首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asteroid 2008 TC3 (approximately 4 m diameter) was tracked and studied in space for approximately 19 h before it impacted Earth's atmosphere, shattering at 44–36 km altitude. The recovered samples (>680 individual rocks) comprise the meteorite Almahata Sitta (AhS). Approximately 50–70% of these are ureilites (ultramafic achondrites). The rest are chondrites, mainly enstatite, ordinary, and Rumuruti types. The goal of this work is to understand how fragments of so many different types of parent bodies became mixed in the same asteroid. Almahata Sitta has been classified as a polymict ureilite with an anomalously high component of foreign clasts. However, we calculate that the mass of fallen material was ≤0.1% of the pre‐atmospheric mass of the asteroid. Based on published data for the reflectance spectrum of the asteroid and laboratory spectra of the samples, we infer that the lost material was mostly ureilitic. Therefore, 2008 TC3 probably contained only a few percent nonureilitic materials, similar to other polymict ureilites except less well consolidated. From available data for the AhS meteorite fragments, we conclude that 2008 TC3 samples essentially the same range of types of ureilitic and nonureilitic materials as other polymict ureilites. We therefore suggest that the immediate parent of 2008 TC3 was the immediate parent of all ureilitic material sampled on Earth. We trace critical stages in the evolution of that material through solar system history. Based on various types of new modeling and re‐evaluation of published data, we propose the following scenario. (1) The ureilite parent body (UPB) accreted 0.5–0.6 Ma after formation of calcium‐aluminum‐rich inclusions (CAI), beyond the ice line (outer asteroid belt). Differentiation began approximately 1 Ma after CAI. (2) The UPB was catastrophically disrupted by a major impact approximately 5 Ma after CAI, with selective subsets of the fragments reassembling into daughter bodies. (3) Either the UPB (before breakup), or one of its daughters (after breakup), migrated to the inner belt due to scattering by massive embryos. (4) One daughter (after forming in or migrating to the inner belt) became the parent of 2008 TC3. It developed a regolith, mostly ≥3.8 Ga ago. Clasts of enstatite, ordinary, and Rumuruti‐type chondrites were implanted by low‐velocity collisions. (5) Recently, the daughter was disrupted. Fragments were injected or drifted into Earth‐crossing orbits. 2008 TC3 comes from outer layers of regolith, other polymict ureilites from deeper regolith, and main group ureilites from the interior of this body. In contrast to other models that have been proposed, this model invokes a stochastic history to explain the unique diversity of foreign materials in 2008 TC3 and other polymict ureilites.  相似文献   

2.
Almahata Sitta (AhS), an anomalous polymict ureilite, is the first meteorite observed to originate from a spectrally classified asteroid (2008 TC3). However, correlating properties of the meteorite with those of the asteroid is not straightforward because the AhS stones are diverse types. Of those studied prior to this work, 70–80% are ureilites (achondrites) and 20–30% are various types of chondrites. Asteroid 2008 TC3 was a heterogeneous breccia that disintegrated in the atmosphere, with its clasts landing on Earth as individual stones and most of its mass lost. We describe AhS 91A and AhS 671, which are the first AhS stones to show contacts between ureilitic and chondritic materials and provide direct information about the structure and composition of asteroid 2008 TC3. AhS 91A and AhS 671 are friable breccias, consisting of a C1 lithology that encloses rounded to angular clasts (<10 μm to 3 mm) of olivine, pyroxenes, plagioclase, graphite, and metal‐sulfide, as well as chondrules (~130–600 μm) and chondrule fragments. The C1 material consists of fine‐grained phyllosilicates (serpentine and saponite) and amorphous material, magnetite, breunnerite, dolomite, fayalitic olivine (Fo 28‐42), an unidentified Ca‐rich silicate phase, Fe,Ni sulfides, and minor Ca‐phosphate and ilmenite. It has similarities to CI1 but shows evidence of heterogeneous thermal metamorphism. Its bulk oxygen isotope composition (δ18O = 13.53‰, δ17O = 8.93‰) is unlike that of any known chondrite, but similar to compositions of several CC‐like clasts in typical polymict ureilites. Its Cr isotope composition is unlike that of any known meteorite. The enclosed clasts and chondrules do not belong to the C1 lithology. The olivine (Fo 75‐88), pyroxenes (pigeonite of Wo ~10 and orthopyroxene of Wo ~4.6), plagioclase, graphite, and some metal‐sulfide are ureilitic, based on mineral compositions, textures, and oxygen isotope compositions, and represent at least six distinct ureilitic lithologies. The chondrules are probably derived from type 3 OC and/or CC, based on mineral and oxygen isotope compositions. Some of the metal‐sulfide clasts are derived from EC. AhS 91A and AhS 671 are plausible representatives of the bulk of the asteroid that was lost. Reflectance spectra of AhS 91A are dark (reflectance ~0.04–0.05) and relatively featureless in VNIR, and have an ~2.7 μm absorption band due to OH? in phyllosilicates. Spectral modeling, using mixtures of laboratory VNIR reflectance spectra of AhS stones to fit the F‐type spectrum of the asteroid, suggests that 2008 TC3 consisted mainly of ureilitic and AhS 91A‐like materials, with as much as 40–70% of the latter, and <10% of OC, EC, and other meteorite types. The bulk density of AhS 91A (2.35 ± 0.05 g cm?3) is lower than bulk densities of other AhS stones, and closer to estimates for the asteroid (~1.7–2.2 g cm?3). Its porosity (36%) is near the low end of estimates for the asteroid (33–50%), suggesting significant macroporosity. The textures of AhS 91A and AhS 671 (finely comminuted clasts of disparate materials intimately mixed) support formation of 2008 TC3 in a regolith environment. AhS 91A and AhS 671 could represent a volume of regolith formed when a CC‐like body impacted into already well‐gardened ureilitic + impactor‐derived debris. AhS 91A bulk samples do not show a solar wind component, so they represent subsurface layers. AhS 91A has a lower cosmic ray exposure (CRE) age (~5–9 Ma) than previously studied AhS stones (11–22 Ma). The spread in CRE ages argues for irradiation in a regolith environment. AhS 91A and AhS 671 show that ureilitic asteroids could have detectable ~2.7 μm absorption bands.  相似文献   

