首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Ibitira is a strongly recrystallized and unbrecciated noncumulate eucrite. We measured Ca compositional profiles of Ibitira pyroxene by electron microprobe and computed the cooling rate and burial depth from pyroxene exsolution profiles to gain information on early thermal history of Ibitira. Pyroxene begins to exsolve at 1082 °C and cools down to 550 °C at a rate of 0.02 °C/year, forming an augite lamella about 7.0 μm in width. A notable characteristic of the Ca profile of augite lamellae in Ibitira pyroxene is a gradient near the interface between augite and low‐Ca pyroxene (pigeonite). This profile suggests that after thermal metamorphism Ibitira pyroxene experienced a sudden temperature rise to above solidus temperature of pyroxene (~1082 °C), and subsequent rapid cooling. The 39Ar‐40Ar age of 4.485 Ga for Ibitira, which is the oldest 39Ar‐40Ar age for noncumulate eucrites, may date this reheating event.  相似文献   

2.
40Ar/39Ar incremental heating experiments on whole‐rock lunar samples commonly provide evidence of varying degrees of radiogenic 40Ar (40Ar*) loss. However, these experiments provide limited information about whether or not 40Ar* is preferentially lost from specific glasses, minerals, or polyphase domains. Ultraviolet laser ablation microprobe (UVLAMP) 40Ar/39Ar dating and electron probe microanalysis of mineral clasts and polyphase melt assemblages in Apollo 17 poikilitic impact melt rock 77135 show evidence of geochemical controls on 40Ar/39Ar dates. Potassium‐rich glass and K‐feldspar in the mesostasis are the dominant sources for Ar released during low‐temperature steps of published 40Ar/39Ar release spectra for this rock, while pyroxene oikocrysts with enclosed plagioclase chadacrysts contribute Ar predominantly to intermediate‐ to high‐temperature steps. Additionally, UVLAMP analysis of a mm‐scale plagioclase clast demonstrates the potential to use stranded 40Ar* diffusive loss profiles to constrain the thermal evolution of lunar impact melt deposits and indicates that the melt component of 77135 cooled quickly. While some submillimeter clasts of plagioclase are distinctly older than the melt, other small clasts yield dates younger than the oldest melt components in 77135, plausibly due to subgrain fast diffusion pathways and/or 40Ar* loss during brief episodes of reheating at high temperatures. Our data suggest that integrated petrologic and microanalytical geochronologic studies are necessary complements to bulk sample geochronologic studies in order to fully evaluate competing models for the impactor flux during the first billion years of the Moon's evolution.  相似文献   

3.
Abstract— The ages of seven rock fragments from the soil fraction of the Luna 24 core have been determined using a laser 40Ar-39Ar stepped heating technique. The investigated lithologies include fragments of fine-grained ophitic basalt, coarse-grained basalt, metabasalts and a regolith breccia. Most of the samples contain nonradiogenic Ar components of variable 36Ar/40Ar composition. These surface-correlated trapped components are predominantly released at low temperature and can be distinguished from volume-correlated radiogenic and cosmogenic components released at higher temperature during stepped heating. Binary mixtures of radiogenic and cosmogenic Ar components give linear correlations on 36Art/40Ar-39Ar/40Ar diagrams from which the age and 36Ar/40Ar value of trapped Ar can be determined. The ages obtained span a narrow range between 3.18-3.28 Ga with an average of 3.22 ± 0.04 Ga. This is interpreted as being the age of the basalts at the Luna 24 sampling site. Systematic age differences between lithologies were not detected; however, a single age of 2.93 Ga obtained from a coarse-grained basalt hints at the possibility of younger volcanism. The results of this work effectively triple the chronological information available for Mare Crisium and are within the range of radiometric age measurements of Luna 24 mare basalts obtained previously.  相似文献   

