptolite novelties, and subsequently spread into shallow-water region on the shelf. Besides, we also conduct a comparison study of the Ordovician graptolite diversity in South China and other major regions. The results display that the graptolites diversified globally in the Early and Middle Ordovician. At the beginning of Ordovician, graptolites underwent a significant ecological innovation of graptolites: planktonic forms were derived from their benthic ancestors. This derivation resulted in the great guild expansion of graptolites. In late Early Ordovician (Floian), the global expansion of graptolites commenced. From the Floian to the end of Middle Ordovician, the graptolites diversity increased remarkably and displayed three peaks for all the regions. However, the peaks are somewhat distinct in magnitude and timing among regions. The Darriwilian peak is prominent in both South China and Baltic region, but inconspicuous in Australasia. No close relationship between the graptolite diversification and the palaeolatitudes are supported herein. Instead, the graptolite diversification seems to coincide with the global sea-level rises, suggesting a possible intrinsic relationship between them.  相似文献   

11.
Abstract   Fusulinoidean faunal succession from Paleo–Tethyan seamount-type carbonates of the Yutangzhai section in the Central zone of the Changning–Menglian Belt of West Yunnan, Southwest China, is presented for the first time. The Changning–Menglian Belt is one of the orogenic belts that represent the closed main Paleo–Tethys in East Asia. The Yutangzhai section is represented by basalts and overlying carbonates, about 1100 m thick. It exhibits a continuous faunal succession composed of 17 fusulinoidean assemblages ranging from the Serpukhovian (late Mississippian/late Early Carboniferous) to Midian/Capitanian (late Middle Permian/late Guadalupian). No significant faunal break can be recognized in this section. The generic and some specific composition of the Yutangzhai assemblages indicates that the faunal succession is similar to those observed in Tethyan and Panthalassan areas and is of tropical Tethyan type although their generic diversity is definitely lower than those of Paleo–Tethyan shelves, such as South China, Indochina, and Central Asia. Throughout the Yutangzhai section, the carbonate rocks are essentially massive, very pure in composition, and devoid of terrigenous siliciclastic inputs. These lithologic characters are identical to those observed in accreted shallow-marine carbonate successions of seamount origin in Permian and Jurassic accretionary complexes of Japan, for example the Akiyoshi Limestone. This evidence further demonstrates the seamount origin of the basalt–limestone succession in the Central zone of the Changning–Menglian Belt from the viewpoint of lithofacies. In middle Mississippian (middle Early Carboniferous) time, oceanic submarine volcanism that was probably related to hot spot activities formed a number of seamounts and oceanic plateaus. It was active not only in the Panthalassa, but also in the Paleo–Tethys.  相似文献   

12.
Summary Statistical evaluation of palaeomagnetic data from the Early Carboniferous to the Middle Triassic rocks in Europe, north of the Alpine tectonic belt, confirmed previously defined palaeotectonic stability of the whole European Plate since the Early Permian. The Trans-European Suture Zone represents a plate boundary, SW of which the Early Variscan and pre-Variscan formations show different degrees of palaeotectonic rotations, predominantly rotations of clockwise sense. A theoretical model simulating the translation and rotation movements was proposed showing that the West European Variscides underwent Hercynian palaeotectonic rotations comparable with the rotations derived for the Alpine tectonic belt.  相似文献   

