首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Shear stress is a fundamental parameter in many sediment transport expressions. It is commonly estimated from information contained in the velocity profile, specifically, shear velocity, u ?, and roughness length, z 0 Under ideal conditions, the functional relationship between elevation above the bed and flow velocity is log-linear, as expressed by the “law of the wall.” Unless the field data conform exactly to this ideal relationship, there is uncertainty in estimates of u ? and z 0. derived from velocity profiles. This uncertainty depends on the degree of scatter or deviation from the assumed log-linear model. Expressions are presented to quantify the error and to correct for it. Guidelines are suggested to minimize potential uncertainty, especially with regard to instrument deployment and velocity profile analysis. Calculation of confidence intervals around estimates of u ? and z 0, as proposed by Wilkinson (1984), is necessary and recommended.  相似文献   

2.
Recent investigations of aeolian transport have focused on increasingly short time scales because of growing recognition that wind unsteadiness is a major factor in the dynamics of sediment transport. However, the statistical reliability of shear velocity (u*) estimates becomes increasingly uncertain as averaging interval is decreased. This study provides an empirical assessment of the influence of averaging interval on the reliability of u* estimates. The data consist of 15-min wind-speed profiles (1 Hz sampling) collected at four coastal sites. Each profile was subdivided into progressively shorter fixed-length time intervals, and estimates of u* and the 95% confidence interval for u* were determined for each time-block using standard statistical techniques.The logarithmic model accurately represents the measured wind-speed profiles, even with relatively brief averaging intervals. Mean r2 values remain robust down to block lengths as short as 10–20 s, typically retaining better than 98% of the r2 value found for the full-length data sets. Fewer than 2% of the individual 10-s blocks had r2 values less than 0.9. However, mean confidence intervals typically expanded by 70–80% of the full-record value as block length decreased from 900 to 10 s. For highly log-linear profiles, this amounted to an absolute increase from about ±8% to only ±14% of u*, so that the additional information gained through the use of shorter averaging intervals may outweigh the increase in statistical uncertainty. Nevertheless, given that rates of aeolian transport are generally modeled as a function of u*3, this increase in uncertainty may be significant for transport modeling. Thus, very short averaging intervals should be used with caution when predicting aeolian sediment flux. It is proposed that transport modeling should incorporate the shear velocity confidence interval as an indicator of the potential error associated with this source of uncertainty.  相似文献   

3.
王晓  张伟民 《中国沙漠》2014,34(4):943-948
本文应用流体计算软件FLUENT6.3,采用非结构化网格划分技术模拟了气流特征和砾石几何参数对床面空气动力学粗糙度的影响。结果表明:空气动力学粗糙度(z0)与风速(u)、摩阻速度(u*)之间存在定量关系:z0=a exp(bu/u*)。砾石高度对空气动力学粗糙度的影响显著优于砾石直径,空气动力学粗糙度随砾石密度的变化比较复杂,先增加后减小。FLUENT在模拟风洞砾石床面动力学过程中的成功应用,是我们在研究方法上的一次有益尝试。  相似文献   

4.
Detailed wind tunnel tests were carried out to establish the mean downwind velocity and transport rate of different-sized loose dry sand at different free-stream wind velocities and heights, as well as to investigate the vertical variation in the concentration of blowing sand in a cloud. Particle dynamic analyzer (PDA) technology was used to measure the vertical variation in mean downwind velocity of a sand cloud in a wind tunnel. The results reveal that within the near-surface layer, the decay of blown sand flux with height can be expressed using an exponential function. In general, the mean downwind velocity increases with height and free-stream wind velocity, but decreases with grain size. The vertical variation in mean downwind velocity can be expressed by a power function. The concentration profile of sand within the saltation layer, calculated according to its flux profile and mean downwind profile, can be expressed using the exponential function: cz=ae−bz, where cz is the blown sand concentration at height z, and a and bare parameters changing regularly with wind velocity and sand size. The concentration profiles are converted to rays of straight lines by plotting logarithmic concentration values against height. The slope of the straight lines, representing the relative decay rate of concentration with height, decreases with an increase in free-stream wind velocity and grain size, implying that more blown sand is transported to greater heights as grain size and wind speed increase.  相似文献   