3.
Abstract— Polymict ureilites contain various mineral and lithic clasts not observed in monomict ureilites, including plagioclase, enstatite, feldspathic melt clasts and dark inclusions. This paper investigates the microdistributions and petrogenetic implications of rare earth elements (REEs) in three polymict ureilites (Elephant Moraine (EET) 83309, EET 87720 and North Haig), focusing particularly on the mineral and lithic clasts not found in monomict ureilites. As in monomict ureilites, olivine and pyroxene are the major heavy (H)REE carriers in polymict ureilites. They have light (L)REE‐depleted patterns with little variation in REE abundances, despite large differences in major element compositions. The textural and REE characteristics of feldspathic melt clasts in the three polymict ureilites indicate that they are most likely shocked melt that sampled the basaltic components associated with ureilites on their parent body. Simple REE modeling shows that the most common melt clasts in polymict ureilites can be produced by 20–30% partial melting of chondritic material, leaving behind a ureilitic residue. The plagioclase clasts, as well as some of the high‐Ca pyroxene grains, probably represent plagioclase‐pyroxene rock types on the ureilite parent body. However, the variety of REE patterns in both plagioclase and melt clasts cannot be the result of a single igneous differentiation event. Multiple processes, probably including shock melting and different sources, are required to account for all the REE characteristics observed in lithic and mineral clasts. The C‐rich matrix in polymict ureilites is LREE‐enriched, like that in monomict ureilites. The occurrence of Ce anomalies in C‐rich matrix, dark inclusions and the presence of the hydration product, iddingsite, imply significant terrestrial weathering. A search for 26Mg excesses, from the radioactive decay of 26Al, in the polymict ureilite EET 83309 was negative.  相似文献   

4.
The Almahata Sitta (AhS) meteorite consists of disaggregated clasts from the impact of the polymict asteroid 2008 TC3, including ureilitic (70%–80%) and diverse non-ureilitic materials. We determined the 40Ar/39Ar release patterns for 16 AhS samples (3–1500 μg) taken from three chondritic clasts, AhS 100 (L4), AhS 25 (H5), and MS-D (EL6), as well as a clast of ureilitic trachyandesite MS-MU-011, also known as ALM-A, which is probably a sample of the crust of the ureilite parent body (UPB). Based on our analyses, best estimates of the 40Ar/39Ar ages (Ma) of the chondritic clasts are 4535 ± 10 (L4), 4537–4555 with a younger age preferred (H5), and 4513 ± 17 (EL6). The ages for the L4 and the H5 clasts are older than the most published 40Ar/39Ar ages for L4 and H5 meteorites, respectively. The age for the EL6 clast is typical of older EL6 chondrites. These ages indicate times of argon closure ranging up to 50 Ma after the main constituents of the host breccia, that is, the ureilitic components of AhS, reached the >800°C blocking temperatures of pyroxene and olivine thermometers. We suggest that these ages record the times at which the clasts cooled to the Ar closure temperatures on their respective parent bodies. This interpretation is consistent with the recent proposal that the majority of xenolithic materials in polymict ureilites were implanted into regolith 40–60 Ma after calcium–aluminum-rich inclusion and is consistent with the interpretation that 2008 TC3 was a polymict ureilite. With allowance for its 10-Ma uncertainty, the 4549-Ma 40Ar/39Ar age of ALM-A is consistent with closure within a few Ma of the time recorded by its Pb/Pb age either on the UPB or as part of a rapidly cooling fragment. Plots of age versus cumulative 39Ar release for 10 of 15 samples with ≥5 heating steps indicate minor losses of 40Ar over the last 4.5 Ga. The other five such samples lost some 40Ar at estimated times no earlier than 3800–4500 Ma bp . Clustering of ages in the low-temperature data for these five samples suggests that an impact caused localized heating of the AhS progenitor ~2.7 Ga ago. In agreement with the published work, 10 estimates of cosmic-ray exposure ages based on 38Ar concentrations average 17 ± 5 Ma but may include some early irradiation.  相似文献   

