首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abstract— The Cerro los Calvos meteorite is a single stone of 68.5 g found in the Nuevo Mercurio strewn field of Zacatecas, Mexico (24°20′N, 102°8′W). It is an unusual H4 chondrite. Its olivine (Fa12.5) and orthopyroxene (Fs 11.7, Wo 0.8) are reduced relative to typical H chondrites. The La Banderia meteorite of 54.3 g from the same vicinity is an LL5 chondrite of shock classification e.  相似文献   

2.
The Jezersko meteorite is a newly confirmed stony meteorite found in 1992 in the Karavanke mountains, Slovenia. The meteorite is moderately weathered (W2), indicating short terrestrial residence time. Chondrules in partially recrystallized matrix are clearly discernible but often fragmented and have mean diameter of 0.73 mm. The meteorite consists of homogeneous olivine (Fa19.4) and low‐Ca pyroxenes (Fs16.7Wo1.2), of which 34% are monoclinic, and minor plagioclase (Ab83An11Or6) and Ca‐pyroxene (Fs6Wo45.8). Troilite, kamacite, zoned taenite, tetrataenite, chromite, and metallic copper comprise about 16.5 vol% of the meteorite. Phosphates are represented by merrillite and minor chlorapatite. Undulatory extinction in some olivine grains and other shock indicators suggests weak shock metamorphism between stages S2 and S3. The bulk chemical composition generally corresponds to the mean H chondrite composition. Low siderophile element contents indicate the oxidized character of the Jezersko parent body. The temperatures recorded by two‐pyroxene, olivine‐chromite, and olivine‐orthopyroxene geothermometers are 854 °C, 737–787 °C, and 750 °C, respectively. Mg concentration profiles across orthopyroxenes and clinopyroxenes indicate relatively fast cooling at temperatures above 700 °C. A low cooling rate of 10 °C Myr?1 was obtained from metallographic data. Considering physical, chemical, and mineralogical properties, meteorite Jezersko was classified as an H4 S2(3) ordinary chondrite.  相似文献   

3.
Abstract— A crusted stone weighing 3.10 kg was found in 1983 near Tabbita in south central New South Wales (ca. 34°03′S, 145°50′E), Australia. Compositions of the ferro-magnesian silicates (olivine Fa24.6; orthopyroxene Fs20.9) show that the meteorite belongs to the L-group of chondrites. Uniformity of silicate compositions and the presence of abundant crystalline plagioclase feldspar (An10.8Ab81.7Or7.5) show that the meteorite belongs to petrologic type 6. Silicates that display undulose extinction, and the absence of any thermal effects induced by shock indicate that Tabbita is shock facies c. Tabbita is distinct from several other L6 chondrites found in the same general area.  相似文献   

4.
The Machinga meteorite fell in the Southern Province of Malawi on January 22, 1981, at approximately 1000 hours local time. The fall site is about 7.5 km SW of Machinga and has the co-ordinates 15° 12′44″ S., 35°14′32″ E. A single crusted mass weighing 93.2 kg was recovered. The Machinga meteorite is an L6 chondrite with olivine Fa24.5 and orthopyroxene Fs21.1. The silicates have a granular texture and the stone has been shocked.  相似文献   

5.
Abstract— We present a new single‐crystal X‐ray diffraction (XRD) study performed on a suite of six orthopyroxene grains from the low‐shocked H6 Trenzano meteorite. The quenched intracrystalline Fe2+‐Mg ordering state in orthopyroxene preserves the memory of the cooling rate near closure temperature Tc, thus yielding useful constraints on the last thermal event undergone by the host rock. The orthopyroxene Tc of 522 ± 13 °C, calculated using a new calibration equation obtained by Stimpfl (2005b), is higher than in previously published H chondrite data. The orthopyroxene cooling rate at this Tc is about 100 °C/kyr. This fast rate is inconsistent with the much slower cooling rate expected for H6 in the onion shell structural and thermal model of chondrite parent bodies. A petrographic study carried out at the same time indicated that the Trenzano meteorite is an H5 chondrite and not an H6 chondrite, as it is officially classified. Furthermore, the two‐pyroxene equilibrium temperature of Trenzano (824 ± 24 °C), calculated with QUILF95, is similar to the two‐pyroxene temperature of 750–840 °C obtained for the Carcote (H5) chondrite (Kleinschrot and Okrusch 1999).  相似文献   