5.
The sidewall effects of a wind tunnel on aeolian sand transport were investigated experimentally. A wind tunnel was used to conduct the experiments with a given channel height of 120 cm and varying widths (B) of 40, 60, 80, 100 and 120 cm. Both vertical profiles of wind velocity and sand mass flux were measured at different locations across the test section. The results show that the wind velocity with saltation first increases and then decreases to a minimum, from the sidewall to the central line of the wind tunnel. The discrepancy among wind velocities at different locations of the transverse section decreases with decreasing tunnel width. The wind friction velocity across the wind tunnel floor, with the exception of the region closest to the sidewalls, does not deviate strongly in wide wind tunnels from that along the central line, whereas it does vary in narrow tunnels. The sand mass fluxes, with the exception of some near-bed regions, are larger along the central line of the wind tunnel than they are at the quarter width location from the sidewall. Unlikely previously reported results, the dimensionless sand transport rate, Qg / (ρu3) (where Q is the total sand transport rate, g is the gravitational acceleration constant, ρ is the air density, and u is the wind friction velocity), first decreases and then increases with the dimensionless friction velocity, u / ut (where ut is the threshold friction velocity). The above differences may be attributed to the sidewall effects of the wind tunnel. A dimensionless parameter, FB = u / (gB)1/2, is defined to reflect the sidewall effects on aeolian sand transport. The flows with FB of 0.33 or less may be free from the sidewall effects of the wind tunnel and can ensure accurate saltation tunnel simulation.  相似文献   

6.
This study investigates the impact of local convergence and divergence of air on turbulent transfer at a mid-latitude alpine fellfield site. Pairs of simultaneous wind and temperature profile measurements on a knoll crest and primary slope (aspect =0, 90, 180, and 270°) are analyzed assuming the logarithmic law. Friction velocity (u*) and roughness length (z0) vary systematically from windward to leeward slopes. General relationships of the form u* = f(u) are derived for conditions of westerly flow with wind speed (u) ranging between 2 and 24 m s-1. Coefficients in the empirical equations for estimating u* at sites on the knoll from wind speed measurements on the crest vary in a consistent manner with respect to local convergence and divergence. Large differences in z0 values between windward and leeward sites correspond with contrasts in surface temperature.  相似文献   

7.
Wind tunnel experiments for ‘Raindrop Detachment and Wind-Driven Transport’ (RD–WDT) process were conducted under improved lateral jetting induced by wind velocities of 6.4, 10, and 12 m s− 1 at nozzle operating pressures of 75, 100, and 150 kPa. Wind-driven rainfalls were also incident on the windward and leeward slopes of 4° and 9° to have a broad variation in the angle of incidence. The objective of this experimental set-up was to distinguish the roles of both impact components of obliquely striking wind-driven raindrops on RD and wind on WDT. Raindrop impact components and reference horizontal wind were quantified by normal (Etz) and horizontal (Etx) kinetic energy fluxes and wind shear velocity (u), respectively, to physically model the process of RD–WDT. The results showed, at each level of u, differential sand transport rates by RD–WDT (qm(RD–WDT)) occurred depending on the magnitude of raindrop impact components, and qm(RD–WDT) increased as the relative contribution of Etz increased. Although Etx was more correlated with qm(RD–WDT) than Etz, the extreme increases in Etx at the expense of Etz brought about no increases but decreases in qm(RD–WDT). An RD–WDT model was built under the process of examining the discrete effects of Etz and Etx on RD together with u and resulted in a better coefficient of determination (R2 = 0.89) than only total kinetic energy (Et) did alone with u (R2 = 0.84). In this study, Etx was strongly related to u and not to Etz, which was the principal difference from the previous rainsplash studies, which relied on the compensatory lateral jet development by the compressive pressure build-up at the raindrop–soil interface. Including Etx in the RD–WDT model both separated the distinct role of each raindrop impact component in RD and improved the performance of u in WDT by better distinguishing its interaction with Etx, which was not explicitly separated in previous models of RD–WDT.  相似文献   

