首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A general linearized wave equation for a stratified rotating fluid is derived and applied to obtain a dispersion relation for waves of short latitudinal extent in a thin shell of fluid. Long period wave solutions in three ocean models are compared: (1) for a stratified ocean with both components of the rotation vector; (2) for a stratified ocean without the horizontal component of rotation, and finally, (3) for a homogeneous ocean without horizontal rotation. The inclusion of the horizontal component of the Earth's rotation is found to have no noticeable effect on the dispersion relation of long period waves; its only influence is the introduction of a vertical phase shift in the motions. The origin of this phase shift is found in the tendency of the motions to satisfy the Taylor-Proudman theorem. The phase shift is of possible oceanographic relevance only for bottom-trapped buoyancy waves in a relatively weak stratification. The differences between the three ocean models are also discussed with the help of graphs of the numerically integrated dispersion relations. The relative influences of shell thinness and stratification in inhibiting the influence of the horizontal component of the earth's rotation are also briefly discussed.  相似文献   

2.
A short general explanation of tidal forces and tidal effects is given. The influences of Earth tides and ocean tides on the Earth's rotation vector are presented. Today, the theoretical models for periodic variations in the Earth's rotation and in polar motion can be compared with precise measurements done by modern space techniques. Secular changes of the Earth's rotation due to interactions within the Earth-Moon-system are also discussed.  相似文献   

3.
As is known, the secular deceleration of the Earth's diurnal rotation is explained mainly by the tidal friction in the ocean. Below we consider this mechanism in some detail, taking into account also elastic deformations of the mantle under the action of ocean loading and the interaction between the tide-generating body, ocean tidal wave, liquid outer core, and solid inner core. It is shown that elastic displacements of the core-mantle boundary under the action of ocean loading are of about the same amplitude and phase as the elastic loading displacements of the Earth's outer surface. As a result, side by side with the mechanism of secular deceleration of diurnal rotation of the mantle, there are also (1) the opposite mechanism of secular acceleration of diurnal rotation of the outer liquid core and of the solid inner core and (2) the mechanism of excitation of differential rotation in the liquid core. Taking these effects into account, we compare theoretical and modern observed data on the eastward drift of the solid inner core. It is shown that the best agreement may be obtained if the turbulent viscosity of the liquid core is about 2 × 10 3 Poise  相似文献   

4.
The linear theory predicts that Rossby waves are the large scale mechanism of adjustment to perturbations of the geophysical fluid. Satellite measurements of sea level anomaly (SLA) provided sturdy evidence of the existence of these waves. Recent studies suggest that the variability in the altimeter records is mostly due to mesoscale nonlinear eddies and challenges the original interpretation of westward propagating features as Rossby waves. The objective of this work is to test whether a classic linear dynamic model is a reasonable explanation for the observed SLA. A linear-reduced gravity non-dispersive Rossby wave model is used to estimate the SLA forced by direct and remote wind stress. Correlations between model results and observations are up to 0.88. The best agreement is in the tropical region of all ocean basins. These correlations decrease towards insignificance in mid-latitudes. The relative contributions of eastern boundary (remote) forcing and local wind forcing in the generation of Rossby waves are also estimated and suggest that the main wave forming mechanism is the remote forcing. Results suggest that linear long baroclinic Rossby wave dynamics explain a significant part of the SLA annual variability at least in the tropical oceans.  相似文献   

