首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The early-stage structure and evolution of a supernova remnant (SNR) depends largely on its ambient interstellar medium, so the interstellar medium becomes the valid probe for investigating the evolution of SNRs. We have observed the 12CO (J = 1 − 0) line emission around the remnant of SN 1572 with the 13.7m millimeter-wave telescope at the Qinghai Station of PMO, in order to investigate the distribution of the CO molecular gas around SN 1572 and provide some observational basis for studying the relationship of SN 1572 with its ambient molecular gas and the evolution of this SNR. The observed result indicates that the molecular gas in the velocity range of VLSR = −69∼ −58 km/s is associated with SN 1572, and this velocity component comes from a large-scale molecular cloud. The molecular gas is distributed along the periphery of the radio shell, continually but not uniformly, and forms a semi-closed molecular shell around the SNR. The enhanced emission exists in its whole eastern half, especially the CO emission is strongest on the northeastern edge. At the emission peak position, the spectral line exhibits a broadened velocity feature (>5 km/s). Combining with available observations in the optical, infrared, X-ray and other wavebands, it is demonstrated that the fast shock wave and ejecta are expanding into the molecular gas on the northeastern edge, and interacting with the dense gas. This interaction will have an important influence on the future evolution of SN 1572.  相似文献   

2.
We present narrow-band and equivalent width (EW) images of the thermal composite supernova remnant (SNR) 3C 391 in the X-ray emission lines of Mg, Si and S using the Chandra ACIS Observational data. The EW images reveal the spatial distribution of the emission of the metal species Mg, Si and S in the remnant. They have a clumpy structure similar to that seen in the broadband diffuse emission, suggesting that they are largely of interstellar origin. We find an interesting finger-like feature protruding outside the southwestern radio border of the remnant, somewhat similar to the jet-like Si structure found in the famous SNR Cas A. This feature may possibly be the debris of the jet of ejecta from an asymmetrical supernova explosion of a massive progenitor star.  相似文献   

3.
The model of a Local Hot Bubble has been widely accepted as providing a framework that can explain the ubiquitous presence of the soft X-ray background diffuse emission. We summarize the current knowledge on this local interstellar region, paying particular reference to observations that sample emission from the presumed local million degree K hot plasma. However, we have listed numerous observations that are seemingly in conflict with the concept of a hot Local Bubble. In particular, the discovery of solar wind charge exchange that can generate an appreciable soft X-ray background signal within the heliosphere, has led to a re-assessment of the generally accepted model that requires a hot local plasma. In order to explain the majority of observations of the local plasma, we forward two new speculative models that describe the physical state of the local interstellar gas. One possible scenario is similar to the present widely accepted model of the Local Hot Bubble, except that it accounts for only 50% of the soft X-ray emission currently detected in the galactic plane, has a lower thermal pressure than previously thought, and its hot plasma is not as hot as previously believed. Although such a model can solve several difficulties with the traditional hot Local Bubble model, a heating mechanism for the dimmer and cooler gas remains to be found. The second possible explanation is that of the ‘Hot Top’ model, in which the Local Cavity is an old supernova remnant in which no (or very little) million degree local plasma is presently required. Instead, the cavity is now thought to be filled with partially ionized cloudlets of temperature ∼7000 K that are surrounded by lower density envelopes of photo-ionized gas of temperature ∼20,000 K. Although this new scenario provides a natural explanation for many of the observations that were in conflict with the Local Hot Bubble model, we cannot (as yet) provide a satisfactory explanation or the emission levels observed in the B and Be ultra-soft X-ray bands.  相似文献   

4.
Radio surveys of supernova remnants (SNRs) in the Galaxy have discovered 19 SNRs which are accompanied by the OH maser emission at 1720 MHz. This unusual maser is thought to be produced behind a shock front when a SNR expands into a molecular cloud. An important ingredient of this model is that the X-ray emission from the remnant enhances the production of OH molecules. In this sense, to study the characteristics of the mixed-morphology SNRs accompanied by the OH maser emission at 1720 MHz is important. By studying the X-ray characteristics of the mixed-morphology SNRs accompanied by the 1720 MHz OH maser emission, it is found that the ionization rate of X-ray is not correlated with the physical parameters , D, r, r2 and so on, but is correlated with the X-ray luminosity Lx. Meanwhile, Lx is closely correlated with the beam flux density of the weakest feature of the accompanying 1720 MHz OH maser emission. These mean that the X-ray emission from SNRs is sufficient to dissociate the water molecules behind a shock front and to produce the 1720 MHz OH masers.  相似文献   