4.
Ar‐Ar isochron ages of EL chondrites suggest closure of the K‐Ar system at 4.49 ± 0.01 Ga for EL5 and 6 chondrites, and 4.45 ± 0.01 Ga for EL3 MAC 88136. The high‐temperature release regimes contain a mixture of radiogenic 40Ar* and trapped primordial argon (solar or Q‐type) with 40Ar/36ArTR ~ 0 , which does not affect the 40Ar budget. The low‐temperature extractions show evidence of an excess 40Ar component. The 40Ar/36Ar is 180–270; it is defined by intercept values of isochron regression. Excess 40Ar is only detectable in petrologic types >4/5. These lost most of their primordial 36Ar from low‐temperature phases during metamorphism and retrapped excess 40Ar. The origin of this excess 40Ar component is probably related to metamorphic Ar mobilization, homogenization of primordial and in situ radiogenic Ar, and trapping of Ar by distinct low‐temperature phases. Ar‐Ar ages of EH chondrites are more variable and show clear evidence of a major impact‐induced partial resetting at about 2.2 Ga ago or alternatively, prolonged metamorphic decomposition of major K carrier phases. EH impact melt LAP 02225 displayed the highest Ar‐Ar isochron age of 4.53 ± 0.01 Ga. This age sets a limit of about 25–45 Ma for the age bias between the K‐Ar and U‐Pb decay systems.  相似文献   

5.
Dhofar 280 recorded a complex history on the Moon revealed by high‐resolution 40Ar‐39Ar dating. Thermal resetting occurred less than 1 Ga ago, and the rock was exposed to several impact events before and afterwards. The cosmic ray exposure (CRE) age spectrum indicates a 400 ± 40 Ma CRE on the lunar surface. A unique feature of this lunar sample is a partial loss of cosmogenic 38Ar, resulting in a (low‐temperature) CRE age plateau of about 1 Ma. This was likely caused by the same recent impact event that reset the (low‐temperature) 40Ar‐39Ar age spectrum and preceded the short transit phase to Earth of ≤1 Ma. Dhofar 280 may be derived from KREEP‐rich lunar frontside terrains, possibly associated with the Copernicus crater or with a recent impact event on the deposits of the South Pole–Aitken basin. Although Dhofar 280 is paired with Dhofar 081, their irradiation and thermal histories on the Moon were different. An important trapped Ar component in Dhofar 280 is “orphan” Ar with a low 40Ar/36Ar ratio. It is apparently a mixture of two components, one endmember with 40Ar/36Ar = 17.5 ± 0.2 and a second less well‐constrained endmember with 40Ar/36Ar ≤10. The presence of two endmembers of trapped Ar, their compositions, and the breccia ages seem to be incompatible with a previously suggested correlation between age or antiquity and the (40Ar/36Ar)trapped ratio (Eugster et al. 2001; Joy et al. 2011a). Alternatively, “orphan” Ar of this impact melt breccia may have an impact origin.  相似文献   

6.
Abstract– 40Ar/39Ar dating of recrystallized K‐feldspar melt particles separated from partially molten biotite granite in impact melt rocks from the approximately 24 km Nördlinger Ries crater (southern Germany) yielded a plateau age of 14.37 ± 0.30 (0.32) Ma (2σ). This new age for the Nördlinger Ries is the first age obtained from (1) monomineralic melt (2) separated from an impact‐metamorphosed target rock clast within (3) Ries melt rocks and therewith extends the extensive isotopic age data set for this long time studied impact structure. The new age goes very well with the 40Ar/39Ar step‐heating and laser probe dating results achieved from mixed‐glass samples (suevite glass and tektites) and is slightly younger than the previously obtained fission track and K/Ar and ages of about 15 Ma, as well as the K/Ar and 40Ar/39Ar age data obtained in the early 1990s. Taking all the 40Ar/39Ar age data obtained from Ries impact melt lithologies into account (data from the literature and this study), we suggest an age of 14.59 ± 0.20 Ma (2σ) as best value for the Ries impact event.  相似文献   