5.
A numerical model (two horizontal dimensions, vertically integrated) is used to investigate the generation of long ocean waves, ranging from 20 min to almost 2 h, at Buenos Aires continental shelf. The domain includes the Río de la Plata estuary and the continental shelf together and extends from 33.5° to 40.5°S latitude, and from 51° to 63°W longitude. Sea-level oscillations are modeled by forcing with passage of atmospheric cold fronts and atmospheric gravity waves. Both forcing mechanisms, which have been present during high activity lapses of long ocean waves, are mathematically implemented. After several numerical simulations, it is concluded that the pressure and wind fields associated to cold fronts do not generate long ocean waves in the area, though they do produce disturbances with periods longer than the tidal ones. On the other hand, it is so concluded that atmospheric gravity waves are an effective mechanism to force long ocean waves. Results obtained show that generation of long ocean waves is highly sensitive depending on the propagation direction and the phase speed of the atmospheric gravity waves. The long ocean wave event detected during the large-amplitude gravity-wave event of 13 October 1985 is successfully simulated. Finally, all our results suggest that atmospheric gravity waves are a highly effective mechanism forcing for the generation of long ocean waves in Buenos Aires coastal waters.  相似文献   

6.
Summary An initial value investigation is made of the transient development of dispersive long waves on a homogeneous rotating shallow ocean generated by an arbitrary steady or oscillatory wind stress disturbances. The significant effect of the rotation on these long waves is examined. The solution of the problem related to physically realistic wind stress distributions is obtained with physical implications. The principal features of the wave motions are explored. In place of complicated Green's function technique, the problem is solved by the generalized Fourier transform and the Laplace transform methods combined with the asymptotic techniques. The method of solution used is simple, elegant and straightforward.  相似文献   

7.
The present article displays the results of theoretical investigation of the planetary ultra-low-frequency (ULF) electromagnetic wave structure, generation and propagation dynamics in the dissipative ionosphere. These waves are stipulated by a spatial inhomogeneous geomagnetic field. The waves propagate in different ionospheric layers along the parallels to the east as well as to the west and their frequencies vary in the range of (10–10−6) s−1 with a wavelength of order 103 km. The fast disturbances are associated with oscillations of the ionospheric electrons frozen in the geomagnetic field. The large-scale waves are weakly damped. They generate the geomagnetic field adding up to several tens of nanotesla (nT) near the Earth's surface. It is prescribed that the planetary ULF electromagnetic waves preceding their nonlinear interaction with the local shear winds can self-localize in the form of nonlinear long-living solitary vortices, moving along the latitude circles westward as well as eastward with a velocity different from the phase velocity of the corresponding linear waves. The vortex structures transfer the trapped particles of medium, as well as energy and heat. That is why such nonlinear vortex structures can be the structural elements of the ionospheric strong macro-turbulences.  相似文献   

8.
The rotation of the Earth's liquid core creates the Nearly Diurnal Free Wobble (NDFW). It is one of the problems of researching the Earth's liquid core for us to retrieve the parameters of the Earth's Free Core Nutation (FCN), from the Earth's liquid core resonance of gravity tide waves on the diurnal frequency band. Since 1987, some scientists in many different countries have come to calculate the parameters of FCN by using the observational data of gravity tide waves on the diurnal frequency band. They basically followed the Stacking method, which needed five diurnal waves for the resolution. In this paper, authors introduced the Akp-Btk value method with clearly geometrical meaning as a new method, which only requires three very high signal-noise-ratio waves O1, K1 and P1 for the resolution. Authors chose the observational data of the three superconducting gravimeter stations respectively located in Cantley of Canada, Wuhan of China and Brussels of Belgium, to compute the parameters of FCN. It was the first time that the observational results of the parameters of FCN obtained from gravitational tide were in accord with the parameters of FCN gained from VLBI since 1987.  相似文献   

9.
切变基本纬向流中非线性赤道Rossby长波   总被引:5,自引:1,他引:4  
为了解决观测和理论研究中的一些问题以及更好地了解热带大气动力学 ,有必要进一步研究基本气流的变化对大气中赤道Rossby波动的影响 .本文研究分析基本气流对赤道Rossby长波的影响 ,利用一个简单赤道 β平面浅水模式和摄动法 ,研究纬向基本气流切变中非线性赤道Rossby波 ,推导出在切变基本纬向流中赤道Rossby长波振幅演变所满足的非线性KdV方程并得到其孤立波解 .分析表明 ,孤立波存在的必要条件是基本气流有切变 ,而且基流切变不能太强 ,否则将产生正压不稳定 .  相似文献   