5.
In an effort better to calibrate the supernova rate of starburst galaxies as determined from near-infrared [Fe  ii ] features, we report on a [Fe  ii ] λ 1.644 μm line-imaging survey of a sample of 42 optically selected supernova remnants (SNRs) in M33. A wide range of [Fe  ii ] luminosities are observed within our sample (from less than 6 to 695 L). Our data suggest that the bright [Fe  ii ] SNRs are entering the radiative phase and that the density of the local interstellar medium (ISM) largely controls the amount of [Fe  ii ] emission. We derive the following relation between the [Fe  ii ] λ 1.644 μm line luminosity of radiative SNRs and the electronic density of the post-shock gas, n e: L [Fe  ii ]     (cm−3). We also find a correlation in our data between L [Fe  ii ] and the metallicity of the shock-heated gas, but the physical interpretation of this result remains inconclusive, as our data also show a correlation between the metallicity and n e. The dramatically higher level of [Fe  ii ] emission from SNRs in the central regions of starburst galaxies is most likely due to their dense environments, although metallicity effects might also be important. The typical [Fe  ii ]-emitting lifetime of a SNR in the central regions of starburst galaxies is found to be of the order of 104 yr. On the basis of these results, we provide a new empirical relation allowing the determination of the current supernova rate of starburst galaxies from their integrated near-infrared [Fe  ii ] luminosity.  相似文献   

6.
We present CO(1-0) observations toward the soft gamma-ray repeater SGR 1806-20. We discuss the implications on the distance to the X-ray counterpart: AX 1805.7-2025. We also present an upper limit at = 1.3 mm for the thermal emission from dust and high resolution IRAS maps of the region. SGR 1806-20 is very likely associated with the H II complex W31. The G10.0-0.3 supernova remnant (SNR) could be expanding in the very low density region produced by the wind of the bright O9-B2 star recently detected.National Academy of Sciences / National Research Council Resident Research Associate  相似文献   

7.
A local void and the accelerating Universe   总被引:1,自引:0,他引:1  
RCW 114 is a filamentary nebula of about 250 arcmin diameter. Based on its large diameter-to-filament-width ratio, the expansion velocity, distance and size of the shell, it has been suggested that RCW 114 is a supernova remnant in its momentum-conserving phase. Confirmation of this identification is important, as the large angular size and extensive optical emission of this object will allow for detailed study to improve our knowledge of supernova remnants and their interaction with the interstellar medium.
We have used the FLAIR instrument on the UK Schmidt Telescope to obtain optical spectra of several filaments in RCW 114. These confirm that the emission is being produced by the interaction of the shock wave of a supernova remnant with the surrounding interstellar medium. We also obtained narrow-band H α +[N  ii ] and [S  ii ] images to examine the spatial variation in ionization structure.  相似文献   

8.
During the last couple of decades of work on the  Σ– D   (radio surface brightness to diameter) relation for supernova remnants (SNRs), it has been generally accepted that no single  Σ– D   relation can be constructed for all SNRs. However, it may still be possible to construct the relations for some classes of SNRs. In our previous paper we analysed  Σ– D   relation(s) for remnants in the dense environments of molecular clouds. The aim of this paper is to examine, in the same context, a class of oxygen-rich SNRs, and to extend the analysis to remnants evolving in lower-density interstellar media, namely Balmer-dominated SNRs. We have obtained good relations with certain similarities to our previous findings – similarities that emphasize, again, the role of ambient density in the evolution of SNRs.  相似文献   

9.
We present a detailed analysis of the high-energy gamma-ray source 2EG J0008+7307. The source has a steady flux and a hard spectrum, softening above 2 GeV. The properties of the gamma-ray source are suggestive of emission from a young pulsar in the spatially coincident CTA 1 supernova remnant, which has recently been found to have a non-thermal X-ray plerion. Our 95 per cent uncertainty contour around the > 1 GeV source position includes the point-like X-ray source at the centre of the plerion. We propose that this object is a young pulsar and is the most likely counterpart of 2EG J0008+7307.  相似文献   

10.
We present MERLIN and VLA observations at 1.4 and 5 GHz of the diffuse radio emission in the centre of M82. We detect a large expanding shell of ionized gas surrounding the brightest supernova remnant 41.95+57.5 with a diameter of ∼100 pc and an expansion velocity of ∼100 km s−1. We observe a 50-pc-scale 'blow-out' from this region, in the form of a 'cone' of missing 5-GHz continuum emission, which appears to be an excellent example of a galactic chimney.
On larger radio scales, we observe four chimney structures extending out to the north ∼100–200 pc along the minor axis. One of these features is almost certainly related to the 50-pc-scale blow-out from 41.95+57.5, although this is not the most prominent feature. The other features have also been traced to expulsion of material from the very centre by using an 'unsharp masked' image from 5-GHz VLA B-array observations, with the supernova remnant removed.
We interpret these chimney features as the base of the superwind, which implies that the ejection of material into the halo does not occur smoothly over the starburst region. Instead, very localized venting of hot gas is clearly in evidence.  相似文献   