5.
This study characterizes carbon and nitrogen abundances and isotopic compositions in ureilitic fragments of Almahata Sitta. Ureilites are carbon‐rich (containing up to 7 wt% C) and were formed early in solar system history, thus the origin of carbon in ureilites has significance for the origin of solar system carbon. These samples were collected soon after they fell, so they are among the freshest ureilite samples available and were analyzed using stepped combustion mass spectrometry. They contained 1.2–2.3 wt% carbon; most showed the major carbon release at temperatures of 600–700 °C with peak values of δ13C from ?7.3 to +0.4‰, similar to literature values for unbrecciated (“monomict”) ureilites. They also contained a minor low temperature (≤500 °C) component (δ13C = ca ?25‰). Bulk nitrogen contents (9.4–27 ppm) resemble those of unbrecciated ureilites, with major releases mostly occurring at 600–750 °C. A significant lower temperature release of nitrogen occurred in all samples. Main release δ15N values of ?53 to ?94‰ fall within the range reported for diamond separates and acid residues from ureilites, and identify an isotopically primordial nitrogen component. However, they differ from common polymict ureilites which are more nitrogen‐rich and isotopically heavier. Thus, although the parent asteroid 2008TC3 was undoubtedly a polymict ureilite breccia, this cannot be deduced from an isotopic study of individual ureilite fragments. The combined main release δ13C and δ15N values do not overlap the fields for carbonaceous or enstatite chondrites, suggesting that carbon in ureilites was not derived from these sources.  相似文献   

6.
The meteorite Mount DeWitt (DEW) 12007 is a polymict regolith breccia mainly consisting of glassy impact‐melt breccia particles, gabbroic clasts, feldspathic clasts, impact and volcanic glass beads, basaltic clasts, and mingled breccia clasts embedded in a matrix dominated by fine‐grained crystals; vesicular glassy veins and rare agglutinates are also present. Main minerals are plagioclase (typically An>85) and clinopyroxene (pigeonites and augites, sometimes interspersed). The presence of tranquillityite, coupled with the petrophysical data, the O‐isotope data (Δ17O = ?0.075), and the FeOtot/MnO ratios in olivine (91), pyroxene (65), and bulk rock (77) indicate a lunar origin for DEW 12007. Impactites consist of Al‐rich impact‐melt splashes and plagioclase‐rich meta‐melt clasts. The volcanic products belong to the very low titanium (VLT) or low titanium (LT) suites; an unusual subophitic fragment could be cryptomare‐related. Gabbroic clasts could represent part of a shallow intrusion within a volcanic complex with prevailing VLT affinity. DEW 12007 has a mingled bulk composition with relatively high incompatible element abundances and shows a high crustal diversity comprising clasts from the Moon's major terranes and rare lithologies. First‐order petrographic and chemical features suggest that DEW 12007 could be launch‐paired with other meteorites including Y 793274/981031, QUE 94281, EET 87521/96008, and NWA 4884.  相似文献   

7.
The Jiddat al Harasis (JaH) 422 ureilite was found in the Sultanate of Oman; it is classified as a ureilitic impact melt breccia. The meteorite consists of rounded polycrystalline olivine clasts (35%), pores (8%), and microcrystalline matrix (57%). Clasts and matrix have oxygen isotopic values and chemical compositions (major and trace elements) characteristic of the ureilite group. The matrix contains olivine (Fo83–90), low‐Ca pyroxene (En84–92Wo0–5), augite (En71–56Wo20–31), graphite, diamond, Fe‐metal, sulfides, chromite, and felsic glass. Pores are partly filled by secondary Fe‐oxihydroxide and desert alteration products. Pores are surrounded by strongly reduced silicates. Clasts consist of fine‐grained aggregates of polygonal olivine. These clasts have an approximately 250 μm wide reaction rim, in which olivine composition evolves progressively from the core composition (Fo79–81) to the matrix composition (Fo84–87). Veins crossing the clasts comprise pyroxene, Fe‐oxihydroxide, C‐phases, and chromite. Clasts contain Ca‐, Al‐, and Cr‐rich glass along olivine grain boundaries (<1 μm wide). We suggest that a significant portion of JaH 422, including olivine and all the pyroxenes, was molten as a result of an impact. In comparison with other impact‐melted ureilites, JaH 422 shows the highest melt portion. Based on textural and compositional considerations, clasts and matrix probably originated from the same protolith, with the clasts representing relict olivine that survived, but was recrystallized in the impact melt. During the melt stage, the high availability of FeO and elevated temperatures controlled oxygen fugacity at values high enough to stabilize olivine with Fo~83–87 and chromite. Along pores, high Mg# compositions of silicates indicate that in a late stage or after melt crystallization FeO became less available and fO2 conditions were controlled by C?CO + CO2.  相似文献   