6.
Among a collection of meteorites from the area of the Tenham shower (Queensland, Australia) was a 27 kg stone which proved to be different from the other Tenham stones. It is a bronzite, H4, chondrite, the principal minerals being olivine (average composition Fa 18.8), clinobronzite and bronzite (average composition Fs16.4), nickel-iron, and troilite; it is considerably weathered, much of the nickel-iron being converted to limonite. It has a highly chondritic structure, with devitrified glass within the chondrules, and without visible plagioclase. This meteorite was found about 1950 near the Hammond Downs station, hence the name; its coordinates are lat 25° 28′ S., long 142° 48′ E.  相似文献   

7.
The Ijopega (Papua New Guinea) meteorite is a new H6 group chondrite fall which contains olivine (Fa 19.9 mole %), bronzite (Fs 17.8 mole %), plagioclase (An 12.1 Or 6.3 Ab 81.6 mole %), diopside, kamacite, taenite, troilite, chromite and whitlockite. The meteorite is extensively recrystallized and brecciated, and shows evidence of moderate shock deformation. Examination of Fe2+ and Mg partitioning between ortho- and clinopyroxene indicates a high equilibration temperature (940° or 880 °C). Chemical analysis shows the meteorite to be rich in S, containing about twice the average H-group abundance. Trace elements, including REE, are in accord with established H-group chondrite abundances.  相似文献   

8.
Ustí nad Orlici (Kerhartice), a meteorite which fell on June 12, 1963 in Czechoslovakia, is classified as a L6 chondrite. Compositions of olivine (Fa 23.4), orthopyroxene (Fs 20, Wo 1.3), plagioclase (Ab85An10Or5) along with the bulk composition of the meteorite support this classification. Chromite compositions vary with grain size. Large chromites are higher in TiO2 and lower in Fe3 than small chromites. This may indicate that either these two chromites formed initially under different fO2 conditions, or that this difference resulted from different equilibration behaviors of both chromites as a function of grain size. The meteorite contains three distinct sulfide assemblages: 1) troilite-pentlandite, 2) troilite, pentlandite-cubanite-chalcopyrite-pyrrhotite-mackinawite, 3) troilite-tetrataenite-(Fe, Cu, Ni)1***. 02S. These assemblages indicate equilibration down to temperatures close to 200 °C.  相似文献   

9.
The Galatia meteorite was found in August, 1971, approximately 7 km ENE of Galatia, Barton County, Kansas (98° 53′W., 38° 39.5′N). The single stone weighed 23.9 kg and is partially weathered. Olivine (Fa24.9) and pyroxene (Fs20.9) compositions indicate L-group classification, and textural observations indicate that the stone is of petrologic type 6. Galatia is similar in many respects to the Otis L6 chondrite (found 20 km to the west), but it does not have the brecciated structure of Otis and, thus, it is not part of the same fall.  相似文献   

10.
Abstract— Watson, which was found in 1972 in South Australia, contains the largest single silicate rock mass seen in any known iron meteorite. A comprehensive study has been completed on this unusual meteorite: petrography, metallography, analyses of the silicate inclusion (whole rock chemical analysis, INAA, RNAA, noble gases, and oxygen isotope analysis) and mineral compositions (by electron microprobe and ion microprobe). The whole rock has a composition of an H-chondrite minus the normal H-group metal and troilite content. The oxygen isotope composition is that of the silicates in the HE iron meteorites and lies along an oxygen isotope fractionation line with the H-group chondrites. Trace elements in the metal confirm Watson is a new HE iron. Whole rock Watson silicate shows an enrichment in K and P (each ~2X H-chondrites). The silicate inclusion has a highly equilibrated igneous (peridotite-like) texture with olivine largely poikilitic within low-Ca pyroxene: olivine (Fa20), opx (Fs17Wo3), capx (Fs9Wo41) (with very fine exsolution lamellae), antiperthite feldspar (An1–Or5) with <1 μm exsolution lamellae (An1–3Or>40), shocked feldspar with altered stoichiometry, minor whitlockite (also a poorly characterized interstitial phosphate-rich phase) and chromite, and only traces of metal and troilite. The individual silicate minerals have normal chondritic REE patterns, but whitlockite has a remarkable REE pattern. It is very enriched in light REE (La is 720X C1, and Lu is 90X C1, as opposed to usual chonditic values of ~300X and 100–150X, respectively) with a negative Eu anomaly. The enrichment of whole rock K is expressed both in an unusually high mean modal Or content of the feldspar, Or13, and in the presence of antiperthite. Whole rock trace element data for the silicate mass support the petrography. Watson silicate was an H-chondrite engulfed by metal and melted at > 1550 °C. A flat refractory lithophile and flat REE pattern (at ~1x average H-chondrites) indicate that melting took place in a relatively closed system. Immiscible metal and sulfide were occluded into the surrounding metal host. Below 1100 °C, the average cooling rate is estimated to have been ~1000 °C/Ma; Widmanstätten structure formed, any igneous zoning in the silicates was equilibrated, and feldspar and pyroxene exsolution took place. Cooling to below 300 °C was completed by 3.5 Ga B. P. At 8 Ma, a shock event took place causing some severe metal deformation and forming local melt pockets of schreibersite/metal. This event likely caused the release of Watson into interplanetary space. The time of this event, 8Ma, corresponds to the peak frequency of exposure ages of the H-chondrites. This further confirms the link between HE irons and the H-chondrites, a relationship already indicated by their common oxygen isotope source. Watson metal structures are very similar to those in Kodaikanal. Watson, Kodaikanal and Netschaëvo form the young group of HE meteorites (ages 3.7 ± 0.2 Ga). They appear to represent steps in a chain of events that must have taken place repeatedly on the HE parent body or bodies from which they came: chondrite engulfed in metal (Netschaëvo); chondrite melted within metal (Watson); and finally melted silicate undergoing strong fractionation with the fractionated material emplaced as globules within metal (Kodaikanal). Watson fills an important gap in understanding the sequence of events that took place in the evolution of the IIE-H parent body(ies). This association of H-chondrite with HE metal suggests a surface, or near surface process-a suggestion made by several other researchers.  相似文献   