7.
No meteorites from Mercury and Venus have been conclusively identified so far. In this study, we develop an original approach based on extensive Monte Carlo simulations and diffusion models to explore the radiogenic argon (40Ar*) and helium (4He*) loss behavior and the range of 40Ar/39Ar and (U‐Th)/He age signatures expected for a range of crystals if meteorites from these planets were ever to be found. We show that we can accurately date the crystallization age of a meteorite from both Mercury and Venus using the 40Ar/39Ar technique on clinopyroxene (± orthopyroxene) and that its 40Ar/39Ar age should match the Pb‐Pb age. At the surface of Mercury, phases like albite and anorthite will exhibit a complete range of 40Ar* loss ranging from 0% to 100%, whereas merrillite and apatite will show 100% 4He* loss. By measuring the crystal size and diffusion parameters of a series of plagioclase crystals, one can inverse the 40Ar* loss value to estimate the maximum temperature experienced by a rock, and narrow down the possible pre‐ejection location of the meteorite at the surface of Mercury. At the surface of Venus, plagioclase and phosphate phases will only record the age of ejection. The (U‐Th)/He systematics of merrillite and apatite will be, respectively, moderately and strongly affected by 4He* loss during the transit of the meteorite from its host planet to Earth. Finally, meteorites from Mercury or Venus will each have their own 40Ar/39Ar and (U‐Th)/He isotopic age and 38Arc cosmic ray exposure age signatures over a series of different crystal types, allowing to unambiguously recognize a meteorite for any of these two planets using radiogenic and cosmogenic noble gases.  相似文献   

8.
Northwest Africa (NWA) 7325 is an anomalous achondrite that experienced episodes of large-degree melt extraction and interaction with melt under reducing conditions. Its composition led to speculations about a Mercurian origin and provoked a series of studies of this meteorite. We present the noble gas composition, and results of 40Ar/39Ar and 129I-129Xe studies of whole rock splits of NWA 7325. The light noble gases are dominated by cosmogenic isotopes. 21Ne and 38Ar cosmic-ray exposure ages are 25.6 and 18.9 Ma, respectively, when calculated with a nominal whole rock composition. This 38Ar age is in reasonable agreement with a cosmic-ray exposure age of 17.5 Ma derived in our 40Ar/39Ar dating study. Due to the low K-content of 19 ± 1 ppm and high Ca-content of approximately 12.40 ± 0.15 wt%, no reliable 40Ar/39Ar age could be determined. The integrated age strongly depends on the choice of an initial 40Ar/36Ar ratio. An air-like component is dominant in lower temperature extractions and assuming air 40Ar/36Ar for the trapped component results in a calculated integrated age of 3200 ± 260 (1σ) Ma. This may represent the upper age limit for a major reheating event affecting the K-Ar system. Results of 129I-129Xe dating give no useful chronological information, i.e., no isochron is observed. Considering the highest 129Xe*/128XeI ratio as equivalent to a lower age limit, we calculate an I-Xe age of about 4536 Ma. In addition, elevated 129Xe/132Xe ratios of up to 1.65 ± 0.18 in higher temperature extractions indicate an early formation of NWA 7325, with subsequent disturbance of the I-Xe system.  相似文献   