8.
Abstract– The Northwest Africa (NWA) 1500 meteorite is an olivine‐rich achondrite containing approximately 2–3 vol% augite, 1–2 vol% plagioclase, 1 vol% chromite, and minor orthopyroxene, Cl‐apatite, metal and sulfide. It was originally classified as a ureilite, but is currently ungrouped. We re‐examined the oxygen three‐isotope composition of NWA 1500. Results of ultra‐high precision (~0.03‰ for Δ17O) laser fluorination analyses of two bulk chips, and high precision (~0.3‰) secondary ion mass spectrometry (SIMS) analyses of olivine and plagioclase in a thin section, show that the oxygen isotope composition of NWA 1500 (Δ17O = ?0.22‰ from bulk samples and ?0.18 ± 0.06‰ from 16 mineral analyses) is within the range of brachinites. We compare petrologic and geochemical characteristics of NWA 1500 with those of brachinites and other olivine‐rich primitive achondrites, including new petrographic, mineral compositional and bulk compositional data for brachinites Hughes 026, Reid 013, NWA 5191, NWA 595, and Brachina. Modal mineral abundances, texture, olivine and pyroxene major and minor element compositions, plagioclase major element compositions, rare earth element abundances, and siderophile element abundances of NWA 1500 are within the range of those in brachinites and, in most cases, well distinguished from those of winonaites/IAB silicates, acapulcoites/lodranites, ureilites, and Divnoe. NWA 1500 shows evidence of internal reduction, in the form of reversely zoned olivine (Fo ~65–73 core to rim) and fine‐grained intergrowths of orthopyroxene + metal along olivine grain margins. The latter also occur in Reid 013, Hughes 026, NWA 5191, and NWA 595. We argue that reduction (olivine→enstatite + Fe0 + O2) is the best hypothesis for their origin in these samples as well. We suggest that NWA 1500 should be classified as a brachinite, which has implications for the petrogenesis of brachinites. Fe‐Mn‐Mg compositions of brachinite olivine provide evidence of redox processes among bulk samples. NWA 1500 provides evidence for redox processes on a smaller scale as well, which supports the interpretation that these processes occurred in a parent body setting. SIMS data for 26Al‐26Mg isotopes in plagioclase in NWA 1500 show no 26Mg excesses beyond analytical uncertainties (1–2‰). The calculated upper limit for the initial 26Al/27Al ratio of the plagioclase corresponds to an age younger than 7 Ma after CAI. Compared to 53Mn‐53Cr data for Brachina ( Wadhwa et al. 1998b ), this implies either a much younger formation age or a more protracted cooling history. However, Brachina is atypical and this comparison may not extend to other brachinites.  相似文献   