11.
We report and describe an L6 ordinary chondrite fall that occurred in Ardón, León province, Spain (longitude 5.5605°W, latitude 42.4364°N) on July 9th, 1931. The 5.5 g single stone was kept hidden for 83 yr by Rosa González Pérez, at the time an 11 yr old who had observed the fall and had recovered the meteorite. According to various newspaper reports, the event was widely observed in Northern Spain. Ardón is a very well‐preserved, fresh, strongly metamorphosed (petrologic type 6), and weakly shocked (S3) ordinary chondrite with well‐equilibrated and recrystallized minerals. The mineral compositions (olivine Fa23.7±0.3, low‐Ca pyroxene Fs20.4±0.2Wo1.5±0.2, plagioclase An10.3±0.5Ab84.3±1.2), magnetic susceptibility (log χ = 4.95 ± 0.05 × 10?9 mkg?1), bulk density (3.49 ± 0.05 g   cm?3), grain density (3.58 ± 0.05 g   cm?3), and porosity (2.5 vol%) are typical for L6 chondrites. Short‐lived radionuclides confirm that the meteorite constitutes a recent fall. The 21Ne and 38Ar cosmic ray exposure ages are both about 20–30 Ma, similar to values for many other L chondrites. The cosmogenic 22Ne/21Ne ratio indicates that preatmospheric Ardón was a relatively large body. The fact that the meteorite was hidden in private hands for 83 yr makes one wonder if other meteorite falls may have experienced the same fate, thus possibly explaining the anomalously low number of falls reported in continental Spain in the 20th century.  相似文献   

12.
Abstract— A structurally ordered cubic metal grain containing ~39 wt% Co, 61 wt% Fe, and <0.6 wt% Ni (~Fe3Co2) was found associated with troilite and pentlandite in the matrix of the Ningqiang carbonaceous chondrite. This mineral is similar to terrestrial wairauite. Experimental data in the Fe-Co system indicate that this CsCl-type Co-rich metal is stable below 700 °C. Phase relations in the Fe-Co-Ni system show that Co cannot fractionate from Ni above 500 °C. The dominant opaque minerals of awaruite, magnetite, and pentlandite in Ningqiang suggest relatively oxidizing conditions.  相似文献   