9.
Abstract— Most 40Ar‐39Ar ages of L chondrites record an event at approximately 500 Ma, indicating a large collisional impact at that time. However, there is a spread in ages from 400 to 600 Ma in these meteorites that is greater than the analytical uncertainty. Identification of, and correction for, trapped Ar in a few L chondrites has given an age of 470 ± 6 Ma. This age coincides with Ordivician fossil meteorites that fell to Earth at 467 ± 2 Ma. As these fossil meteorites were originally L chondrites, the apparent conclusion is that a large impact sent a flood of L chondrite material to Earth, while material that remained on the L chondrite parent body was strongly heated and reset. We have reduced 40Ar‐39Ar data for Northwest Africa 091 using various techniques that appear in the literature, including identification and subtraction of trapped Ar. These techniques give a range of ages from 455 to 520 Ma, and show the importance of making accurate corrections. By using the most straightforward technique to identify and remove a trapped Ar component (which is neither terrestrial nor primordial), an 40Ar‐39Ar age of 475 ± 6 Ma is found for Northwest Africa 091, showing a temporal link to fossil meteorites. In addition, high temperature releases of Northwest Africa 091 contain evidence for a second trapped component, and subtraction of this component indicates a possible second collisional impact at approximately 800 Ma. This earlier age coincides with 40Ar‐39Ar ages of some H and L chondrites, and lunar samples.  相似文献   

10.
The 37Ar and 39Ar radioactivities were measured in a dissolved and in a melted sample of Haverö. The 37Ar in the metal was 12.4 ± 2.6 dpm/kg (Fe + Ni). The 39Ar in the metal was 49.3 ± 5.5 dpm/kg (Fe + Ni). The 37Ar activity is within 30 percent of that in the Lost City meteorite, while the 39Ar activity is a factor of two higher than in Lost City. The similarity in the 37Ar activities of the metal of the two meteorites indicates that these two bodies had similar preatmospheric sizes. The higher 39Ar activity in the metal of Haverö indicates that the aphelion of Haverö's orbit was at least 4.3 A.U. The 3H radioactivity in Haverö was measured to be 415 ± 30 dpm/kg. The 3H activity combined with the 3He content gives a 3He/23H exposure age for Haverö of (29.5 ± 2.5) X 610 years.  相似文献   

11.
KAr and/or 40Ar39Ar plateau ages of Allende samples—whole rock, matrix, chondrules, white inclusions–range from 3.8 AE for matrix of ?5 AE for some white inclusions, but cluster strongly near 4.53 AE. This age marks the dominant KAr resetting of Allende materials. Age spectra show disturbances due to 39Ar recoil or some other argon redistribution processes. Possible explanations for the apparent presolar ages (>4.6 AE) include: ?20% loss of 39Ar; ?40% loss of 40K ~3.8 AE ago with no loss of 40Arl trapped argon of unique 40Ar/36Ar isotopic composition; admixture of “very old” presolar grains.  相似文献   

12.
Abstract— We report a high‐resolution 40Ar‐39Ar study of mineral separates and whole‐rock samples of olivine‐phyric (Dhofar 019, Sayh al Uhaymir [SaU] 005) and basaltic (Shergotty, Zagami) shergottites. Excess argon is present in all samples. The highest (40Ar/36Ar)trapped ratios are found for argon in pyroxene melt inclusions (?1500), maskelynite (?1200), impact glass (?1800) of Shergotty and impact glass of SaU 005 (?1200). A high (40Ar/36Ar)trapped component‐usually uniquely ascribed to Martian atmosphere‐can also originate from the Martian interior, indicating a heterogeneous Martian mantle composition. As additional explanation of variable high (40Ar/36Ar)trapped ratios in shocked shergottites, we suggest argon implantation from a “transient atmosphere” during impact induced degassing. The best 40Ar‐39Ar age estimate for Dhofar 019 is 642 ± 72 Ma (maskelynite). SaU 005 samples are between 700–900 Ma old. Relatively high 40Ar‐39Ar ages of melt inclusions within Dhofar 019 (1086 ± 252 Ma) and SaU 005 olivine (885 ± 66 Ma) could date entrapment of a magmatic liquid during early olivine crystallization, or reflect unrecognized excess 40Ar components. The youngest 40Ar‐39Ar age of Shergotty separates (maskelynite) is ?370 Ma, that of Zagami is ?200 Ma. The 40Ar‐39Ar chronology of Dhofar 019 and SaU 005 indicate >1 Ga ages. Apparent ages uncorrected for trapped (e.g., Martian atmosphere, mantle) argon components approach 4.5 Ga, but are not caused by inherited 40Ar, because excess 40Ar is supported by 36Artrapped. Young ages obtained by 40Ar‐39Ar and other chronometers argue for primary rather than secondary events. The cosmic ray exposure ages calculated from cosmogenic argon are 15.7 ± 0.7 Ma (Dhofar 019), 1.0–1.6 Ma (SaU 005), 2.1–2.5 Ma (Shergotty) and 2.2–3.0 Ma (Zagami).  相似文献   