10.
Summary The effect of the electrical conductivity of the Earth's mantle on the non-stationary Ekman-Hartman hydromagnetic boundary layer is investigated under the conditions in the Earth's core. It is shown that under an impulsive change of rotation of the mantle Alfvén waves can only be excited if the Ekman-Hartman hydromagnetic boundary layer is in a non-stationary state, i.e. at a time when its structure is developing. The intensity of the Alfvén waves is very small, because the excitation is more of a mechanic nature than magnetic.  相似文献   

11.
近岸海浪是影响近岸水域环境状态的重要环节.海洋近岸波的波动性质和变化规律的研究对于海岸防护、近岸航运、军事活动等具有重要意义.感应磁场波动可为探测海洋近岸波的非线性过程提供一种有效手段.本文首次对海洋近岸波引起的感应磁场进行了频谱指数分析,获得了能量注入和耗散过程对应的谱段.2016年5月15日—6月30日在昌黎海岸(东经119.3,北纬39.7°)利用KDM-2型磁通门磁力仪对海洋近岸波引起的磁场变化进行了测量,数据分辨率为0.01 nT/(HZ)~(1/2),时间采样率为1 Hz和128 Hz.观测数据显示,在距海岸线2 m远处,清晰地观测到了海洋近岸波引起的磁场波动,在0.001~10.0 Hz频段的波动最大振幅约为1 nT.波动的小波频谱呈现出多次谐波结构,符合海洋近岸波的谐波特征.傅里叶频谱显示不同频段谱的斜率不同,反映了海洋近岸波发展与耗散的非线性物理过程,进一步开展长期观测和统计分析有助于深入了解海洋中的电动力学过程.  相似文献   

12.
The effect of the atmosphere on the Earth's rotation can be computed by twodifferent but fundamentally equivalent approaches. The more commonly used is the so-called angular momentum approach, and the second is the torque approach. Their physicalmeanings are recalled, and numerical results from the two are intercompared, concentrating on the lowest periods of a few days or shorter. The indirect effect of the atmosphereon the Earth rotation due to atmospheric forcing on the ocean is also described based on both static and dynamic oceanic models.Results are discussed for the equatorial components and for the highest frequencies.  相似文献   

13.
Leif N. Thomas 《Ocean Dynamics》2017,67(10):1335-1350
In the ocean, wind-generated kinetic energy (KE) manifests itself primarily in balanced currents and near-inertial waves. The dynamics of these flows is strongly constrained by the Earth’s rotation, causing the KE in balanced currents to follow an inverse cascade but also preventing wave-wave interactions from fluxing energy in the near-inertial band to lower frequencies and higher vertical wavenumbers. How wind-generated KE is transferred to small-scale turbulence and dissipated is thus a non-trivial problem. This article presents a review of recent theoretical calculations and numerical simulations that demonstrate how some surprising modifications to internal wave physics by the lateral density gradients present at ocean fronts allow for strong interactions between balanced currents and near-inertial waves that ultimately result in energy loss for both types of motion.  相似文献   

14.
We show a mechanism whereby the jets result during the development of β-plumes (i.e., low-frequency Rossby waves that establish gyre circulations) in a model of ocean-basin circulation. The energy originates in baroclinic meanders of circulation at the eastern boundary of the ocean. Eddies are intimately related and occur as a result of the instability of this process. This mechanism does not rely on the existence of the small-scale turbulence to establish zonal flows. Zonal jets can then be amplified by eddies arranged in certain order in the flow. The underlying dynamics include the propagation of linear and nonlinear basin scale Rossby waves. The related barotropic theory for these waves is developed here. We demonstrate the radiative development of jets and β-plumes in a laboratory experiment using a rotating fluid with a paraboloidal free surface. The dynamical fields are measured by the laboratory analog of the satellite altimetry.  相似文献   