13.
Abstract— Concentration and isotopic composition of the light noble gases as well as of 84Kr, 129Xe, and 132Xe have been measured in bulk samples of 60 carbonaceous chondrites; 45 were measured for the first time. Solar noble gases were found in nine specimens (Arch, Acfer 094, Dar al Gani 056, Graves Nunataks 95229, Grosnaja, Isna, Mt. Prestrud 95404, Yamato (Y) 86009, and Y 86751). These meteorites are thus regolith breccias. The CV and CO chondrites contain abundant planetary‐type noble gases, but not CK chondrites. Characteristic features of CK chondrites are high 129Xe/132Xe ratios. The petrologic type of carbonaceous chondrites is correlated with the concentration of trapped heavy noble gases, similar to observations shown for ordinary chondrites. However, this correlation is disturbed for several meteorites due to a contribution of atmospheric noble gases, an effect correlated to terrestrial weathering effects. Cosmic‐ray exposure ages are calculated from cosmogenic 21Ne. They range from about 1 to 63.5 Ma for CO, CV, and CK classes, which is longer than exposure ages reported for CM and CI chondrites. Only the CO3 chondrite Isna has an exceptionally low exposure age of 0.15 Ma. No dominant clusters are observed in the cosmic‐ray exposure age distribution; only for CV and CK chondrites do potential peaks seem to develop at ~9 and ~29 Ma. Several pairings among the chondrites from hot deserts are suggested, but 52 of the 60 investigated meteorites are individual falls. In general, we confirm the results of Mazor et al. (1970) regarding cosmic‐ray exposure and trapped heavy noble gases. With this study, a considerable number of new carbonaceous chondrites were added to the noble gas data base, but this is still not sufficient to obtain a clear picture of the collisional history of the carbonaceous chondrite groups. Obviously, the exposure histories of CI and CM chondrites differ from those of CV, CO, and CK chondrites that have much longer exposure ages. The close relationship among the latter three is also evident from the similar cosmic‐ray exposure age patterns that do not reveal a clear picture of major breakup events. The CK chondrites, however, with their wide range of petrologic types, form the only carbonaceous chondrite group which so far lacks a solar‐gas‐bearing regolith breccia. The CK chondrites contain only minute amounts of trapped noble gases and their noble gas fingerprint is thus distinguishable from the other groups. In the future, more analyses of newly collected CK chondrites are needed to unravel the genetic and historic evolution of this group. It is also evident that the problems of weathering and pairing have to be considered when noble gas data of carbonaceous chondrite are interpreted.  相似文献   

14.
The Villalbeto de la Peña meteorite that fell in 2004 in Spain was originally classified as a moderately shocked L6 ordinary chondrite. The recognition of fragments within the Villalbeto de la Peña meteorite clearly bears consequences for the previous classification of the rock. The oxygen isotope data clearly show that an exotic eye‐catching, black, and plagioclase‐(maskelynite)‐rich clast is not of L chondrite heritage. Villalbeto de la Peña is, consequently, reclassified as a polymict chondritic breccia. The oxygen isotope data of the clast are more closely related to data for the winonaite Tierra Blanca and the anomalous silicate‐bearing iron meteorite LEW 86211 than to the ordinary chondrite groups. The REE‐pattern of the bulk inclusion indicates genetic similarities to those of differentiated rocks and their minerals (e.g., lunar anorthosites, eucritic, and winonaitic plagioclases) and points to an igneous origin. The An‐content of the plagioclase within the inclusion is increasing from the fragment/host meteorite boundary (approximately An10) toward the interior of the clast (approximately An52). This is accompanied by a successive compositionally controlled transformation of plagioclase into maskelynite by shock. As found for plagioclase, compositions of individual spinels enclosed in plagioclase (maskelynite) also vary from the border toward the interior of the inclusion. In addition, huge variations in oxygen isotope composition were found correlating with distance into the object. The chemical and isotopical profiles observed in the fragment indicate postaccretionary metamorphism under the presence of a volatile phase.  相似文献   

15.
The Loop meteorite was found in 1962 in Gaines County, Texas, at a location very close to that where the Ashmore chondrite was found in 1969. The two specimens were assumed to be fragments of the same meteorite. The Loop meteorite is a type L6 chondrite composed of olivine (Fo75.4Fa24.6), orthopyroxene (En77.6Wo1.5Fs20.9), clinopyroxene (En47.5Wo45.1Fs7.4), plagioclase (Ab84.3Or5.5An10.2), Fe-Ni metal, troilite, and chromite. Fe-Ni metal is represented by kamacite (5.8-6.4 wt % Ni, 0.88-1.00 wt % Co), taenite (30.0–52.9 wt % Ni, 0.16-0.34 wt % Co), and plessite (16.8–28.5 wt % Ni, 0.38-0.54 wt % Co). Native copper occurs as rare inclusions in Fe-Ni metal. Both chondrules and matrix have similar mineral compositions. The mineral chemistry of the Loop meteorite is quite different from that of the Ashmore, which was classified as an H5 chondrite by Bryan and Kullerud (1975). Therefore, the Ashmore and Loop meteorites are two different chondrites, even though they were recovered from the same geographic location.  相似文献   