13.
The Australasian tektites are quench melt glass ejecta particles distributed over the Asian, Australian, and Antarctic regions, the source crater of which is currently elusive. New 40Ar/39Ar age data from four tektites: one each from Thailand, China, Vietnam, and Australia measured using three different instruments from two different laboratories and combined with published 40Ar/39Ar data yield a weighted mean age of 788.1 ± 2.8 ka (±3.0 ka, including all sources of uncertainties) (P = 0.54). This age is five times more precise compared to previous results thanks, in part, to the multicollection capabilities of the ARGUS VI noble gas mass spectrometer, which allows an improvement of almost fourfold on a single plateau age measurement. Diffusion experiments on tektites combined with synthetic age spectra and Monte Carlo diffusion models suggest that the minimum temperature of formation of the Thai tektite is between 2350 °C and 3950 °C, hence a strict minimum value of 2350 °C.  相似文献   

14.
Abstract— 40Ar/39Ar ages of four tektites (moldavites) from southern Bohemia (near ?eské Budějovice, Czech Republic) and a tektite from Lusatia (near Dresden, Germany) have been determined by 11 step‐degassing experiments. The purpose of the study was to enlarge the 40Ar/39Ar data base of moldavites and to check the age relations of the Bohemian and Lusatian samples. The mean plateau‐age of the Bohemian samples, which range from 14.42 to 14.70 Ma, is 14.50 ± 0.16 (0.42) (2σ) Ma (errors in parentheses include age error and uncertainty of standard monitor age). The plateau age of the Lusatian sample of 14.38 ± 0.26 (0.44) (2σ) Ma confirms the previously published 40Ar/39Ar age of 14.52 ± 0.08 (0.40) (2σ) Ma, and demonstrates that the fall of Lusatian and Bohemian tektites were contemporaneous. Because of their geochemistry and their ages there is no doubt that the Lusatian tektites are moldavites. Accepting that moldavites are ejecta from the Nördlinger Ries impact, the new ages also date the impact event. This age is slightly younger (about 0.2–0.3 Ma) than the age suggested by earlier K‐Ar determinations.  相似文献   

15.
Abstract— This is a report on 40Ar-39Ar studies of 7 low petrographic type L and H chondrites from Antarctica. From petrographic similarities it has been argued that the L3 chondrites ALHA77015, ?77167, ?77249, and ?77260 are pieces from a common fall (McKinley et al., 1981). Our results now confirm this supposition: The four meteorites have identical characteristic Ar-degassing patterns, very similar K, Ca, Cl, and 36Artrapped contents, and similar 40Ar-39Ar ages of <4 Ga which are rather unusual for ordinary chondrites and might be due to shock. The undulating age patterns could be due to weathering or to 39Ar recoil. The L4 chondrite ALHA77230 shows no age plateau and only a lower limit for the time of a severe degassing, 4.0 Ga, can be given. ALHA77226 and RKPA78002, two H4 chondrites, exhibit reasonably well defined age plateaus at about 4.3 and 4.4 Ga. Two individual chondrules from RKPA78002 have the same age as the whole rock sample.  相似文献   