13.
Quan-Ru  Geng  Zhi-Ming  Sun  Gui-Tang  Pan  Di-Cheng  Zhu  Li-Quan  Wang 《Island Arc》2009,18(3):467-487
The well‐studied Mesozoic and Cenozoic volcanic rocks of the Gangdise Terrane, southern Tibet, are widely interpreted to have resulted from subduction of the Neotethys; however, Late Paleozoic volcanic rocks and their tectonic setting remain poorly studied. Based on new geological data, we carried out stratigraphical and geochemical analyses of Permian volcano‐stratigraphic sequences within an east–west‐trending, fault‐bounded zone of uplift in the central Gangdise Terrane. Sedimentary rocks in this area consist of platform carbonates and terrigenous clastic rocks that represent widespread shallow‐marine sedimentary basins developed around northern Gondwana. A regression or tectonic uplift event is recorded in Permian sedimentary rocks that show the local development of fluvial environments. The sedimentary succession contains evidence of two volcanic stages: a period of basaltic extrusions and younger explosive felsic magmatism. The first volcanic stage is Early and Middle Permian in age. Tholeiitic basaltic lavas are exposed around Maizhokunggar (Tangjia) and Lhunzhub in central Gangdise. The Lower Permian basalts are relatively enriched in MgO (4.58–12.19%), whereas the Middle Permian basalts are characterized by high Al2O3 contents (11.75–21.22%). Rocks of both ages are enriched in large‐ion lithophile elements (LILE) and light rare earth elements (LREE), and show pronounced negative Nb and Ta anomalies. Total REE contents and light (LREE)/heavy (HREE) ratios increased from the Early to Middle Permian. Observed variations in initial Sr, Nd, and Pb isotopes (87Sr/86Sri = 0.7013–0.7066, 207Pb/204Pbi = 15.53–15.63, and 208Pb/204Pbi = 38.04–38.64 for a given 206Pb/204Pbi; εNd = +0.69 to ?11.55) can be explained by crustal interaction with mantle sources, as is characteristic of metasomatism by slab‐derived fluids or assimilation and fractional crystallization (AFC) processes during magmatic evolution. The observed geochemical signatures, coupled with stratigraphic constraints, support the hypothesis that an initial arc formed during the Permian due to southward subduction of the Paleotethys, predating the well‐known Mesozoic arc preserved in the Gangdise Terrane.  相似文献   

14.
A new early Late Triassic paleopole for Adria has been obtained from the Val Sabbia Sandstone in the Southern Alps. As Early Permian and Jurassic-Cretaceous paleomagnetic data from para-autochthonous regions of Adria such as the Southern Alps are consistent with ‘African’ APWPs[1–2], paleomagnetic data from this region can be used to bolster the West Gondwana APWP in the poorly known Late Permian-Triassic time interval. The Southern Alpine paleopoles are integrated with the West Gondwana and Laurussia APWPs of Van der Voo [1] and used to generate a tectonic model for the evolution of Pangea. The Early Permian overall mean paleopole for West Gondwana and Adria, in conjunction with the coeval Laurussia paleopole, support Pangea B of Morel and Irving [3]. The Late Permian/Early Triassic and the Middle/Late Triassic paleopoles from Adria and Laurussia support Pangea A-2 of Van der Voo and French [4]. The phase of transcurrent motion between Laurasia and Gondwana[5] that caused the Pangea B to A-2 transition occurred essentially in the Permian (at the end of Variscan orogeny) with an average relative velocity of approximately 10 cm/yr. Finally, the Late Triassic/Early Jurassic paleopoles from West Gondwana and Laurussia agree with Pangea A-1 of Bullard et al. [6], the widely accepted Pangea configuration at the time of the Jurassic breakup.  相似文献   

15.
16.
The collections of Permian rocks from sections of the Kozhim River (Asselian, Kungurian, and Ufimian stages) and the Kama River (Ufimian and Kazanian stages) are studied. The paleomagnetic directions determined on the studied structures closely agree with the existing data for the Subpolar Urals and Russian Platform (RP). In the Middle Permian red clays of the Kama River region, the paleomagnetic pole N/n = 28/51, Φ = 47° N, Λ = 168° E, dp = 3°, and dm = 5° is obtained. The analysis of the existing paleomagnetic determinations for the Early and Middle Permian of the Russian and Siberian platforms and Kazakhstan blocks (KBs) is carried out. For the Subpolar Ural sections, the estimates are obtained for the local rotations during the collision of the Uralian structures with the Russian and Siberian platforms and KBs. The amplitudes of the horizontal displacements of the studied structures are, on average, 170 ± 15 km per Middle Permian. The scenario describing the evolution of the horizontal rotations of the structures of Subpolar Urals is suggested.  相似文献   