9.
Abstract– New analyses of mafic silicates from 14 ureilite meteorites further constrain a strong correlation ( Singletary and Grove 2003 ) between olivine‐core Fo ratio and the temperature of equilibration (TE) recorded by the composition of pigeonite. This correlation may be compared with relationships implied by various postulated combinations of Fo and pressure P in models for ureilite genesis by a putative process of anatectic (depth‐linked, P‐controlled) smelting. In such models, any combination of Fo and P together fixes the temperature of smelting. Agreement between the observed correlation and these models is poor. The anatectic smelting model also carries implausible implications for the depth range at which ureilites of a given composition (Fo) form. Actual ureilites (and polymict ureilite clasts: Downes et al. 2008 ) show a distribution strongly skewed toward the low‐Fo end of the compositional range, with approximately 58% in the range Fo76–81. In contrast, the P‐controlled smelting model implies that the Fo76–81 region is a small fraction of the volume of the parent body: not more than 3.2%, in a model consistent with the Fo‐TE observations; and even ignoring the Fo‐TE evidence not more than 11% (percentages cited require optimal assumptions concerning the size of the parent body). This region also must occur deep within the body, where no straightforward model would imply a strong bias in the impact‐driven sampling process. The ureilites did not derive preponderantly from one atypical “largest offspring” disruption survivor, because cooling history evidence shows that after the disruption (whose efficiency was increased by gas jetting), all of the known ureilites cooled in bodies that were tiny (mass of order 10?9) in comparison with the precursor body. The Ca/Al ratio of the ureilite starting matter cannot be 2.5 times chondritic, as has been suggested, unless the part of the body from which ureilites come is at most 50% of the whole body. Published variants of the anatectic, P‐controlled smelting model have the ureilites coming from a region that is >50 vol% of their parent body; and to invoke a larger body would have the drawback of implying that the Fo76–81 spike represents an even smaller fraction of the parent body’s interior. The ureilites’ moderate depletions in incompatible elements are difficult to reconcile with a fractional fusion model. It is not plausible that melt formed grossly out of equilibrium with the medium‐sized ureilite crystals. The alternative to pressure‐controlled smelting, i.e., a model of gasless or near‐gasless anatexis, has very different implications for the size and evolution of the original parent body. To yield internal pressures prohibitive of smelting in even the shallowest and most ferroan portion of its anatectic mantle, the body would have to be larger than roughly 690 km in diameter. A 400 km body would have approximately 12 vol% of the interior (or 13 vol% of the interior apart from the thermal “skin” that never undergoes anatexis) prone, if both extremely shallow and extremely ferroan, to mild smelting. Gasless anatexis also implies that this large parent body was compositionally, at least in terms of mg, grossly heterogeneous before anatexis, probably (in view of the oxygen isotopic diversity) as a result of mixed accretion.  相似文献   

10.
Abstract— The Elephant Moraine (EET) 96001 ureilite contains a remarkable diversity of feldspars, which occur as tiny (no more than 60 μm maximum dimension) grains within a few Fe,S‐rich (now weathered to mostly Fe oxide) veins. Molar S: Fe ratio in the veins averages 0.08 ± 0.02. The veins meander and feature large fluctuations in apparent width; they appear to have entered this monomict breccia by a gentle, percolative process, not by violent impact injection. The feldspars are accompanied by a diverse suite of K‐rich (and generally also Ti‐rich) feldspathic glasses, and also major proportions of silica and pyroxene, which is largely fassaitic. A rhönite‐like phase is also found, and, as inclusions in one of the fassaites, a Cr‐poor spinel‐like phase. The feldspars mostly feature remarkably high K/Na compared to feldspars of comparable An from polymict ureilites. The EET 96001 feldspathic component was probably once part of a thin basaltic crust on a ureilite asteroid. The spinel included in one of the fassaites formed at remarkably high f02 (apparent oxidation state of iron: ~41 atom% Fe3+), suggesting that the parent magma possibly assimilated near‐surface water (however, the Fe3+ was not directly measured, and has conceivably been affected by terrestrial weathering; also, there is no assurance that this fassaite originated together with the typical feldspar). We speculate that the feldspathic component was mixed into the dense, Fe,S‐rich vein material, and very soon thereafter the Fe,S‐rich vein material was emplaced adjacent to the EET 96001 host ureilite, at an advanced stage in a chaotic catastrophic disruption and partial reassembly process that affected all ureilites. The high‐K nature of the EET 96001 feldspathic component, including the feldspathic glasses, suggests that fractional fusion may not have been as common during ureilite anatexis as has been inferred from recent studies of clast assemblages in polymict ureilites.  相似文献   

11.
The Northwest Africa (NWA) 2996 meteorite is a lunar regolith breccia with a “mingled” bulk composition and slightly elevated incompatible element content. NWA 2996 is dominated by clasts of coarse‐grained noritic and troctolitic anorthosite containing calcic plagioclase (An#~98) and magnesian mafic minerals (Mg#~75), distinguishing it from Apollo ferroan anorthosites and magnesian‐suite rocks. This meteorite lacks basalt, and owes its mingled composition to a significant proportion of coarse‐grained mafic clasts. One group of mafic clasts has pyroxenes similar to anorthosites, but contains more sodic plagioclase (An#~94) distinguishing it as a separate lithology. Another group contains Mg‐rich, very low‐titanium pyroxenes, and could represent an intrusion parental to regional basalts. Other clasts include granophyric K‐feldspar, disaggregated phosphate‐bearing quartz monzodiorites, and alkali‐suite fragments (An#~65). These evolved lithics are a minor component, but contain minerals rich in incompatible elements. Several anorthosite clasts contain clusters of apatite, suggesting that the anorthosites either assimilated evolved rocks or were metasomatized by a liquid rich in incompatible elements. We used Lunar Prospector gamma‐ray spectrometer remote sensing data to show that NWA 2996 is most similar to regoliths in and around the South Pole Aitken (SPA) basin, peripheral regions of eastern mare, Nectaris, Crisium, and southern areas of Mare Humorum. However, the mineralogy of NWA 2996 is distinctive compared with Apollo and Luna mission samples, and is likely consistent with an origin near the SPA basin: anorthosite clasts could represent local crustal material, mafic clasts could represent intrusions beneath basalt flows, and apatite‐bearing rocks could carry the SPA KREEP signature.  相似文献   