16.
Abstract— 20–25 mg whole rock samples of the nakhlites Lafayette and Nakhla have been analyzed via the 40Ar‐39Ar technique, in part to verify their formation ages, but primarily, in an attempt to determine the timing of aqueous alteration in these martian meteorites. As in previous studies, plateaus in apparent age are observed at about 1300 Ma (1322 ± 10 for Lafayette, 1332 ± 10 and 1323 ± 11 for Nakhla), presumably corresponding to crystallization ages. The plateaus are not entirely flat, perhaps reflecting the effects of recoil during creation of 39Ar in the nuclear irradiation. The first 5–20% of the K‐derived Ar released from all three samples give apparent ages <1300 Ma. Coupled with the fact that chronometric isotopic studies of nakhlites typically show some disturbance, we believe the low temperature pattern represents more recent (than 1300 Ma) formation of martian aqueous alteration products such as iddingsite. No low temperature plateaus are observed. This is consistent with petrographic evidence for multiple formation events, although the lack of low temperature plateaus is far from conclusive. On the other hand, if there was a single time of alteration, we believe that it will be difficult, if not impossible, to determine it using the K‐Ar system.  相似文献   

17.
The Almahata Sitta (AhS) meteorite consists of disaggregated clasts from the impact of the polymict asteroid 2008 TC3, including ureilitic (70%–80%) and diverse non-ureilitic materials. We determined the 40Ar/39Ar release patterns for 16 AhS samples (3–1500 μg) taken from three chondritic clasts, AhS 100 (L4), AhS 25 (H5), and MS-D (EL6), as well as a clast of ureilitic trachyandesite MS-MU-011, also known as ALM-A, which is probably a sample of the crust of the ureilite parent body (UPB). Based on our analyses, best estimates of the 40Ar/39Ar ages (Ma) of the chondritic clasts are 4535 ± 10 (L4), 4537–4555 with a younger age preferred (H5), and 4513 ± 17 (EL6). The ages for the L4 and the H5 clasts are older than the most published 40Ar/39Ar ages for L4 and H5 meteorites, respectively. The age for the EL6 clast is typical of older EL6 chondrites. These ages indicate times of argon closure ranging up to 50 Ma after the main constituents of the host breccia, that is, the ureilitic components of AhS, reached the >800°C blocking temperatures of pyroxene and olivine thermometers. We suggest that these ages record the times at which the clasts cooled to the Ar closure temperatures on their respective parent bodies. This interpretation is consistent with the recent proposal that the majority of xenolithic materials in polymict ureilites were implanted into regolith 40–60 Ma after calcium–aluminum-rich inclusion and is consistent with the interpretation that 2008 TC3 was a polymict ureilite. With allowance for its 10-Ma uncertainty, the 4549-Ma 40Ar/39Ar age of ALM-A is consistent with closure within a few Ma of the time recorded by its Pb/Pb age either on the UPB or as part of a rapidly cooling fragment. Plots of age versus cumulative 39Ar release for 10 of 15 samples with ≥5 heating steps indicate minor losses of 40Ar over the last 4.5 Ga. The other five such samples lost some 40Ar at estimated times no earlier than 3800–4500 Ma bp . Clustering of ages in the low-temperature data for these five samples suggests that an impact caused localized heating of the AhS progenitor ~2.7 Ga ago. In agreement with the published work, 10 estimates of cosmic-ray exposure ages based on 38Ar concentrations average 17 ± 5 Ma but may include some early irradiation.  相似文献   