17.
Abstract Radiolarians extracted from marine siliceous sediments from the Bentong-Raub suture zone, Peninsular Malaysia have indicated a range of ages for olistostromal blocks of bedded chert, siliceous argillite and tuffaceous argillite, and chert clasts and lenses within the mélange from the suture zone. Late Devonian (Faniennian), Early Carboniferous (Tournaisian and Viséan) and Early Permian (Wolfcampian and Leonardian) ages are represented by seven radiolarian zones from ten localities along the suture zone. In stratigraphic order these include Holoeciscus 2–3 Assemblage Zones, Albaillella paradoxa Zone, Albaillella dejendrei Zone, Albaillella cartalla Zone, Pseudoalbaillella lomentaria Zone, Albaillella sinuata Zone and Pseudoalbaillella longtanensis Zone. Fifteen genera are represented by 35 species. The range of ages from Late Devonian to Early Permian suggests that an ocean existed between the Sibumasu and East Malaya terranes from at least Late Devonian to late Early Permian time and that closure of the ocean between the two terranes could not have occurred until after late Early Permian time. The range of ages and rock types from different depositional environments, indicate that the Bentong-Raub suture zone includes a disrupted accretionary complex.  相似文献   

18.
Age determinations of the Triassic lithostratigraphic units of the Yanshan belt were previously based on plant fossils and regional correlations of lithologies. The Liujiagou and Heshanggou Formations were assigned as the Lower Triassic, and the Ermaying Formation was regarded as the Middle Triassic. We carried out a geochronologic study of detrital zircon grains from the Triassic sandstone in the Xiabancheng and Yingzi basins in northern Hebei where the Triassic strata are exceptionally well preserved. The results show that the Liujiagou, Heshanggou, and Ermaying Formations are all Late Triassic in age. The ages of detrital zircons also revealed that the upper part of the Shihezi Formation and the overlying Sunjiagou Formation, both of which were thought to be the Middle-Late Permian units, are actually late Early to Middle Triassic deposits. This study combines the upper Shihezi and Sunjiagou Formations into a single unit termed as the Yingzi Formation. We also substitute the widely-used Liujiagou, Heshanggou, and Ermaying Formations with the Dingjiagou, Xiabancheng, and Huzhangzi Formations, respectively. Field observations and facies analysis show that the top of the Shihezi Formation is an erosive surface, marking a parallel unconformity between the Middle Permian and Lower Triassic. The Yingzi Formation is composed mainly of meandering river deposits, indicative of tectonic quiescence and low-relief landform in the Early to Middle Triassic. In contrast, the Dingjiagou, Xiabancheng, and Huzhangzi Formations are interpreted as the deposits of sandy/gravelly braided rivers, alluvial fans, fan deltas, and deep lakes in association with volcanism, thus indicating an intense rifting setting. A new Triassic lithostratigraphic division is proposed according to age constraints and facies analysis, and the results are of significance for understanding the early Mesozoic tectonic evolution of the Yanshan belt.  相似文献   

19.
Palaeozoic and early Mesozoic fish faunas of the Japanese Islands   总被引:2,自引:0,他引:2  
MASATOSHI GOTO 《Island Arc》1994,3(4):247-254
Abstract In recent years, many fish teeth and scales have been found from the Palaeozoic and Mesozoic age strata of the Japanese Islands. This study is a compilation of the Japanese fish record from the Palaeozoic and early Mesozoic age deposits. Based on the published and unpublished data, the fossil fishes from the Palaeozoic and Early Mesozoic of Japan can be classified into 27 genera and 33 species, that is, one species of Devonian placoderms, 19 species of Permian to Jurassic elasmobranchs, three species of Permian cochliodonts, seven species of Carboniferous to Permian petalodonts, and three species of Triassic to Jurassic osteichthyans.  相似文献   

20.
A Middle to Late Triassic (Ladinian–Carnian) radiolarian fauna was discovered in cherts of the Situlanglang Member of the Garba Formation, South Sumatra, which is generally regarded as of Late Jurassic–Early Cretaceous age. This fauna is characterized by the presence of Annulotriassocampe sulovensis, Triassocampe postdeweveri, Spongotortilispinus tortilis, Poulpus piabyx, Canoptum levis and others. This evidence possibly indicates that the deposition of the Situlanglang cherts took place after the collision of the Sibumasu and East Malaya blocks recorded in the Bentong–Raub Suture in Peninsular Malaysia in Late Permian–Early Triassic times. During the Middle–Late Triassic Sumatra and Peninsular Malaysia consisted of submarine horst and graben structures. It is possible that a submarine graben, the Tuhur basin, whose southern boundary was formerly undefined, extends into South Sumatra, to the area in which the Situlanglang cherts were deposited. The Situlanglang Member is proposed to be a rock unit stratigraphically contemporaneous with those of the Middle–Upper Triassic Kualu and Tuhur Formations in North and Central Sumatra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号