8.
It is usually recognized that relatively large amounts of soil particles cannot be transported by raindrop splashes under windless rain. However, the splash-saltation process can cause net transportation in the prevailing wind direction since variations in splash-saltation trajectory due to the wind are expected in wind-driven rain. Therefore, determining the combined effect of rain and wind on the process should enable improvement of the estimation of erosion for any given prediction technique. This paper presents experimental data on the effects of slope aspect, slope gradient, and horizontal wind velocity on the splash-saltation trajectories of soil particles under wind-driven rain. In a wind tunnel facility equipped with a rainfall simulator, the rains driven by horizontal wind velocities of 6, 10, and 14 m s−1 were allowed to impact three agricultural soils packed into 20×55 cm soil pans placed at both windward and leeward slopes of 7%, 15%, and 20%. Splash-saltation trajectories were measured by trapping the splashed particles at distances downwind on a 7-m uniform slope segment in the upslope and downslope directions, respectively, for windward and leeward slopes. Exponential decay curves were fitted for the mass distribution of splash-saltation sediment as a function of travel distance, and the average splash-saltation trajectory was derived from the average value of the fitted functions. The results demonstrated that the average trajectory of a raindrop-induced and wind-driven soil particle was substantially affected by the wind shear velocity, and it had the greatest correlation (r=0.96 for all data) with the shear velocity; however, neither slope aspect nor slope gradient significantly predicted the splash-saltation trajectory. More significantly, a statistical analysis conducted with nonlinear regression model of C1(u*2/g) showed that average trajectory of splash saltation was approximately three times greater than that of typical saltating sand grain.  相似文献   

9.
This study characterizes the flow field above and around multiple instream submerged cobbles, boulders, and pebble clusters in order to obtain a better understanding of the hydrodynamics associated with large roughness elements (LREs) in gravel-bed rivers. Spatially distributed high frequency, three-dimensional velocity measurements were recorded in situ using acoustic Doppler velocimeters at different flow stages. The spatial distributions of turbulent kinetic energy, ke, longitudinal component integral timescales, ITSu, and Reynolds shear stresses were characterized and are presented for selected sites. The longitudinal–vertical Reynolds shear stress increased with flow stage more strongly than the longitudinal–lateral or lateral–vertical Reynolds shear stresses and dominate at the highest measured flows. Canonical redundancy analysis was used to relate LRE morphometrics and mean flow conditions to the turbulence parameters estimated in the LRE wakes (i.e., ke, ITSu, and Reynolds shear stresses). LRE size and mean unobstructed velocity explained the highest proportion of the variance in the turbulent wake statistics. Multivariate regression models based on LRE width, mean unobstructed longitudinal velocity and flow depth are presented offering a tool to predict LRE wake turbulence.  相似文献   

10.
Terrestrial Laser Scanning of grain roughness in a gravel-bed river   总被引:2,自引:1,他引:1  
This paper demonstrates the application of Terrestrial Laser Scanning (TLS) to determine the full population of grain roughness in gravel-bed rivers. The technique has the potential to completely replace the need for complex, time-consuming manual sampling methods. Using TLS, a total of 3.8 million data points (mean spacing 0.01 m) were retrieved from a gravel bar surface at Lambley on the River South Tyne, UK. Grain roughness was extracted through determination of twice the local standard deviation (2σz) of all the elevations in a 0.15 m radius moving window over the data cloud. 2σz values were then designated to each node on a 5 cm regular grid, allowing fine resolution DEMs to be produced, where the elevation is equivalent to the grain roughness height. Comparisons are made between TLS-derived grain roughness and grid-by-number sampling for eight 2 m2 patches on the bar surface. Strong relationships exist between percentiles from the population of 2σz heights with measured a-, b-, and c-axes, with the closest matches appearing for the c-axis. Although strong relationships exist between TLS-derived grain roughness (2σz), variations in the degree of burial, packing and imbrication, results in very different slope and intercept exponents. This highlights that conventional roughness measurement using gravel axis length should be used with caution as measured axes do not necessarily represent the actual extent to which the grain protrudes into the flow. The sampling error inherent in conventional sampling is also highlighted through undertaking Monte Carlo simulation on a population of 2000 clasts measured using the grid-by-number method and comparing this with the TLS-derived population of grain roughness heights. Underestimates of up to − 23% and overestimates of up to + 50% were found to occur when considering the D84, and − 20% and overestimates of up to + 36% were found to occur when considering the D50.  相似文献   