12.
Northwest Africa (NWA) 10986 is a new mingled lunar meteorite found in 2015 in Western Sahara. This impact melt breccia contains abundant impact melt glass and clasts as large as 0.75 mm. Clasts are predominantly plagioclase and pyroxene‐rich and represent both highland and basalt lithologies. Highland lithologies include troctolites, gabbronorites, anorthositic norites, and troctolitic anorthosites. Basalt lithologies include crystalline clasts with large zoned pyroxenes representing very low titanium to low titanium basalts. In situ geochemical analysis of minerals within clasts indicates that they represent ferroan anorthosite, Mg‐suite, and gabbronorite lithologies as defined by the Apollo sample collection. Clasts representing magnesian anorthosite, or “gap” lithologies, are prevalent in this meteorite. Whole rock and in situ impact glass measurements indicate low incompatible trace element concentrations. Basalt clasts also have low incompatible trace element concentrations and lack evolved KREEP mineralogy although pyroxferroite grains are present. The juxtaposition of evolved, basaltic clasts without KREEP signatures and highland lithologies suggests that these basaltic clasts may represent cryptomare. The lithologies found in NWA 10986 offer a unique and possibly a complete cross section view of the Moon sourced outside of the Procellarum KREEP Terrane.  相似文献   

13.
Abstract— The LEW 88774 ureilite is extraordinarily rich in Ca, Al, and Cr, and mineralogically quite different from other ureilites in that it consists mainly of exsolved pyroxene, olivine, Cr-rich spinel, and C. The presence of coarse exsolved pyroxene in LEW 88774 is unique because pyroxene in most other ureilites is not exsolved. The pyroxene has bulk Wo contents of 15–20 mol% and has coarse exsolution lamellae of augite and low-Ca pyroxene, 50 μm in width. The compositions of the exsolved augite (Ca33.7Mg52.8Fe13.5) and host low-Ca pyroxene (Ca4.4Mg75Fe20.6) show that these exsolution lamellae were equilibrated at 1280 °C. A computer simulation of the cooling rate, obtained by solving the diffusion equation for reproducing the diffusion profile of CaO across the lamellae, suggests that the pyroxene was cooled at 0.01 °C/year until the temperature reached 1160 °C. This cooling rate corresponds to a depth of at least 1 km in the parent body, assuming it was covered by a rock-like material. Therefore, LEW 88774 was held at this high temperature for 1.2 × 104years. The proposed cooling history is consistent with that of other ureilites with coarsegrained unexsolved pigeonites. Lewis Cliff 88774 includes abundant Cr-rich spinel in comparison with other ureilites. The range of FeO content of spinels in LEW 88774 is from 1.3 wt% to 21 wt% [Fe/(Fe + Mg) = 0.04–0.6]. The Cr-rich and Fe-poor spinel in LEW 88774 has less Fe (FeO, 1.3 wt%) than spinels in other achondrites. We classify this spinel as an Fe, Al-bearing picrochromite. Most ureilites are depleted in Ca and Al, but this meteorite has high-Ca and Al concentrations. In this respect, as well as mineral assemblage and the presence of coarse exsolution lamellae in pyroxene, LEW 88774 is a unique ureilite. Most differentiated meteorites are poor in volatile elements such as Zn, but the LEW 88774 spinels contain abundant Zn (up to 0.6 wt%). We note that such a high Zn concentration in spinel has been observed in the carbonaceous chondrites and recrystallized chondrites. This unusual ureilite has more primitive characteristics than most other ureilites.  相似文献   

14.
Northwest Africa (NWA) 7533 is a Martian regolith breccia. This meteorite (and its pairings) offers a good opportunity to study (near‐) surface processes that occurred on early Mars. Here, we have conducted a transmission electron microscope study of medium‐ and coarse‐grained (a few tens to hundreds of micrometers) Ca‐rich pyroxene clasts in order to define their thermal and shock histories. The pyroxene grains have a high‐temperature (magmatic) origin as revealed by the well‐developed pigeonite–augite exsolution microstructure. Exsolution lamella characteristics (composition, thickness, and spacing) indicate a moderately slow cooling. Some of the pyroxene clasts display evidence for local decomposition into magnetite and silica at the submicron scale. This phase decomposition may have occurred at high temperature and occurred at high oxygen fugacity at least 2–3 log units above the QFM buffer, after the formation of the exsolution lamellae. This corresponds to oxidizing conditions well above typical Martian magmatic conditions. These oxidizing conditions seem to have prevailed early and throughout most of the history of NWA 7533. The shock microstructure consists of (100) mechanical twins which have accommodated plastic deformation. Other pyroxene shock indicators are absent. Compared with SNC meteorites that all suffered significant shock metamorphism, NWA 7533 appears only mildly shocked. The twin microstructure is similar from one clast to another, suggesting that the impact which generated the (100) twins involved the compacted breccia and that the pyroxene clasts were unshocked when they were incorporated into the NWA 7533 breccia.  相似文献   