11.
Molecular clouds are expected to emit non-thermal radiation due to cosmic ray interactions in the dense magnetized gas. Such emission is amplified if a cloud is located close to an accelerator of cosmic rays and if energetic particles can leave the accelerator site and diffusively reach the cloud. We consider here a situation in which a molecular cloud is located in the proximity of a supernova remnant which is efficiently accelerating cosmic rays and gradually releasing them in the interstellar medium. We calculate the multiwavelength spectrum from radio to gamma rays which is emerging from the cloud as the result of cosmic ray interactions. The total energy output is dominated by the gamma-ray emission, which can exceed the emission in other bands by an order of magnitude or more. This suggests that some of the unidentified TeV sources detected so far, with no obvious or very weak counterparts in other wavelengths, might be in fact associated with clouds illuminated by cosmic rays coming from a nearby source. Moreover, under certain conditions, the gamma-ray spectrum exhibits a concave shape, being steep at low energies and hard at high energies. This fact might have important implications for the studies of the spectral compatibility of GeV and TeV gamma-ray sources.  相似文献   

12.
Yu-Qing Lou  Ren-Yu Hu   《New Astronomy》2010,15(2):198-214
We study the self-similar magnetohydrodynamics (MHD) of a quasi-spherical expanding void (viz. cavity or bubble) surrounding the centre of a self-gravitating gas sphere with a general polytropic equation of state. We show various analytic asymptotic solutions near the void boundary in different parameter regimes and obtain the corresponding void solutions by extensive numerical explorations. We find novel void solutions of zero density on the void boundary. These new void solutions exist only in a general polytropic gas and feature shell-type density profiles. These void solutions, if not encountering the magnetosonic critical curve (MCC), generally approach the asymptotic expansion solution far from the central void with a velocity proportional to radial distance. We identify and examine free-expansion solutions, Einstein–de Sitter expansion solutions, and thermal-expansion solutions in three different parameter regimes. Under certain conditions, void solutions may cross the MCC either smoothly or by MHD shocks, and then merge into asymptotic solutions with finite velocity and density far from the centre. Our general polytropic MHD void solutions provide physical insight for void evolution, and may have astrophysical applications such as massive star collapses and explosions, shell-type supernova remnants and hot bubbles in the interstellar and intergalactic media, and planetary nebulae.  相似文献   

13.
We propose a method to synthesize the inverse Compton (IC) γ-ray image of a supernova remnant starting from the radio (or hard X-ray) map and using results of the spatially resolved X-ray spectral analysis. The method is successfully applied to SN 1006. We found that synthesized IC γ-ray images of SN 1006 show morphology in nice agreement with that reported by the High Energy Stereoscopic System (HESS) collaboration. The good correlation found between the observed very high energy γ-ray and X-ray/radio appearance can be considered as evidence of the fact that the γ-ray emission of SN 1006 observed by HESS is leptonic in origin, although a hadronic origin may not be excluded.  相似文献   

14.
We present 3D hydrodynamical simulations of the superbubble M17, also known as the Omega Nebula, carried out with the adaptive grid code yguazú-a , which includes radiative cooling. The superbubble is modelled considering the winds of 11 individual stars from the open cluster inside the nebula (NGC 6618), for which there are estimates of the mass-loss rates and terminal velocities based on their spectral types. These stars are located inside a dense interstellar medium, and they are bounded by two dense molecular clouds. We carried out three numerical models of this scenario, considering different line-of-sight positions of the stars (the position in the plane of the sky is known, thus fixed). Synthetic thermal X-ray emission maps are calculated from the numerical models and compared with ROSAT observations of this astrophysical object. Our models successfully reproduce both the observed X-ray morphology and the total X-ray luminosity, without taking into account the thermal conduction effects.  相似文献   

15.
We have observed two fields – Field I     ,     and Field II     ,     – with the Giant Metrewave Radio Telescope (GMRT) at 330 MHz. In the first field, we have studied the candidate supernova remnant (SNR) G3.1−0.6 and, based on its observed morphology, spectral index and polarization, confirmed it to be an SNR. We find this supernova to have a double ring appearance with a strip of emission on its western side passing through its centre.
We have discovered two extended curved objects in the second field, which appears to be part of a large shell-like structure. It is possibly the remains of an old supernova in the region. Three suspected SNRs, G356.3−0.3, G356.6+0.1 and G357.1−0.2, detected in the MOST 843-MHz survey of the GC region appear to be located on this shell-like structure. While both G356.3−0.3 and G356.6+0.1 seem to be parts of this shell, G357.1−0.2, which has a steeper spectrum above 1 GHz, could be a background SNR seen through the region. Our H  i absorption observation towards the candidate SNR G357.1−0.2 indicates that it is at a distance of more than 6 kpc from us.  相似文献   