11.
Saltation is a major mechanism for the transport of soil particles. In the present study, we carried out wind tunnel tests to examine the saltating trajectories of two types of natural sand collected from a beach (diameter, d = 300–500 μm and 200–300 μm respectively) as well as sand from the Taklimakan desert (d = 100–125 μm) in an atmospheric boundary layer. Consecutive images of saltating particles were recorded using a high-speed digital camera at a rate of 2000 fps with a spatial resolution of 1024 × 1024 pixels. The high temporal resolution of the acquired images enabled us to study the particle motion very close to the surface. The saltating particle trajectories were reconstructed from consecutive images, and the physical quantities characterizing the initial and final stages of the particle flight in the windward direction at friction velocities of about 10%–25% above the threshold friction velocity (u / ut = 1.11–1.26) were analyzed statistically. In addition, the transverse deviation of the saltating particles from the main streamwise direction was evaluated. The results shed new light on the complicated motions involved in sand saltation and should prove useful in the evaluation and formulation of theoretical models.  相似文献   

12.
The Porcupine Basin is a Mesozoic failed rift located in the North Atlantic margin, SW of Ireland, in which a postrift phase of extensional faulting and reactivation of synrift faults occurred during the Mid–Late Eocene. Fault zones are known to act as either conduits or barriers for fluid flow and to contribute to overpressure. Yet, little is known about the distribution of fluids and their relation to the tectono‐stratigraphic architecture of the Porcupine Basin. One way to tackle this aspect is by assessing seismic (Vp) and petrophysical (e.g., porosity) properties of the basin stratigraphy. Here, we use for the first time in the Porcupine Basin 10‐km‐long‐streamer data to perform traveltime tomography of first arrivals and retrieve the 2D Vp structure of the postrift sequence along a ~130‐km‐long EW profile across the northern Porcupine Basin. A new Vp–density relationship is derived from the exploration wells tied to the seismic line to estimate density and bulk porosity of the Cenozoic postrift sequence from the tomographic result. The Vp model covers the shallowest 4 km of the basin and reveals a steeper vertical velocity gradient in the centre of the basin than in the flanks. This variation together with a relatively thick Neogene and Quaternary sediment accumulation in the centre of the basin suggests higher overburden pressure and compaction compared to the margins, implying fluid flow towards the edges of the basin driven by differential compaction. The Vp model also reveals two prominent subvertical low‐velocity bodies on the western margin of the basin. The tomographic model in combination with the time‐migrated seismic section shows that whereas the first anomaly spatially coincides with the western basin‐bounding fault, the second body occurs within the hangingwall of the fault, where no major faulting is observed. Porosity estimates suggest that this latter anomaly indicates pore overpressure of sandier Early–Mid Eocene units. Lithological well control together with fault displacement analysis suggests that the western basin‐bounding fault can act as a hydraulic barrier for fluids migrating from the centre of the basin towards its flanks, favouring fluid compartmentalization and overpressure of sandier units of its hangingwall.  相似文献   

13.
The Geo-anchored method, based on a moment-type estimator, has been developed for estimating parent population properties from a successive sample of discoveries. By substituting the expectation of the waiting time z (n+1) of the (n + 1) th discovery to occurrence for an unknown parameter in the anchored method, the Geo-anchored method allows estimation of inclusion probabilities directly from observed data, thus eliminating the need for a priori selection of a value of N, R, or some other feature of the parent population. Because direct estimation of N and R requires an ordered sample, the Geo-anchored method is more sensitive to the data-generating process than the anchored method. This paper presents a sensitivity study on the Geo-anchored method. The test is based on simulated discovery sequences with different assumptions regarding discovery efficiency, exploration maturity, and the shape of the parent field size distribution. As a reference for comparison, estimates from the Horvitz–Thompson estimator also are presented.  相似文献   