15.
本文是序列文章的第五篇,其内容包括:基于连续介质力学的基本理论,在考虑到地球的自引力、液核对核幔边界的压力和外部引潮力的作用下,严格地给出了地幔的角动量方程.利用前文的有关结论,进而给出了整体地球自转的动力学方程和内核地球模型的地球自转耦合运动学方程组.本文顾及了高阶岁差章动力矩对地球自转的影响,因而在理论上扩展了文献〔1〕给出的理论模型.本文的理论对进一步研究在高阶岁差章动力矩作用下的内核地球章动是非常有意义的.  相似文献   

16.

The effects of finite amplitude are examined in two-dimensional, standing, internal gravity waves in a rectangular container which rotates about a vertical axis at frequency f/ 2. Expressions are given for the velocity components, density fluctuations and isopycnal displacements to second order in the wave steepness in fluids with buoyancy frequency, N , of general form, and the effect of finite amplitude on wave frequency is given in an expansion to third order. The first order solutions, and the solutions to second order in the absence of rotation, are shown to conserve energy during a wave cycle. Analytical solutions are found to second order for the first two modes in a deep fluid with N proportional to sech( az ), where z is the upward vertical coordinate and a is scaling factor. In the absence of rotation, results for the first mode in the latter stratification are found to be consistent with those for interfacial waves. An analytical solution to fourth order in a fluid with constant N is given and used to examine the effects of rotation on the development of static instability or of conditions in which shear instability may occur. As in progressive internal waves, an effect of rotation is to enhance the possibility of shear instability for waves with frequencies close to f . The analysis points to a significant difference between the dynamics of standing waves in containers of limited size and progressive internal waves in an unlimited fluid; the effect of boundaries on standing waves may inhibit the onset of instability. A possible application of the analysis is to transverse oscillations in long, narrow, steep-sided lakes such as Loch Ness, Scotland.  相似文献   

17.
Galactic cosmic rays (GCRs) altered by solar wind are traditionally regarded as the most plausible agent of solar activity influence on the Earth's atmosphere. However, it is well known that severe reductions in the GCRs flux, known as Forbush decreases (FDs), are caused by solar wind of high speed and density, which sweeps away the GCRs on its way. Since the FD beginnings are registered at the Earth's orbit simultaneously with dramatic disturbances in the solar wind, the atmospheric effects, assigned to FDs, can be, in reality, the results of the solar wind influence on the atmospheric processes. This paper presents a summary of the experimental results demonstrating the strong influence of the interplanetary electric field on atmospheric processes in central Antarctica, where the large-scale system of vertical circulation is formed during winter seasons. The influence is realized through acceleration of the air masses, descending into the lower atmosphere from the troposphere, and the formation of cloudiness above the Antarctic Ridge, where the descending air masses enter the surface layer. The acceleration is followed by a sharp increase of the atmospheric pressure near-pole region, which gives rise to the katabatic wind strengthening above the entire Antarctica. The cloudiness formation results in the sudden warmings in the surface atmosphere, since the cloud layer efficiently backscatters the long wavelength radiation from the ice sheet, but does not affect the adiabatic warming process of the descending tropospheric air masses. When the drainage flow strengthening the circumpolar vortex around the periphery of the Antarctic continent decays, the surface easterlies typical of the coast stations during the winter season are replaced by southerlies and the cold Antarctic air masses flow out to the Southern ocean.  相似文献   