16.
Charge‐transfer is the main process linking neutrals and charged particles in the interaction regions of neutral (or partly ionized) gas with a plasma. In this paper we illustrate the importance of charge‐transfer with respect to the dynamics and the structure of neutral gas‐plasma interfaces. We consider the following phenomena: (1) the heliospheric interface ‐ region where the solar wind plasma interacts with the partly‐ionized local interstellar medium (LISM) and (2) neutral interstellar clouds embedded in a hot, tenuous plasma such as the million degree gas that fills the so‐called “Local Bubble”. In (1), we discuss several effects in the outer heliosphere caused by charge exchange of interstellar neutral atoms and plasma protons. In (2) we describe the role of charge exchange in the formation of a transition region between the cloud and the surrounding plasma based on a two‐component model of the cloud‐plasma interaction. In the model the cloud consists of relatively cold and dense atomic hydrogen gas, surrounded by hot, low density, fully ionized plasma. We discuss the structure of the cloud‐plasma interface and the effect of charge exchange on the lifetime of interstellar clouds. Charge transfer between neutral atoms and minor ions in the plasma produces X‐ray emission. Assuming standard abundances of minor ions in the hot gas surrounding the cold interstellar cloud, we estimate the X‐ray emissivity consecutive to the charge transfer reactions. Our model shows that the charge‐transfer X‐ray emission from the neutral cloud‐plasma interface may be comparable to the diffuse thermal X‐ray emission from the million degree gas cavity itself (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
To investigate the kinematics of the neutral material around the Gum nebula, emission from hydroxyl at 1667 MHz was observed at many positions over the region. Fitting models of expanding shells to these data together with previously published molecular line data shows that the diffuse molecular clouds and cometary globules form a single expanding shell centred on G261−2.5. The mean angular radius is 10.5° and its maximum radius is 14°. The models show that the distance range to the expansion centre is from 200 pc to 500 pc.
The path of the runaway O-star ζ Puppis passed within <0.5° of the expansion centre of the neutral shell ∼1.5 Myr ago. The supernova of the erstwhile binary companion of ζ Puppis is the probable origin of the Gum nebula and the swept up expanding neutral shell. The 500-pc distance to the supernova is adopted as the distance to the expansion centre of the neutral shell. At this distance the energy required to produce the observed expansion could have been met with a single supernova. The radii of the front and back faces of the shell are 130 and 70 pc respectively. The front face is expanding faster than the back face, at 14 and 8.5 km s−1 respectively.
The extent of the neutral shell matches the radio continuum and H α emission of the Gum nebula well. The photoionized gas in the nebula is probably primarily ionized by ζ Puppis, which is still within the neutral shell. No evidence was found for the IRAS -Vela shell as a separate expanding shell.  相似文献   

18.
A model is proposed for the nonthermal synchrotron emission from supernova remnants in the uniform interstellar medium. Some characteristics of nonthermal and thermal emission (luminosity and surface brightness distribution) are compared. The conditions when the nonthermal component can be prominent in the X-ray spectrum are specified. We point out some observational tests which will allow a number of parameters characterizing the cosmic ray injection on supernova remnant shocks to be estimated. The cases when electron radiation losses may be neglected are considered.  相似文献   

19.
We report the detection of the slow-moving wind into which the compact supernova remnant SN 1997ab is expanding. Echelle spectroscopy provides clear evidence for a well-resolved narrow (full width at zero intensity, FWZI ∼180 km s−1) P Cygni profile, both in Hα and Hβ, superimposed on the broad emission lines of this compact supernova remnant. From theoretical arguments we know that the broad and strong emission lines imply a circumstellar density ( n  ≥ 107 cm−3). This, together with our detection, implies a massive and slow stellar wind experienced by the progenitor star shortly prior to the explosion.  相似文献   

20.
Synchrotron X-ray emission components were recently detected in many young supernova remnants (SNRs). There is even an emerging class – SN 1006, RX J1713.72−3946, Vela Jr and others – that is dominated by non-thermal emission in X-rays, also probably of synchrotron origin. Such emission results from electrons/positrons accelerated well above TeV energies in the spectral cut-off regime. In the case of diffusive shock acceleration, which is the most promising acceleration mechanism in SNRs, very strong magnetic fluctuations with amplitudes well above the mean magnetic field must be present. Starting from such a fluctuating field, we have simulated images of polarized X-ray emission of SNR shells and show that these are highly clumpy with high polarizations up to 50 per cent. Another distinct characteristic of this emission is the strong intermittency, resulting from the fluctuating field amplifications. The details of this 'twinkling' polarized X-ray emission of SNRs depend strongly on the magnetic field fluctuation spectra, providing a potentially sensitive diagnostic tool. We demonstrate that the predicted characteristics can be studied with instruments that are currently being considered. These can give unique information on magnetic field characteristics and high-energy particle acceleration in SNRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号