14.
The factors determining the suitability of limestone for industrial use and its commercial value are the amounts of calcium oxide (CaO) and impurities. From 244 sample points in 18 drillhole sites in a limestone mine, southwestern Japan, data on four impurity elements, SiO2, Fe2O3, MnO, and P2O5 were collected. It generally is difficult to estimate spatial distributions of these contents, because most of the limestone bodies in Japan are located in the accretionary complex lithologies of Paleozoic and Mesozoic age. Because the spatial correlations of content data are not clearly shown by variogram analysis, a feedforward neural network was applied to estimate the content distributions. The network structure consists of three layers: input, middle, and output. The input layer has 17 neurons and the output layer four. Three neurons in the input layer correspond with x, y, z coordinates of a sample point and the others are rock types such as crystalline and conglomeratic limestones, and fossil types related to the geologic age of the limestone. Four neurons in the output layer correspond to the amounts of SiO2, Fe2O3, MnO, and P2O5. Numbers of neurons in the middle layer and training data differ with each estimation point to avoid the overfitting of the network. We could detect several important characteristics of the three-dimensional content distributions through the network such as a continuity of low content zones of SiO2 along a Lower Permian fossil zone trending NE-SW, and low-quality zones located in depths shallower than 50 m. The capability of the neural network-based method compared with the geostatistical method is demonstrated from the viewpoints of estimation errors and spatial characteristics of multivariate data. To evaluate the uncertainty of estimates, a method that draws several outputs by changing coordinates slightly from the target point and inputting them to the same trained network is proposed. Uncertainty differs with impurity elements, and is not based on just the spatial arrangement of data points.  相似文献   

15.
渭河下游河流输沙需水量计算   总被引:8,自引:1,他引:7  
基于对河流输沙运动特性的分析,认为最小河流输沙需水量是当河流输沙基本上处于冲淤平衡状态时输送单位重量的泥沙所需要的水的体积,通过河段进口即上游断面水流挟沙力 (Su*) 与含沙量 (Su) 比较,分Su ≤ Su*和Su > Su*两种情况,分别建立了最小河段输沙需水量的计算方法。并应用该方法对渭河下游输沙需水量做了计算。计算的空间尺度为渭河下游的咸阳、临潼、华县三个断面,时间尺度为四个代表年的年内月均需水量,分p = 25% (1963年)、p = 50% (1990年)、p = 75% (1982年)、p = 90% (1979年)。计算结果分析表明:渭河各断面汛期月均输沙需水量大于非汛期月均输沙需水量。相较而言,在不同代表年的汛期和非汛期,从咸阳断面至华县断面输沙需水量在增加。在丰水年 (p = 25%),渭河下游咸阳、临潼、华县等3个断面年输沙需水量分别为63.67亿m3、97.95亿m3和103.25亿m3;在平水年 (p = 50%),渭河下游咸阳、临潼、华县等3个断面年输沙需水量分别为49.71亿m3、83.27亿m3和85.08亿m3;在枯水年 (p = 75%),渭河下游咸阳、临潼、华县等3个断面年输沙需水量分别为30.17亿m3、55.14亿m3和65.32亿m3;在特枯水年 (p = 90%),渭河下游咸阳、临潼、华县等3个断面年输沙需水量分别为23.96亿m3、37.91亿m3和38.92亿m3。由丰水年到枯水年,渭河下游各断面年输沙需水量变小。  相似文献   

16.
Carbon capture from stationary sources and geologic storage of carbon dioxide (CO2) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO2 storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference, and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO2, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO2 storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO2 injection will be mitigated by reservoir pressure management, estimates of the costs of CO2 storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO2 storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO2 storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the scarcity of (data from) long-term commercial-scale CO2 storage projects, decision makers may experience considerable difficulty in ascertaining the realistic potential, the likely costs, and the most beneficial pattern of deployment of CCS as an option to reduce CO2 concentrations in the atmosphere.  相似文献   