18.
Results are presented from both linear stability analysis and numerical simulations of three-dimensional nonlinear convection in a Boussinesq fluid in an annular channel, under experimental boundary conditions, rotating about a vertical axis uniformly heated from below. The focus is placed on the Prandtl number Pr = 7.0, representing liquid water at room temperature. The linear analysis shows that, when the aspect ratio is sufficiently small, there exists only one stationary mode that occupies the whole fluid container. When the aspect ratio is moderate or large, however, there exist three different linear solutions: (i) the outer sidewall-localized traveling wave propagating against the sense of rotation; (ii) the inner sidewall-localized traveling wave propagating in the same sense as rotation; and (iii) both the counter-traveling waves occurring simultaneously. Guided by the result of the linear stability analysis, fully three-dimensional simulations are then performed for a channel with a moderate aspect ratio. It is found that neither the prograde nor the retrograde mode is physically realizable near threshold and beyond. The dynamics of nonlinear convection in a rotating channel are chiefly characterized by the interaction between the sidewall-localized waves and the interior convection cells/rolls, producing an interesting and unusual nonlinear phenomenon. In order to compare with the classical Rayleigh–Bénard problem without vertical sidewalls, we also study linear and nonlinear convection at exactly the same parameters but in an infinitely extended layer with periodic horizontal conditions. This reveals that both the linear instability and nonlinear convection in a rotating channel are characteristically different from those in a rotating layer with periodic horizontal conditions.  相似文献   

19.
武汉台重力潮汐长期观测结果   总被引:5,自引:1,他引:4       下载免费PDF全文
采用武汉台超导重力仪(SG C032)14年多的长期连续观测资料,研究了固体地球对二阶和三阶引潮力的响应特征,精密测定了重力潮汐参数,系统研究了最新的固体潮模型和海潮模型在中国大陆的有效性.采用最新的8个全球海潮模型计算了海潮负荷效应,从武汉台SG C032的观测中成功分离出63个2阶潮汐波群和15个3阶潮汐波群信号,3阶潮波涵盖了周日、半日和1/3日三个频段.重力潮汐观测的精度非常高,标准偏差达到1.116 nm·s-2,系统反映了非流体静力平衡、非弹性地球对2阶和3阶引潮力的响应特征.结果表明,现有的武汉国际重力潮汐基准在半日频段非常精确,但在周日频段存在比较明显的偏差,需要进一步精化.对于中国大陆的大地测量观测,固体潮可以采用Dehant等考虑地球内部介质非弹性和非流体静力平衡建立的固体潮理论模型或Xu 等基于全球SG观测建立的重力潮汐全球实验模型作为参考和改正模型,海潮负荷效应应该采用Nao99作为改正模型.  相似文献   

20.
The transformation of a weakly nonlinear interfacial solitary wave in an ideal two-layer flow over a step is studied. In the vicinity of the step the wave transformation is described in the framework of the linear theory of long interfacial waves, and the coefficients of wave reflection and transmission are calculated. A strong transformation arises for propagation into shallower water, but a weak transformation for propagation into deeper water. Far from the step, the wave dynamics is described by the Korteweg-de Vries equation which is fully integrable. In the vicinity of the step, the reflected and transmitted waves have soliton-like shapes, but their parameters do not satisfy the steady-state soliton solutions. Using the inverse scattering technique it is shown that the reflected wave evolves into a single soliton and dispersing radiation if the wave propagates from deep to shallow water, and only dispersing radiation if the wave propagates from shallow to deep water. The dynamics of the transmitted wave is more complicated. In particular, if the coefficient of the nonlinear quadratic term in the Korteweg-de Vries equation is not changed in sign in the region after the step, the transmitted wave evolves into a group of solitons and radiation, a process similar to soliton fission for surface gravity waves at a step. But if the coefficient of the nonlinear term changes sign, the soliton is destroyed completely and transforms into radiation. The effects of cubic nonlinearity are studied in the framework of the extended Korteweg-de Vries (Gardner) equation which is also integrable. The higher-order nonlinear effects influence the amplitudes of the generated solitons if the amplitude of the transformed wave is comparable with the thickness of lower layer, but otherwise the process of soliton fission is qualitatively the same as in the framework of the Korteweg-de Vries equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号