18.
Abstract— Argon-isotopic abundances were measured in neutron-irradiated samples of Martian meteorites Chassigny, Allan Hills (ALH) 84001, ALH 77005, Elephant Moraine (EET) 79001, Yamato (Y) 793605, Shergotty, Zagami, and Queen Alexandra Range (QUE) 94201, and in unirradiated samples of ALH 77005. Chassigny gives a 39Ar-40Ar age of 1.32 ± 0.07 Ga, which is similar to radiometric ages of the nakhlites. Argon-39-Argon-40 data for ALH 84001 indicate ages between 3.9 and 4.3 Ga. A more precise definition of this age requires detailed characterization of the multiple trapped Ar components in ALH 84001 and of 39Ar recoil distribution. All six shergottite samples show apparent 39Ar-40Ar ages substantially older than the ~165–200 Ma range in ages given by other isotope dating techniques. Shergottites appear to contain ubiquitous Ar components acquired from the Martian atmosphere, the Martian mantle, and commonly terrestrial atmospheric contamination. Zagami feldspar also suggests inherited radiogenic 40Ar. These data analyses indicate that the recent Martian atmospheric component trapped in shergottites has a 40Ar/36Ar ratio possibly as low as ~1750 and no greater than ~1900. These ratios are less than the value of 3000 ± 500 reported by Viking. The 40Ar/36Ar ratio for the Martian mantle component is probably <500 but is poorly constrained. The correlation between trapped 40Ar/36Ar and 129Xe/132Xe ratios in shergottite impact glasses and unirradiated samples of ALH 77005 shows considerable scatter and suggests that the 36Ar/132Xe ratio in the Martian components may vary. Resolution of Martian atmospheric 40Ar/36Ar ratio at different time periods (i.e., at ~4.0 and 0.2 Ga) is also difficult without an understanding of the composition of various trapped components.  相似文献   

19.
Abstract— We performed high‐resolution 40Ar‐39Ar dating of mineral separates and whole‐rock samples from the desert meteorites Dhofar 300, Dhofar 007, and Northwest Africa (NWA) 011. The chronological information of all samples is dominated by plagioclase of varying grain size. The last total reset age of the eucrites Dhofar 300 and Dhofar 007 is 3.9 ± 0.1 Ga, coeval with the intense cratering period on the Moon. Some large plagioclase grains of Dhofar 007 possibly inherited Ar from a 4.5 Ga event characteristic for other cumulate eucrites. Due to disturbances of the age spectrum of NWA 011, only an estimate of 3.2–3.9 Ga can be given for its last total reset age. Secondary events causing partial 40Ar loss ≤3.4 Ga ago are indicated by all age spectra. Furthermore, Ar extractions from distinct low temperature phases define apparent isochrons for all samples. These isochron ages are chronologically irrelevant and most probably caused by desert alterations, in which radiogenic 40Ar and K from the meteorite and occasionally K induced by weathering are mixed, accompanied by incorporation of atmospheric Ar. Additional uptake of atmospheric Ar by the alteration phase(s) was observed during mineral separation (i.e., crushing and cleaning in ultrasonic baths). Consistent cosmic‐ray exposure ages were obtained from plagioclase and pyroxene exposure age spectra of Dhofar 300 (25 ± 1 Ma) and Dhofar 007 (13 ± 1 Ma) using the mineral's specific target element chemistry and corresponding 38Ar production rates.  相似文献   

20.
Abstract— 40Ar-39Ar age measurements were made for three whole rock melt samples produced during impact events which formed the Dellen, Jänisjärvi, and Sääksjärvi craters on the Baltic Shield. An age of 109.6 ± 1.0 Ma was obtained for the Dellen sample based on an age spectrum plateau. The age spectrum shows a small (7%) loss of radiogenic 40Ar from low temperature fractions. Ages of 698 ± 22 Ma and 560 ± 12 Ma were obtained from isochrons for the Jänisjärvi and Sääksjärvi samples, respectively. Data obtained by laser degassing support the Sääksjärvi result. The presence of excess 40Ar is indicated in lower temperature fractions for both samples and is correlated with K concentrations in the Sääksjärvi sample. Models explaining these results may require a change in the local “atmospheric” Ar isotopic composition as cooling of melt rocks proceeded. However, it cannot be excluded that devitrification and/or alteration changed the Ar budget. A crater production rate on the Baltic Shield based on measured ages of 6 craters is (0.3 ± 0.2) · 10?14 20-km-and-larger craters per km2 per year, in satisfactory agreement with previous estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号