16.
Abstract— Following a brilliant daylight fireball at 10:10 a.m. (local time) on 30 September 1984, a single stone weighing 488.1 grams was recovered from Binningup beach (33°09′23″S, 115°40′35″E), Western Australia. Data from 23 reported sightings of the fireball indicate an angle of trajectory 20–40° from the horizontal, a flight-path bearing N210°E and an end-point (ca. 32°39′S, 115°54.5′E) at a height of ~20–30 km. A recrystallized chondritic texture and the presence of olivine and low-Ca orthopyroxene with compositions of Fa18.4 (PMD 1.1)and Fs16.1 (PMD 1.1), respectively, show that Binningup is a typical member of the H-group of ordinary chondrites. Uniform mineral compositions and the presence of generally microcrystalline plagioclase feldspar indicate that the meteorite belongs to petrologic type 5. Pervasive fracturing of silicates suggests mild pre-terrestrial shock loading. Measurements (dpm kg?1) of cosmogenic radionuclides including 22Na (61 ± 5), 26Al (49 ± 3) and 54Mn (66 ± 10) indicate a normal history of irradiation.  相似文献   

17.
Abstract— To test whether aubrites can be formed by melting of enstatite chondrites and to understand igneous processes at very low O fugacities, we have conducted partial melting experiments on the Indarch (EH4) chondrite at 1000–1500 °C. Silicate melting begins at 1000 °C, and Indarch is completely melted by 1500 °C. The metal-sulfide component melts completely at 1000 °C. Substantial melt migration occurs at 1300–1400 °C, and metal migrates out of the silicate charge at 1450 °C and ~50% silicate partial melting. As a group, our experiments contain three immiscible metallic melts (Si-, P-, and C-rich), two immiscible sulfide melts (Fe- and FeMgMnCa-rich), and silicate melt. Our partial melting experiments on the Indarch (EH4) enstatite chondrite suggest that igneous processes at low fO2 exhibit several unique features. The complete melting of sulfides at 1000 °C suggests that aubritic sulfides are not relics. Aubritic oldhamite may have crystallized from Ca and S complexed in the silicate melt. Significant metal-sulfide melt migration might occur at relatively low degrees of silicate partial melting. Substantial elemental exchange occurred between different melts (e.g., S between sulfide and silicate, Si between silicate and metal), a feature not observed during experiments at higher fO2. This exchange may help explain the formation of aubrites from known enstatite chondrites.  相似文献   

18.
The Willowbar, Oklahoma meteorite was found by Kendall Rhoton in December, 1971, lat 36° 44′ N.; long 102° 12′ W. It is a shocked brecciated L6 chondrite (Fa-24.3) with large black veins cutting areas of normal chondritic texture. It weighed 2.07 kg.  相似文献   

19.
The Canyonlands meteorite weighing 1,520 grams was found near the confluence of the Green and Colorado Rivers, Utah, near lat 38°11′N.; long 109°53′W. It is a shocked, brecciated H6 chondrite containing large black veins which do not differ in composition from the main chondritic mass. A black fusion crust remains on part of the meteorite.  相似文献   

20.
The new Brazilian chondrite, Lavras do Sul, was found in 1985 at Lavras do Sul, Rio Grande do Sul State-Brazil (33°30′48″S; 53°54′65″W). It consists of a single mass weighing about 1 kg, covered by a black fusion crust with grayish interior. Four polished thin sections were prepared from a slice weighing 67 g on deposit at the Museu Nacional/UFRJ. It consists mostly of chondrules and chondrule fragments dispersed in a recrystallized matrix. Most chondrules are poorly defined and range in size from 300 to 2,000 μm, although some of them show distinct outlines, particularly when viewed under cross-polarized transmitted and reflected light. The texture of chondrules varies from non-porphyritic (e.g., barred-olivine, radial-pyroxene) to porphyritic ones (e.g., granular olivine as well as olivine-pyroxene). The meteorite contains mainly olivine (Fa24.9), low-Ca pyroxene (Fs22.6) and metal phases, with minor amounts of plagioclase, chromite and magnetite. Mössbauer Spectroscopy studies indicate that the metal phase is kamacite, tetrataenite and antitaenite. Veins of secondary iddingsite crosscut the thin section and some ferromagnesian silicates. The chemical composition indicates that Lavras do Sul is a member of the low iron L chondrite group. The poorly delineated chondritic texture with few well-defined chondrules, the occurrence of rare clinopyroxene and plagioclase (and maskelynite) with apparent diameters ranging from 5 to 123 μm led us to classify Lavras do Sul as an equilibrated petrologic type 5. The shock features of some minerals suggest a shock stage S3, and the presence of a small amount of secondary minerals such as iddingsite and goethite, a degree of weathering W1. The meteorite name was approved by the Nomenclature Committee (Nom Com) of the Meteoritical Society (Meteoritic Bulletin Nº99).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号