15.
Abstract– Six chondritic clasts in the Cumberland Falls polymict breccia were examined: four texturally resemble ordinary chondrites (OCs) and two are impact melt breccias containing shocked OC clasts adjacent to a melt matrix. The six chondritic clasts are probably remnants of a single OC projectile that was heterogeneously shocked when it collided with the Cumberland Falls host. Mayo Belwa is the first known aubrite impact melt breccia. It contains coarse enstatite grains exhibiting mosaic extinction; the enstatite grains are surrounded by a melt matrix composed of 3–16 μm‐size euhedral and subhedral enstatite grains embedded in sodic plagioclase. Numerous vugs, ranging from a few micrometers to a few millimeters in size, constitute ~5 vol% of the meteorite. They occur nearly exclusively within the Mayo Belwa matrix; literature data show that some vugs are lined with bundles of acicular grains of the amphibole fluor‐richterite. This phase has been reported previously in only two other enstatite meteorites (Abee and St. Sauveur), both of which are EH‐chondrite impact melt breccias. It seems likely that in Mayo Belwa, volatiles were vaporized during an impact event and formed bubbles in the melt. As the melt solidified, the bubbles became cavities; plagioclase and fluor‐richterite crystallized at the margins of these cavities via reaction of the melt with the vapor.  相似文献   

16.
Lunar breccias preserve the records of geologic processes on the Moon. In this study, we report the occurrence, petrography, mineralogy, and geologic significance of the observed secondary olivine veinlets in lunar feldspathic breccia meteorite Northwest Africa (NWA) 11273. Bulk‐rock composition measurements show that this meteorite is geochemically similar to other lunar highland meteorites. In NWA 11273, five clasts are observed to host veinlets that are dominated by interconnecting olivine mineral grains. The host clasts are mainly composed of mafic minerals (i.e., pyroxene and olivine) and probably sourced from a basaltic lithology. The studied olivine veinlets (~5 to 30 μm in width) are distributed within the mafic mineral host, but do not extend into the adjacent plagioclase. Chemically, these olivine veinlets are Fe‐richer (Fo41.4–51.9), compared with other olivine grains (Fo54.3–83.1) in lithic clasts and matrix of NWA 11273. By analogy with the secondary olivine veinlets observed in meteorites from asteroid Vesta (howardite–eucrite–diogenite group samples) and lunar mare samples, our study suggests that the newly observed olivine veinlets in NWA 11273 are likely formed by secondary deposition from a lunar fluid, rather than by crystallization from a high‐temperature silicate melt. Such fluid could be sulfur‐ and phosphorous‐poor and likely had an endogenic origin on the Moon. The new occurrence of secondary olivine veinlets in breccia NWA 11273 reveals that the fluid mobility and deposition could be a previously underappreciated geological process on the Moon.  相似文献   

17.
Abstract— Magmatic inclusions occur in type II ureilite clasts (olivine‐orthopyroxene‐augite assemblages with essentially no carbon) and in a large isolated plagioclase clast in the Dar al Gani (DaG) 319 polymict ureilite. Type I ureilite clasts (olivine‐pigeonite assemblages with carbon), as well as other lithic and mineral clasts in this meteorite, are described in Ikeda et al.(2000). The magmatic inclusions in the type II ureilite clasts consist mainly of magnesian augite and glass. They metastably crystallized euhedral pyroxenes, resulting in feldspar component‐enriched glass. On the other hand, the magmatic inclusions in the large plagioclase clast consist mainly of pyroxene and plagioclase, with a mesostasis. They crystallized with a composition along the cotectic line between the pyroxene and plagioclase liquidus fields. DaG 319 also contains felsic lithic clasts that represent various types of igneous lithologies. These are the rare components not found in the common monomict ureilites. Porphyritic felsic clasts, the main type, contain phenocrysts of plagioclase and pyroxene, and their groundmass consists mainly of plagioclase, pyroxene, and minor phosphate, ilmenite, chromite, and/or glass. Crystallization of these porphyritic clasts took place along the cotectic line between the pyroxene and plagioclase fields. Pilotaxitic felsic clasts crystallized plagioclase laths and minor interstitial pyroxene under metastable conditions, and the mesostasis is extremely enriched in plagioclase component in spite of the ubiquitous crystallization of plagioclase laths in the clasts. We suggest that there are two crystallization trends, pyroxene‐metal and pyroxene‐plagioclase trends, for the magmatic inclusions and felsic lithic clasts in DaG 319. The pyroxene‐metal crystallization trend corresponds to the magmatic inclusions in the type II ureilite clasts and the pilotaxitic felsic clasts, where crystallization took place under reducing and metastable conditions, suppressing precipitation of plagioclase. The pyroxene‐plagioclase crystallization trend corresponds to the magmatic inclusions in the isolated plagioclase clast and the porphyritic felsic clasts. This trend developed under oxidizing conditions in magma chambers within the ureilite parent body. The felsic clasts may have formed mainly from albite component‐rich silicate melts produced by fractional partial melting of chondritic precursors. The common monomict ureilites, type I ureilites, may have formed by the fractional partial melting of alkali‐bearing chondritic precursors. However, type II ureilites may have formed as cumulates from a basaltic melt.  相似文献   