17.
Wind erosion has major impacts on dune growth, desertification, and architecture on sea coasts. The deflation threshold shear velocity is a crucial parameter in predicting erosion, and surface moisture greatly affects this threshold and thus sand stability. Wind tunnel studies have shown that reduced moisture contents decrease entrainment thresholds and increase wind erosion, but field and wind tunnel test data is lacking for tropical humid coastal areas. In this study, we investigated the influence of surface moisture contents (at 1 mm depth) on sand entrainment and erosion using tropical humid coastal sands from southern China. Shear velocities were deduced from velocity profiles above the sand. The threshold shear velocity increased linearly with increasing ln100M (M, gravimetric moisture content). The increase was steepest below a moisture content of 0.0124 (i.e., at M1.5, the moisture content in the sand at a matric potential of − 1.5 MPa). We compared several popular models that predict threshold shear velocity of moisture sediment, and found substantial differences between their predicted results. At a surface moisture content of 0.0124, the predicted increase in the wet threshold shear velocity compared with the dry threshold shear velocity ranged from 34% to 195%. The empirical model of Chepil and Selah simulated the data well for M < 0.0062 (i.e., 0.5M1.5), whereas Belly's empirical model simulated the data best for > 0.0062. Wind erosion modulus increased with increasing effective wind velocity following a power function with a positive exponent at all moisture contents, but decreased with increasing surface moisture content following a power function with a negative exponent. When wind speed and moisture content varied simultaneously, wind erosion modulus was proportional to the 0.73 power of effective wind velocity, but inversely proportional to the 1.48 power of M. The increase in resistance to erosion at low moisture contents probably results from cohesive forces in the water films surrounding the sand particles. At a moisture content near M1.5, wind erosion ceases nearly for all wind velocities that we tested.  相似文献   

18.
We studied the relationship between primary productivity and species richness of small mammals at both large and small spatial scales in the arid and semi-arid grasslands of north China. The productivity (x)–species richness (y) pattern at a large spatial scale can be described by a unimodal quadratic regression curve (y=7·41+0·1*x−0·0003*x2,p =0·008, r2=0·788). At a small spatial scale, however, neither linear nor quadratic regression fit the data for 1980 and 1994 (p>0·25). Primary productivity may not be an appropriate predictor of the species richness of small mammals at a small spatial scale. We conclude, therefore, that the primary productivity–species richness pattern of small mammals may be scale-dependent in the arid and semi-arid grasslands of north China. Landscape complexity should be considered in future studies of productivity–richness relationships.  相似文献   

19.
The flux profile of a blowing sand cloud: a wind tunnel investigation   总被引:11,自引:0,他引:11  
The flux profile of a blowing sand cloud, or the variation of blown sand flux with height, is the reflection of blown sand particles that move in different trajectories, and also the basis for checking drifting sand. Here we report the wind tunnel results of systematic tests of the flux profiles of different sized sands at different free-stream wind velocities. The results reveal that within the 60-cm near-surface layer, the decay of blown sand flux with height can be expressed by an exponential function: qh=aexp(−h/b), where, qh is the blown sand transport rate at height h, a and b are parameters that vary with wind velocity and sand size. The significance of coefficient a and b in the function is defined: a represents the transport rate in true creep and b implies the relative decay rate with height of the blown sand transport rate. The true creep fraction, the ratio of the sand transported on the surface (h=0) to the total transport varies widely, decreasing with both sand size and wind speed. The flux profiles are converted to straight lines by plotting sand transport rate, qh, on a log-scale. The slope of the straight lines that represents the relative decay rate with height of sand transport rate decreases with an increase in free-stream wind velocity and sand grain size, implying that relatively more of the blown sand is transported to greater heights as grain size and wind speed increase. The average saltating height represented by the height where 50% of the cumulative flux percentage occurs increases with both wind speed and grain size, implying that saltation becomes more intense as grain size and/or wind velocity increase.  相似文献   

20.
A desirable guide for estimating the number of undiscovered mineral deposits is the number of known deposits per unit area from another well-explored permissive terrain. An analysis of the distribution of 805 podiform chromite deposits among ultramafic rocks in 12 subareas of Oregon and 27 counties of California is used to examine and extend this guide. The average number of deposits in this sample of 39 areas is 0.225 deposits per km2 of ultramafic rock; the frequency distribution is significantly skewed to the right. Probabilistic estimates can be made by using the observation that the lognormal distribution fits the distribution of deposits per unit area. A further improvement in the estimates is available by using the relationship between the area of ultramafic rock and the number of deposits.The number (N) of exposed podiform chromite deposits can be estimated by the following relationship: log10(N)=–0.194+0.577 log10(area of ultramafic rock). The slope is significantly different from both 0.0 and 1.0. Because the slope is less than 1.0, the ratio of deposits to area of permissive rock is a biased estimator when the area of ultramafic rock is different from the median 93 km2. Unbiased estimates of the number of podiform chromite deposits can be made with the regression equation and 80 percent confidence limits presented herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号