18.
The Northwest Africa (NWA) 7475 meteorite is one of the several stones of paired regolith breccias from Mars based on petrography, oxygen isotope, mineral compositions, and bulk rock compositions. Its inventory of lithic clasts is dominated by vitrophyre impact melts that were emplaced while they were still molten. Other clast types include crystallized impact melt rocks, evolved plutonic rocks, possible basalts, contact metamorphosed rocks, and siltstones. Impact spherules and vitrophyre shards record airborne transport, and accreted dust rims were sintered on most clasts, presumably during residence in an ejecta plume. The clast assemblage records at least three impact events, one that formed an impact melt sheet on Mars ≤4.4 Ga ago, a second that assembled NWA 7475 from impactites associated with the impact melt sheet at 1.7–1.4 Ga, and a third that launched NWA 7475 from Mars ~5 Ma ago. Mildly shocked pyroxene and plagioclase constrain shock metamorphic conditions during launch to >5 and <15 GPa. The mild postshock‐heating that resulted from these shock pressures would have been insufficient to sterilize this water‐bearing lithology during launch. Magnetite, maghemite, and pyrite are likely products of secondary alteration on Mars. Textural relationships suggest that calcium‐carbonate and goethite are probably of terrestrial origin, yet trace element chemistry indicates relatively low terrestrial alteration. Comparison of Mars Odyssey gamma‐ray spectrometer data with the Fe and Th abundances of NWA 7475 points to a provenance in the ancient southern highlands of Mars. Gratteri crater, with an age of ~5 Ma and an apparent diameter of 6.9 km, marks one possible launch site of NWA 7475.  相似文献   

19.
Abstract— NWA 2526 is a coarse‐grained, achondritic rock dominated by equigranular grains of polysynthetically twinned enstatite (?85 vol%) with frequent 120° triple junctions and ?10–15 vol% of kamacite + terrestrial weathering products. All other phases including troilite, daubreelite, schreibersite, and silica‐normative melt areas make up 相似文献   

20.
Abstract— The meteorite Northwest Africa 773 (NWA 773) is a lunar sample with implications for the evolution of mafic magmas on the moon. A combination of key parameters including whole‐rock oxygen isotopic composition, Fe/Mn ratios in mafic silicates, noble gas concentrations, a KREEP‐like rare earth element pattern, and the presence of regolith agglutinate fragments indicate a lunar origin for NWA 773. Partial maskelynitization of feldspar and occasional twinning of pyroxene are attributed to shock deformation. Terrestrial weathering has caused fracturing and precipitation of Carich carbonates and sulfates in the fractures, but lunar minerals appear fresh and unoxidized. The meteorite is composed of two distinct lithologies: a two‐pyroxene olivine gabbro with cumulate texture, and a polymict, fragmental regolith breccia. The olivine gabbro is dominated by cumulate olivine with pigeonite, augite, and interstitial plagioclase feldspar. The breccia consists of several types of clasts but is dominated by clasts from the gabbro and more FeO‐rich derivatives. Variations in clast mineral assemblage and pyroxene Mg/(Mg + Fe) and Ti/(Ti + Cr) record an igneous Fe‐enrichment trend that culminated in crystallization of fayalite + silica + hedenbergite‐bearing symplectites. The Fe‐enrichment trend and cumulate textures observed in NWA 773 are similar to features of terrestrial ponded lava flows and shallow‐level mafic intrusives, indicating that NWA 773 may be from a layered mafic intrusion or a thick, differentiated lava flow. NWA 773 and several other mafic lunar meteorites have LREE‐enriched patters distinct from Apollo and Luna mare basalts, which tend to be LREE‐depleted. This is somewhat surprising in light of remote sensing data that indicates that the Apollo and Luna missions sampled a portion of the moon that was enriched in incompatible heatproducing elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号